Step | Hyp | Ref
| Expression |
1 | | taylth.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
2 | | taylth.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
3 | | fz1ssfz0 12759 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(0...𝑁) |
4 | | taylthlem2.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) |
5 | | fzofzp1 12889 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑀 + 1) ∈ (1...𝑁)) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
7 | 3, 6 | sseldi 3819 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ (0...𝑁)) |
8 | | fznn0sub2 12770 |
. . . . . . . . . 10
⊢ ((𝑀 + 1) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
10 | | elfznn0 12756 |
. . . . . . . . 9
⊢ ((𝑁 − (𝑀 + 1)) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
12 | | dvnfre 24163 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
13 | 2, 1, 11, 12 | syl3anc 1439 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
14 | | reelprrecn 10366 |
. . . . . . . . . . . 12
⊢ ℝ
∈ {ℝ, ℂ} |
15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
16 | | cnex 10355 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
17 | 16 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
18 | | reex 10365 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
20 | | ax-resscn 10331 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
21 | | fss 6306 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝐴⟶ℂ) |
22 | 2, 20, 21 | sylancl 580 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
23 | | elpm2r 8160 |
. . . . . . . . . . . 12
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
24 | 17, 19, 22, 1, 23 | syl22anc 829 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
25 | | dvnbss 24139 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
26 | 15, 24, 11, 25 | syl3anc 1439 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
27 | 2, 26 | fssdmd 6308 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ 𝐴) |
28 | | taylth.d |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) = 𝐴) |
29 | | dvn2bss 24141 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
30 | 15, 24, 9, 29 | syl3anc 1439 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
31 | 28, 30 | eqsstr3d 3859 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))) |
32 | 27, 31 | eqssd 3838 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = 𝐴) |
33 | 32 | feq2d 6279 |
. . . . . . 7
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ)) |
34 | 13, 33 | mpbid 224 |
. . . . . 6
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ) |
35 | 34 | ffvelrnda 6625 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
36 | 1 | sselda 3821 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
37 | | fvres 6467 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ →
((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
38 | 37 | adantl 475 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
39 | | resubdrg 20362 |
. . . . . . . . . . . 12
⊢ (ℝ
∈ (SubRing‘ℂfld) ∧ ℝfld ∈
DivRing) |
40 | 39 | simpli 478 |
. . . . . . . . . . 11
⊢ ℝ
∈ (SubRing‘ℂfld) |
41 | 40 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
(SubRing‘ℂfld)) |
42 | | taylth.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
43 | 42 | nnnn0d 11707 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
44 | | taylth.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
45 | 44, 28 | eleqtrrd 2862 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
46 | | taylth.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
47 | 1, 44 | sseldd 3822 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℝ) |
48 | 2 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐹:𝐴⟶ℝ) |
49 | 1 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ⊆ ℝ) |
50 | | elfznn0 12756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
51 | 50 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
52 | | dvnfre 24163 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑘 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
53 | 48, 49, 51, 52 | syl3anc 1439 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((ℝ D𝑛
𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
54 | 14 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ℝ ∈ {ℝ,
ℂ}) |
55 | 24 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
56 | | simpr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁)) |
57 | | dvn2bss 24141 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ 𝑘 ∈
(0...𝑁)) → dom
((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
58 | 54, 55, 56, 57 | syl3anc 1439 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
59 | 45 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
60 | 58, 59 | sseldd 3822 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑘)) |
61 | 53, 60 | ffvelrnd 6626 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) ∈ ℝ) |
62 | | faccl 13394 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
63 | 51, 62 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
64 | 61, 63 | nndivred 11434 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℝ) |
65 | 15, 22, 1, 43, 45, 46, 41, 47, 64 | taylply2 24570 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ∈ (Poly‘ℝ) ∧
(deg‘𝑇) ≤ 𝑁)) |
66 | 65 | simpld 490 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈
(Poly‘ℝ)) |
67 | | dvnply2 24490 |
. . . . . . . . . 10
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
68 | 41, 66, 11, 67 | syl3anc 1439 |
. . . . . . . . 9
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
69 | | plyreres 24486 |
. . . . . . . . 9
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
70 | 68, 69 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
71 | 70 | ffvelrnda 6625 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) ∈
ℝ) |
72 | 38, 71 | eqeltrrd 2860 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
73 | 36, 72 | syldan 585 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
74 | 35, 73 | resubcld 10806 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ ℝ) |
75 | 74 | fmpttd 6651 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))):𝐴⟶ℝ) |
76 | 47 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ ℝ) |
77 | 36, 76 | resubcld 10806 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦 − 𝐵) ∈ ℝ) |
78 | | elfzouz 12798 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈
(ℤ≥‘1)) |
79 | 4, 78 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
80 | | nnuz 12034 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
81 | 79, 80 | syl6eleqr 2870 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
82 | 81 | nnnn0d 11707 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
83 | 82 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑀 ∈
ℕ0) |
84 | | 1nn0 11665 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
85 | 84 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 1 ∈
ℕ0) |
86 | 83, 85 | nn0addcld 11711 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑀 + 1) ∈
ℕ0) |
87 | 77, 86 | reexpcld 13349 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℝ) |
88 | 87 | fmpttd 6651 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℝ) |
89 | | retop 22984 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ Top |
90 | | uniretop 22985 |
. . . . . . 7
⊢ ℝ =
∪ (topGen‘ran (,)) |
91 | 90 | ntrss2 21280 |
. . . . . 6
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
92 | 89, 1, 91 | sylancr 581 |
. . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
93 | 42 | nncnd 11397 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
94 | 81 | nncnd 11397 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℂ) |
95 | | 1cnd 10373 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) |
96 | 93, 94, 95 | nppcan2d 10762 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁 − (𝑀 + 1)) + 1) = (𝑁 − 𝑀)) |
97 | 96 | fveq2d 6452 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
98 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
99 | | dvnp1 24136 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
100 | 98, 24, 11, 99 | syl3anc 1439 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
101 | 97, 100 | eqtr3d 2816 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
102 | 101 | dmeqd 5573 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
103 | | fzonnsub 12817 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) |
104 | 4, 103 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ) |
105 | 104 | nnnn0d 11707 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈
ℕ0) |
106 | | dvnbss 24139 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
107 | 15, 24, 105, 106 | syl3anc 1439 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
108 | 2, 107 | fssdmd 6308 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ 𝐴) |
109 | | elfzofz 12809 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (1...𝑁)) |
110 | 4, 109 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
111 | 3, 110 | sseldi 3819 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
112 | | fznn0sub2 12770 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ (0...𝑁)) |
113 | 111, 112 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈ (0...𝑁)) |
114 | | dvn2bss 24141 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
115 | 15, 24, 113, 114 | syl3anc 1439 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
116 | 28, 115 | eqsstr3d 3859 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))) |
117 | 108, 116 | eqssd 3838 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = 𝐴) |
118 | 102, 117 | eqtr3d 2816 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) |
119 | | fss 6306 |
. . . . . . . 8
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
120 | 34, 20, 119 | sylancl 580 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
121 | | eqid 2778 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
122 | 121 | tgioo2 23025 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
123 | 98, 120, 1, 122, 121 | dvbssntr 24112 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) ⊆
((int‘(topGen‘ran (,)))‘𝐴)) |
124 | 118, 123 | eqsstr3d 3859 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ((int‘(topGen‘ran
(,)))‘𝐴)) |
125 | 92, 124 | eqssd 3838 |
. . . 4
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴) |
126 | 90 | isopn3 21289 |
. . . . 5
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
127 | 89, 1, 126 | sylancr 581 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
128 | 125, 127 | mpbird 249 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (topGen‘ran
(,))) |
129 | | eqid 2778 |
. . 3
⊢ (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵}) |
130 | | difss 3960 |
. . . 4
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 |
131 | 35 | recnd 10407 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
132 | | dvnf 24138 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
133 | 15, 24, 105, 132 | syl3anc 1439 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
134 | 117 | feq2d 6279 |
. . . . . . . . 9
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ)) |
135 | 133, 134 | mpbid 224 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ) |
136 | 135 | ffvelrnda 6625 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
137 | | dvnfre 24163 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
138 | 2, 1, 105, 137 | syl3anc 1439 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
139 | 117 | feq2d 6279 |
. . . . . . . . . 10
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ)) |
140 | 138, 139 | mpbid 224 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ) |
141 | 140 | feqmptd 6511 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
142 | 34 | feqmptd 6511 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
143 | 142 | oveq2d 6940 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
144 | 101, 141,
143 | 3eqtr3rd 2823 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
145 | 73 | recnd 10407 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
146 | | fvexd 6463 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ V) |
147 | 72 | recnd 10407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
148 | | recn 10364 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
149 | | dvnply2 24490 |
. . . . . . . . . . . 12
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
150 | 41, 66, 105, 149 | syl3anc 1439 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
151 | | plyf 24402 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
152 | 150, 151 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
153 | 152 | ffvelrnda 6625 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
154 | 148, 153 | sylan2 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
155 | 121 | cnfldtopon 23005 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
156 | | toponmax 21149 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ℂ ∈ (TopOpen‘ℂfld)) |
157 | 155, 156 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
(TopOpen‘ℂfld)) |
158 | | df-ss 3806 |
. . . . . . . . . 10
⊢ (ℝ
⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) |
159 | 98, 158 | sylib 210 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ ∩ ℂ) =
ℝ) |
160 | | plyf 24402 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
161 | 68, 160 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
162 | 161 | ffvelrnda 6625 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
163 | 96 | fveq2d 6452 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))) |
164 | | ssid 3842 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
165 | 164 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ⊆
ℂ) |
166 | | mapsspm 8176 |
. . . . . . . . . . . . 13
⊢ (ℂ
↑𝑚 ℂ) ⊆ (ℂ ↑pm
ℂ) |
167 | | plyf 24402 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ∈ (Poly‘ℝ)
→ 𝑇:ℂ⟶ℂ) |
168 | 66, 167 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇:ℂ⟶ℂ) |
169 | 16, 16 | elmap 8171 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ (ℂ
↑𝑚 ℂ) ↔ 𝑇:ℂ⟶ℂ) |
170 | 168, 169 | sylibr 226 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑𝑚
ℂ)) |
171 | 166, 170 | sseldi 3819 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑pm
ℂ)) |
172 | | dvnp1 24136 |
. . . . . . . . . . . 12
⊢ ((ℂ
⊆ ℂ ∧ 𝑇
∈ (ℂ ↑pm ℂ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
173 | 165, 171,
11, 172 | syl3anc 1439 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
174 | 163, 173 | eqtr3d 2816 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
175 | 152 | feqmptd 6511 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
176 | 161 | feqmptd 6511 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
177 | 176 | oveq2d 6940 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
178 | 174, 175,
177 | 3eqtr3rd 2823 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
179 | 121, 15, 157, 159, 162, 153, 178 | dvmptres3 24167 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℝ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
180 | 15, 147, 154, 179, 1, 122, 121, 128 | dvmptres 24174 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
181 | 15, 131, 136, 144, 145, 146, 180 | dvmptsub 24178 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
182 | 181 | dmeqd 5573 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = dom (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
183 | | ovex 6956 |
. . . . . 6
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) ∈ V |
184 | | eqid 2778 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
185 | 183, 184 | dmmpti 6271 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = 𝐴 |
186 | 182, 185 | syl6eq 2830 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = 𝐴) |
187 | 130, 186 | syl5sseqr 3873 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))) |
188 | | simpr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) |
189 | 47 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℝ) |
190 | 189 | recnd 10407 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℂ) |
191 | 188, 190 | subcld 10736 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦 − 𝐵) ∈ ℂ) |
192 | 82 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈
ℕ0) |
193 | 84 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℕ0) |
194 | 192, 193 | nn0addcld 11711 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
195 | 191, 194 | expcld 13332 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
196 | 148, 195 | sylan2 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
197 | 94 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈ ℂ) |
198 | | 1cnd 10373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) |
199 | 197, 198 | addcld 10398 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℂ) |
200 | 191, 192 | expcld 13332 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
201 | 199, 200 | mulcld 10399 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
202 | 148, 201 | sylan2 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
203 | 16 | prid2 4530 |
. . . . . . . . . . 11
⊢ ℂ
∈ {ℝ, ℂ} |
204 | 203 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ∈ {ℝ,
ℂ}) |
205 | | simpr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
206 | | elfznn 12692 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 + 1) ∈ (1...𝑁) → (𝑀 + 1) ∈ ℕ) |
207 | 6, 206 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
208 | 207 | nnnn0d 11707 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
209 | 208 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
210 | 205, 209 | expcld 13332 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑀 + 1)) ∈ ℂ) |
211 | | ovexd 6958 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝑀 + 1) · (𝑥↑𝑀)) ∈ V) |
212 | 204 | dvmptid 24168 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)) |
213 | | 0cnd 10371 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 0 ∈
ℂ) |
214 | 47 | recnd 10407 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℂ) |
215 | 204, 214 | dvmptc 24169 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝐵)) = (𝑦 ∈ ℂ ↦ 0)) |
216 | 204, 188,
198, 212, 190, 213, 215 | dvmptsub 24178 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ (1 −
0))) |
217 | | 1m0e1 11508 |
. . . . . . . . . . . 12
⊢ (1
− 0) = 1 |
218 | 217 | mpteq2i 4978 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ ↦ (1
− 0)) = (𝑦 ∈
ℂ ↦ 1) |
219 | 216, 218 | syl6eq 2830 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ 1)) |
220 | | dvexp 24164 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) ∈ ℕ →
(ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
221 | 207, 220 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
222 | 94, 95 | pncand 10737 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
223 | 222 | oveq2d 6940 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥↑((𝑀 + 1) − 1)) = (𝑥↑𝑀)) |
224 | 223 | oveq2d 6940 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))) = ((𝑀 + 1) · (𝑥↑𝑀))) |
225 | 224 | mpteq2dv 4982 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
226 | 221, 225 | eqtrd 2814 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
227 | | oveq1 6931 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑(𝑀 + 1)) = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
228 | | oveq1 6931 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑𝑀) = ((𝑦 − 𝐵)↑𝑀)) |
229 | 228 | oveq2d 6940 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → ((𝑀 + 1) · (𝑥↑𝑀)) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
230 | 204, 204,
191, 198, 210, 211, 219, 226, 227, 229 | dvmptco 24183 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1))) |
231 | 201 | mulid1d 10396 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
232 | 231 | mpteq2dva 4981 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1)) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
233 | 230, 232 | eqtrd 2814 |
. . . . . . . 8
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
234 | 121, 15, 157, 159, 195, 201, 233 | dvmptres3 24167 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℝ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
235 | 15, 196, 202, 234, 1, 122, 121, 128 | dvmptres 24174 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
236 | 235 | dmeqd 5573 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = dom (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
237 | | ovex 6956 |
. . . . . 6
⊢ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ V |
238 | | eqid 2778 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
239 | 237, 238 | dmmpti 6271 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = 𝐴 |
240 | 236, 239 | syl6eq 2830 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) |
241 | 130, 240 | syl5sseqr 3873 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))) |
242 | 15, 22, 1, 9, 45, 46 | dvntaylp0 24574 |
. . . . . 6
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
243 | 242 | oveq2d 6940 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
244 | 120, 44 | ffvelrnd 6626 |
. . . . . 6
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) ∈ ℂ) |
245 | 244 | subidd 10724 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
246 | 243, 245 | eqtrd 2814 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
247 | 121 | subcn 23088 |
. . . . . . 7
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
248 | 247 | a1i 11 |
. . . . . 6
⊢ (𝜑 → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
249 | | dvcn 24132 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) → ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
250 | 98, 120, 1, 118, 249 | syl31anc 1441 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
251 | 142, 250 | eqeltrrd 2860 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
252 | | plycn 24465 |
. . . . . . . 8
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
253 | 68, 252 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
254 | 1, 20 | syl6ss 3833 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
255 | | cncfmptid 23134 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑦
∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
256 | 254, 164,
255 | sylancl 580 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
257 | 253, 256 | cncfmpt1f 23135 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
258 | 121, 248,
251, 257 | cncfmpt2f 23136 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) ∈ (𝐴–cn→ℂ)) |
259 | | fveq2 6448 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
260 | | fveq2 6448 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
261 | 259, 260 | oveq12d 6942 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
262 | 258, 44, 261 | cnmptlimc 24102 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
263 | 246, 262 | eqeltrrd 2860 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
264 | 214 | subidd 10724 |
. . . . . 6
⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
265 | 264 | oveq1d 6939 |
. . . . 5
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = (0↑(𝑀 + 1))) |
266 | 207 | 0expd 13348 |
. . . . 5
⊢ (𝜑 → (0↑(𝑀 + 1)) = 0) |
267 | 265, 266 | eqtrd 2814 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = 0) |
268 | 254 | sselda 3821 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℂ) |
269 | 268, 195 | syldan 585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
270 | 269 | fmpttd 6651 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ) |
271 | | dvcn 24132 |
. . . . . 6
⊢
(((ℝ ⊆ ℂ ∧ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
272 | 98, 270, 1, 240, 271 | syl31anc 1441 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
273 | | oveq1 6931 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 − 𝐵) = (𝐵 − 𝐵)) |
274 | 273 | oveq1d 6939 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝐵 − 𝐵)↑(𝑀 + 1))) |
275 | 272, 44, 274 | cnmptlimc 24102 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
276 | 267, 275 | eqeltrrd 2860 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
277 | 254 | ssdifssd 3971 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
278 | 277 | sselda 3821 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℂ) |
279 | 214 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
280 | 278, 279 | subcld 10736 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ∈ ℂ) |
281 | | eldifsni 4553 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) → 𝑦 ≠ 𝐵) |
282 | 281 | adantl 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ≠ 𝐵) |
283 | 278, 279,
282 | subne0d 10745 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ≠ 0) |
284 | 207 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
285 | 284 | nnzd 11838 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℤ) |
286 | 280, 283,
285 | expne0d 13338 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ≠ 0) |
287 | 286 | necomd 3024 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
288 | 287 | neneqd 2974 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
289 | 288 | nrexdv 3182 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
290 | | df-ima 5370 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) |
291 | 290 | eleq2i 2851 |
. . . . 5
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵}))) |
292 | | resmpt 5701 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) |
293 | 130, 292 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
294 | | ovex 6956 |
. . . . . 6
⊢ ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ V |
295 | 293, 294 | elrnmpti 5624 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
296 | 291, 295 | bitri 267 |
. . . 4
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
297 | 289, 296 | sylnibr 321 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵}))) |
298 | 94 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℂ) |
299 | | 1cnd 10373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 1 ∈
ℂ) |
300 | 298, 299 | addcld 10398 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
301 | 278, 200 | syldan 585 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
302 | 284 | nnne0d 11430 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
303 | 81 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ) |
304 | 303 | nnzd 11838 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
305 | 280, 283,
304 | expne0d 13338 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ≠ 0) |
306 | 300, 301,
302, 305 | mulne0d 11030 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ≠ 0) |
307 | 306 | necomd 3024 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
308 | 307 | neneqd 2974 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
309 | 308 | nrexdv 3182 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
310 | 235 | imaeq1d 5721 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵}))) |
311 | | df-ima 5370 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) |
312 | 310, 311 | syl6eq 2830 |
. . . . . 6
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))) |
313 | 312 | eleq2d 2845 |
. . . . 5
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})))) |
314 | | resmpt 5701 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
315 | 130, 314 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
316 | 315, 237 | elrnmpti 5624 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
317 | 313, 316 | syl6bb 279 |
. . . 4
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
318 | 309, 317 | mtbird 317 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵}))) |
319 | | eldifi 3955 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ 𝐴) |
320 | 135 | ffvelrnda 6625 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
321 | 319, 320 | sylan2 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
322 | 1 | ssdifssd 3971 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℝ) |
323 | 322 | sselda 3821 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ) |
324 | 323 | recnd 10407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ) |
325 | 152 | ffvelrnda 6625 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
326 | 324, 325 | syldan 585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
327 | 321, 326 | subcld 10736 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ ℂ) |
328 | 47 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℝ) |
329 | 323, 328 | resubcld 10806 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℝ) |
330 | 82 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈
ℕ0) |
331 | 329, 330 | reexpcld 13349 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℝ) |
332 | 331 | recnd 10407 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℂ) |
333 | 328 | recnd 10407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
334 | 324, 333 | subcld 10736 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℂ) |
335 | | eldifsni 4553 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ≠ 𝐵) |
336 | 335 | adantl 475 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ≠ 𝐵) |
337 | 324, 333,
336 | subne0d 10745 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ≠ 0) |
338 | 330 | nn0zd 11837 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
339 | 334, 337,
338 | expne0d 13338 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ≠ 0) |
340 | 327, 332,
339 | divcld 11154 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) ∈ ℂ) |
341 | 207 | nnrecred 11431 |
. . . . . . 7
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ) |
342 | 341 | recnd 10407 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℂ) |
343 | 342 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (1 / (𝑀 + 1)) ∈ ℂ) |
344 | | txtopon 21814 |
. . . . . . 7
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
→ ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ))) |
345 | 155, 155,
344 | mp2an 682 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ)) |
346 | 345 | toponrestid 21144 |
. . . . 5
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) |
347 | | taylthlem2.i |
. . . . 5
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) |
348 | | limcresi 24097 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) |
349 | | resmpt 5701 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1)))) |
350 | 130, 349 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) |
351 | 350 | oveq1i 6934 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
352 | 348, 351 | sseqtri 3856 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
353 | | cncfmptc 23133 |
. . . . . . . 8
⊢ (((1 /
(𝑀 + 1)) ∈ ℝ
∧ 𝐴 ⊆ ℂ
∧ ℝ ⊆ ℂ) → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
354 | 341, 254,
98, 353 | syl3anc 1439 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
355 | | eqidd 2779 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (1 / (𝑀 + 1)) = (1 / (𝑀 + 1))) |
356 | 354, 44, 355 | cnmptlimc 24102 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
357 | 352, 356 | sseldi 3819 |
. . . . 5
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
358 | 121 | mulcn 23089 |
. . . . . 6
⊢ ·
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
359 | | 0cn 10370 |
. . . . . . 7
⊢ 0 ∈
ℂ |
360 | | opelxpi 5394 |
. . . . . . 7
⊢ ((0
∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → 〈0, (1 /
(𝑀 + 1))〉 ∈
(ℂ × ℂ)) |
361 | 359, 342,
360 | sylancr 581 |
. . . . . 6
⊢ (𝜑 → 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ
× ℂ)) |
362 | 345 | toponunii 21139 |
. . . . . . 7
⊢ (ℂ
× ℂ) = ∪
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) |
363 | 362 | cncnpi 21501 |
. . . . . 6
⊢ ((
· ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) ∧ 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ ×
ℂ)) → · ∈ ((((TopOpen‘ℂfld)
×t (TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
364 | 358, 361,
363 | sylancr 581 |
. . . . 5
⊢ (𝜑 → · ∈
((((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
365 | 340, 343,
165, 165, 121, 346, 347, 357, 364 | limccnp2 24104 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵)) |
366 | 342 | mul02d 10576 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) = 0) |
367 | 181 | fveq1d 6450 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥)) |
368 | | fveq2 6448 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥)) |
369 | | fveq2 6448 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) |
370 | 368, 369 | oveq12d 6942 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
371 | | ovex 6956 |
. . . . . . . . . . 11
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ V |
372 | 370, 184,
371 | fvmpt 6544 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
373 | 319, 372 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
374 | 367, 373 | sylan9eq 2834 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
375 | 235 | fveq1d 6450 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥)) |
376 | | oveq1 6931 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) |
377 | 376 | oveq1d 6939 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑀) = ((𝑥 − 𝐵)↑𝑀)) |
378 | 377 | oveq2d 6940 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
379 | | ovex 6956 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) ∈ V |
380 | 378, 238,
379 | fvmpt 6544 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
381 | 319, 380 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
382 | 375, 381 | sylan9eq 2834 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
383 | 207 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
384 | 383 | nncnd 11397 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
385 | 384, 332 | mulcomd 10400 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
386 | 382, 385 | eqtrd 2814 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
387 | 374, 386 | oveq12d 6942 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
388 | 383 | nnne0d 11430 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
389 | 327, 332,
384, 339, 388 | divdiv1d 11185 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = (((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
390 | 340, 384,
388 | divrecd 11157 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = ((((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) |
391 | 387, 389,
390 | 3eqtr2rd 2821 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) |
392 | 391 | mpteq2dva 4981 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)))) |
393 | 392 | oveq1d 6939 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
394 | 365, 366,
393 | 3eltr3d 2873 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
395 | 1, 75, 88, 128, 44, 129, 187, 241, 263, 276, 297, 318, 394 | lhop 24227 |
. 2
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵)) |
396 | 319 | adantl 475 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ 𝐴) |
397 | | fveq2 6448 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
398 | | fveq2 6448 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
399 | 397, 398 | oveq12d 6942 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
400 | | eqid 2778 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
401 | | ovex 6956 |
. . . . . . 7
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) ∈ V |
402 | 399, 400,
401 | fvmpt 6544 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
403 | 396, 402 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
404 | 376 | oveq1d 6939 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
405 | | eqid 2778 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
406 | | ovex 6956 |
. . . . . . 7
⊢ ((𝑥 − 𝐵)↑(𝑀 + 1)) ∈ V |
407 | 404, 405,
406 | fvmpt 6544 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
408 | 396, 407 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
409 | 403, 408 | oveq12d 6942 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) |
410 | 409 | mpteq2dva 4981 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1))))) |
411 | 410 | oveq1d 6939 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |
412 | 395, 411 | eleqtrd 2861 |
1
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |