Step | Hyp | Ref
| Expression |
1 | | taylth.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
2 | | taylth.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
3 | | fz1ssfz0 13361 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(0...𝑁) |
4 | | taylthlem2.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) |
5 | | fzofzp1 13493 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑀 + 1) ∈ (1...𝑁)) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
7 | 3, 6 | sselid 3920 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ (0...𝑁)) |
8 | | fznn0sub2 13372 |
. . . . . . . . . 10
⊢ ((𝑀 + 1) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
10 | | elfznn0 13358 |
. . . . . . . . 9
⊢ ((𝑁 − (𝑀 + 1)) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
12 | | dvnfre 25125 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
13 | 2, 1, 11, 12 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
14 | | reelprrecn 10972 |
. . . . . . . . . . . 12
⊢ ℝ
∈ {ℝ, ℂ} |
15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
16 | | cnex 10961 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
17 | 16 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
18 | | reex 10971 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
20 | | ax-resscn 10937 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
21 | | fss 6626 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝐴⟶ℂ) |
22 | 2, 20, 21 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
23 | | elpm2r 8642 |
. . . . . . . . . . . 12
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
24 | 17, 19, 22, 1, 23 | syl22anc 836 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
25 | | dvnbss 25101 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
26 | 15, 24, 11, 25 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
27 | 2, 26 | fssdmd 6628 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ 𝐴) |
28 | | taylth.d |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) = 𝐴) |
29 | | dvn2bss 25103 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
30 | 15, 24, 9, 29 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
31 | 28, 30 | eqsstrrd 3961 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))) |
32 | 27, 31 | eqssd 3939 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = 𝐴) |
33 | 32 | feq2d 6595 |
. . . . . . 7
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ)) |
34 | 13, 33 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ) |
35 | 34 | ffvelrnda 6970 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
36 | 1 | sselda 3922 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
37 | | fvres 6802 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ →
((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
38 | 37 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
39 | | resubdrg 20822 |
. . . . . . . . . . . 12
⊢ (ℝ
∈ (SubRing‘ℂfld) ∧ ℝfld ∈
DivRing) |
40 | 39 | simpli 484 |
. . . . . . . . . . 11
⊢ ℝ
∈ (SubRing‘ℂfld) |
41 | 40 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
(SubRing‘ℂfld)) |
42 | | taylth.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
43 | 42 | nnnn0d 12302 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
44 | | taylth.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
45 | 44, 28 | eleqtrrd 2843 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
46 | | taylth.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
47 | 1, 44 | sseldd 3923 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℝ) |
48 | | elfznn0 13358 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
49 | | dvnfre 25125 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑘 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
50 | 2, 1, 48, 49 | syl2an3an 1421 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((ℝ D𝑛
𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
51 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁)) |
52 | | dvn2bss 25103 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ 𝑘 ∈
(0...𝑁)) → dom
((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
53 | 14, 24, 51, 52 | mp3an2ani 1467 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
54 | 45 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
55 | 53, 54 | sseldd 3923 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑘)) |
56 | 50, 55 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) ∈ ℝ) |
57 | 48 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
58 | 57 | faccld 14007 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
59 | 56, 58 | nndivred 12036 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℝ) |
60 | 15, 22, 1, 43, 45, 46, 41, 47, 59 | taylply2 25536 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ∈ (Poly‘ℝ) ∧
(deg‘𝑇) ≤ 𝑁)) |
61 | 60 | simpld 495 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈
(Poly‘ℝ)) |
62 | | dvnply2 25456 |
. . . . . . . . . 10
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
63 | 41, 61, 11, 62 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
64 | | plyreres 25452 |
. . . . . . . . 9
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
66 | 65 | ffvelrnda 6970 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) ∈
ℝ) |
67 | 38, 66 | eqeltrrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
68 | 36, 67 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
69 | 35, 68 | resubcld 11412 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ ℝ) |
70 | 69 | fmpttd 6998 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))):𝐴⟶ℝ) |
71 | 47 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ ℝ) |
72 | 36, 71 | resubcld 11412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦 − 𝐵) ∈ ℝ) |
73 | | elfzouz 13400 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈
(ℤ≥‘1)) |
74 | 4, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
75 | | nnuz 12630 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
76 | 74, 75 | eleqtrrdi 2851 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
77 | 76 | nnnn0d 12302 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
78 | 77 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑀 ∈
ℕ0) |
79 | | 1nn0 12258 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
80 | 79 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 1 ∈
ℕ0) |
81 | 78, 80 | nn0addcld 12306 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑀 + 1) ∈
ℕ0) |
82 | 72, 81 | reexpcld 13890 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℝ) |
83 | 82 | fmpttd 6998 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℝ) |
84 | | retop 23934 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ Top |
85 | | uniretop 23935 |
. . . . . . 7
⊢ ℝ =
∪ (topGen‘ran (,)) |
86 | 85 | ntrss2 22217 |
. . . . . 6
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
87 | 84, 1, 86 | sylancr 587 |
. . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
88 | 42 | nncnd 11998 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
89 | 76 | nncnd 11998 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℂ) |
90 | | 1cnd 10979 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) |
91 | 88, 89, 90 | nppcan2d 11367 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁 − (𝑀 + 1)) + 1) = (𝑁 − 𝑀)) |
92 | 91 | fveq2d 6787 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
93 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
94 | | dvnp1 25098 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
95 | 93, 24, 11, 94 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
96 | 92, 95 | eqtr3d 2781 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
97 | 96 | dmeqd 5817 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
98 | | fzonnsub 13421 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) |
99 | 4, 98 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ) |
100 | 99 | nnnn0d 12302 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈
ℕ0) |
101 | | dvnbss 25101 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
102 | 15, 24, 100, 101 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
103 | 2, 102 | fssdmd 6628 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ 𝐴) |
104 | | elfzofz 13412 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (1...𝑁)) |
105 | 4, 104 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
106 | 3, 105 | sselid 3920 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
107 | | fznn0sub2 13372 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ (0...𝑁)) |
108 | 106, 107 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈ (0...𝑁)) |
109 | | dvn2bss 25103 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
110 | 15, 24, 108, 109 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
111 | 28, 110 | eqsstrrd 3961 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))) |
112 | 103, 111 | eqssd 3939 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = 𝐴) |
113 | 97, 112 | eqtr3d 2781 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) |
114 | | fss 6626 |
. . . . . . . 8
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
115 | 34, 20, 114 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
116 | | eqid 2739 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
117 | 116 | tgioo2 23975 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
118 | 93, 115, 1, 117, 116 | dvbssntr 25073 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) ⊆
((int‘(topGen‘ran (,)))‘𝐴)) |
119 | 113, 118 | eqsstrrd 3961 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ((int‘(topGen‘ran
(,)))‘𝐴)) |
120 | 87, 119 | eqssd 3939 |
. . . 4
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴) |
121 | 85 | isopn3 22226 |
. . . . 5
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
122 | 84, 1, 121 | sylancr 587 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
123 | 120, 122 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (topGen‘ran
(,))) |
124 | | eqid 2739 |
. . 3
⊢ (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵}) |
125 | | difss 4067 |
. . . 4
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 |
126 | 35 | recnd 11012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
127 | | dvnf 25100 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
128 | 15, 24, 100, 127 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
129 | 112 | feq2d 6595 |
. . . . . . . . 9
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ)) |
130 | 128, 129 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ) |
131 | 130 | ffvelrnda 6970 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
132 | | dvnfre 25125 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
133 | 2, 1, 100, 132 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
134 | 112 | feq2d 6595 |
. . . . . . . . . 10
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ)) |
135 | 133, 134 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ) |
136 | 135 | feqmptd 6846 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
137 | 34 | feqmptd 6846 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
138 | 137 | oveq2d 7300 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
139 | 96, 136, 138 | 3eqtr3rd 2788 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
140 | 68 | recnd 11012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
141 | | fvexd 6798 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ V) |
142 | 67 | recnd 11012 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
143 | | recn 10970 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
144 | | dvnply2 25456 |
. . . . . . . . . . . 12
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
145 | 41, 61, 100, 144 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
146 | | plyf 25368 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
147 | 145, 146 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
148 | 147 | ffvelrnda 6970 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
149 | 143, 148 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
150 | 116 | cnfldtopon 23955 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
151 | | toponmax 22084 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ℂ ∈ (TopOpen‘ℂfld)) |
152 | 150, 151 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
(TopOpen‘ℂfld)) |
153 | | df-ss 3905 |
. . . . . . . . . 10
⊢ (ℝ
⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) |
154 | 93, 153 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ ∩ ℂ) =
ℝ) |
155 | | plyf 25368 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
156 | 63, 155 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
157 | 156 | ffvelrnda 6970 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
158 | 91 | fveq2d 6787 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))) |
159 | | ssid 3944 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
160 | 159 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ⊆
ℂ) |
161 | | mapsspm 8673 |
. . . . . . . . . . . . 13
⊢ (ℂ
↑m ℂ) ⊆ (ℂ ↑pm
ℂ) |
162 | | plyf 25368 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ∈ (Poly‘ℝ)
→ 𝑇:ℂ⟶ℂ) |
163 | 61, 162 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇:ℂ⟶ℂ) |
164 | 16, 16 | elmap 8668 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ (ℂ
↑m ℂ) ↔ 𝑇:ℂ⟶ℂ) |
165 | 163, 164 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑m
ℂ)) |
166 | 161, 165 | sselid 3920 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑pm
ℂ)) |
167 | | dvnp1 25098 |
. . . . . . . . . . . 12
⊢ ((ℂ
⊆ ℂ ∧ 𝑇
∈ (ℂ ↑pm ℂ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
168 | 160, 166,
11, 167 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
169 | 158, 168 | eqtr3d 2781 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
170 | 147 | feqmptd 6846 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
171 | 156 | feqmptd 6846 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
172 | 171 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
173 | 169, 170,
172 | 3eqtr3rd 2788 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
174 | 116, 15, 152, 154, 157, 148, 173 | dvmptres3 25129 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℝ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
175 | 15, 142, 149, 174, 1, 117, 116, 123 | dvmptres 25136 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
176 | 15, 126, 131, 139, 140, 141, 175 | dvmptsub 25140 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
177 | 176 | dmeqd 5817 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = dom (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
178 | | ovex 7317 |
. . . . . 6
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) ∈ V |
179 | | eqid 2739 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
180 | 178, 179 | dmmpti 6586 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = 𝐴 |
181 | 177, 180 | eqtrdi 2795 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = 𝐴) |
182 | 125, 181 | sseqtrrid 3975 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))) |
183 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) |
184 | 47 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℝ) |
185 | 184 | recnd 11012 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℂ) |
186 | 183, 185 | subcld 11341 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦 − 𝐵) ∈ ℂ) |
187 | 77 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈
ℕ0) |
188 | 79 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℕ0) |
189 | 187, 188 | nn0addcld 12306 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
190 | 186, 189 | expcld 13873 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
191 | 143, 190 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
192 | 89 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈ ℂ) |
193 | | 1cnd 10979 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) |
194 | 192, 193 | addcld 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℂ) |
195 | 186, 187 | expcld 13873 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
196 | 194, 195 | mulcld 11004 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
197 | 143, 196 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
198 | 16 | prid2 4700 |
. . . . . . . . . . 11
⊢ ℂ
∈ {ℝ, ℂ} |
199 | 198 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ∈ {ℝ,
ℂ}) |
200 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
201 | | elfznn 13294 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 + 1) ∈ (1...𝑁) → (𝑀 + 1) ∈ ℕ) |
202 | 6, 201 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
203 | 202 | nnnn0d 12302 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
204 | 203 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
205 | 200, 204 | expcld 13873 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑀 + 1)) ∈ ℂ) |
206 | | ovexd 7319 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝑀 + 1) · (𝑥↑𝑀)) ∈ V) |
207 | 199 | dvmptid 25130 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)) |
208 | | 0cnd 10977 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 0 ∈
ℂ) |
209 | 47 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℂ) |
210 | 199, 209 | dvmptc 25131 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝐵)) = (𝑦 ∈ ℂ ↦ 0)) |
211 | 199, 183,
193, 207, 185, 208, 210 | dvmptsub 25140 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ (1 −
0))) |
212 | | 1m0e1 12103 |
. . . . . . . . . . . 12
⊢ (1
− 0) = 1 |
213 | 212 | mpteq2i 5180 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ ↦ (1
− 0)) = (𝑦 ∈
ℂ ↦ 1) |
214 | 211, 213 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ 1)) |
215 | | dvexp 25126 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) ∈ ℕ →
(ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
216 | 202, 215 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
217 | 89, 90 | pncand 11342 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
218 | 217 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥↑((𝑀 + 1) − 1)) = (𝑥↑𝑀)) |
219 | 218 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))) = ((𝑀 + 1) · (𝑥↑𝑀))) |
220 | 219 | mpteq2dv 5177 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
221 | 216, 220 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
222 | | oveq1 7291 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑(𝑀 + 1)) = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
223 | | oveq1 7291 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑𝑀) = ((𝑦 − 𝐵)↑𝑀)) |
224 | 223 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → ((𝑀 + 1) · (𝑥↑𝑀)) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
225 | 199, 199,
186, 193, 205, 206, 214, 221, 222, 224 | dvmptco 25145 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1))) |
226 | 196 | mulid1d 11001 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
227 | 226 | mpteq2dva 5175 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1)) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
228 | 225, 227 | eqtrd 2779 |
. . . . . . . 8
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
229 | 116, 15, 152, 154, 190, 196, 228 | dvmptres3 25129 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℝ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
230 | 15, 191, 197, 229, 1, 117, 116, 123 | dvmptres 25136 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
231 | 230 | dmeqd 5817 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = dom (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
232 | | ovex 7317 |
. . . . . 6
⊢ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ V |
233 | | eqid 2739 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
234 | 232, 233 | dmmpti 6586 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = 𝐴 |
235 | 231, 234 | eqtrdi 2795 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) |
236 | 125, 235 | sseqtrrid 3975 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))) |
237 | 15, 22, 1, 9, 45, 46 | dvntaylp0 25540 |
. . . . . 6
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
238 | 237 | oveq2d 7300 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
239 | 115, 44 | ffvelrnd 6971 |
. . . . . 6
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) ∈ ℂ) |
240 | 239 | subidd 11329 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
241 | 238, 240 | eqtrd 2779 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
242 | 116 | subcn 24038 |
. . . . . . 7
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
243 | 242 | a1i 11 |
. . . . . 6
⊢ (𝜑 → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
244 | | dvcn 25094 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) → ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
245 | 93, 115, 1, 113, 244 | syl31anc 1372 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
246 | 137, 245 | eqeltrrd 2841 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
247 | | plycn 25431 |
. . . . . . . 8
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
248 | 63, 247 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
249 | 1, 20 | sstrdi 3934 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
250 | | cncfmptid 24085 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑦
∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
251 | 249, 159,
250 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
252 | 248, 251 | cncfmpt1f 24086 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
253 | 116, 243,
246, 252 | cncfmpt2f 24087 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) ∈ (𝐴–cn→ℂ)) |
254 | | fveq2 6783 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
255 | | fveq2 6783 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
256 | 254, 255 | oveq12d 7302 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
257 | 253, 44, 256 | cnmptlimc 25063 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
258 | 241, 257 | eqeltrrd 2841 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
259 | 209 | subidd 11329 |
. . . . . 6
⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
260 | 259 | oveq1d 7299 |
. . . . 5
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = (0↑(𝑀 + 1))) |
261 | 202 | 0expd 13866 |
. . . . 5
⊢ (𝜑 → (0↑(𝑀 + 1)) = 0) |
262 | 260, 261 | eqtrd 2779 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = 0) |
263 | 249 | sselda 3922 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℂ) |
264 | 263, 190 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
265 | 264 | fmpttd 6998 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ) |
266 | | dvcn 25094 |
. . . . . 6
⊢
(((ℝ ⊆ ℂ ∧ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
267 | 93, 265, 1, 235, 266 | syl31anc 1372 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
268 | | oveq1 7291 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 − 𝐵) = (𝐵 − 𝐵)) |
269 | 268 | oveq1d 7299 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝐵 − 𝐵)↑(𝑀 + 1))) |
270 | 267, 44, 269 | cnmptlimc 25063 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
271 | 262, 270 | eqeltrrd 2841 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
272 | 249 | ssdifssd 4078 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
273 | 272 | sselda 3922 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℂ) |
274 | 209 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
275 | 273, 274 | subcld 11341 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ∈ ℂ) |
276 | | eldifsni 4724 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) → 𝑦 ≠ 𝐵) |
277 | 276 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ≠ 𝐵) |
278 | 273, 274,
277 | subne0d 11350 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ≠ 0) |
279 | 202 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
280 | 279 | nnzd 12434 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℤ) |
281 | 275, 278,
280 | expne0d 13879 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ≠ 0) |
282 | 281 | necomd 3000 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
283 | 282 | neneqd 2949 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
284 | 283 | nrexdv 3199 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
285 | | df-ima 5603 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) |
286 | 285 | eleq2i 2831 |
. . . . 5
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵}))) |
287 | | resmpt 5948 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) |
288 | 125, 287 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
289 | | ovex 7317 |
. . . . . 6
⊢ ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ V |
290 | 288, 289 | elrnmpti 5872 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
291 | 286, 290 | bitri 274 |
. . . 4
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
292 | 284, 291 | sylnibr 329 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵}))) |
293 | 89 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℂ) |
294 | | 1cnd 10979 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 1 ∈
ℂ) |
295 | 293, 294 | addcld 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
296 | 273, 195 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
297 | 279 | nnne0d 12032 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
298 | 76 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ) |
299 | 298 | nnzd 12434 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
300 | 275, 278,
299 | expne0d 13879 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ≠ 0) |
301 | 295, 296,
297, 300 | mulne0d 11636 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ≠ 0) |
302 | 301 | necomd 3000 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
303 | 302 | neneqd 2949 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
304 | 303 | nrexdv 3199 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
305 | 230 | imaeq1d 5971 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵}))) |
306 | | df-ima 5603 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) |
307 | 305, 306 | eqtrdi 2795 |
. . . . . 6
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))) |
308 | 307 | eleq2d 2825 |
. . . . 5
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})))) |
309 | | resmpt 5948 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
310 | 125, 309 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
311 | 310, 232 | elrnmpti 5872 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
312 | 308, 311 | bitrdi 287 |
. . . 4
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
313 | 304, 312 | mtbird 325 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵}))) |
314 | | eldifi 4062 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ 𝐴) |
315 | 130 | ffvelrnda 6970 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
316 | 314, 315 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
317 | 1 | ssdifssd 4078 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℝ) |
318 | 317 | sselda 3922 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ) |
319 | 318 | recnd 11012 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ) |
320 | 147 | ffvelrnda 6970 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
321 | 319, 320 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
322 | 316, 321 | subcld 11341 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ ℂ) |
323 | 47 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℝ) |
324 | 318, 323 | resubcld 11412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℝ) |
325 | 77 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈
ℕ0) |
326 | 324, 325 | reexpcld 13890 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℝ) |
327 | 326 | recnd 11012 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℂ) |
328 | 323 | recnd 11012 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
329 | 319, 328 | subcld 11341 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℂ) |
330 | | eldifsni 4724 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ≠ 𝐵) |
331 | 330 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ≠ 𝐵) |
332 | 319, 328,
331 | subne0d 11350 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ≠ 0) |
333 | 325 | nn0zd 12433 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
334 | 329, 332,
333 | expne0d 13879 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ≠ 0) |
335 | 322, 327,
334 | divcld 11760 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) ∈ ℂ) |
336 | 202 | nnrecred 12033 |
. . . . . . 7
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ) |
337 | 336 | recnd 11012 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℂ) |
338 | 337 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (1 / (𝑀 + 1)) ∈ ℂ) |
339 | | txtopon 22751 |
. . . . . . 7
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
→ ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ))) |
340 | 150, 150,
339 | mp2an 689 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ)) |
341 | 340 | toponrestid 22079 |
. . . . 5
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) |
342 | | taylthlem2.i |
. . . . 5
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) |
343 | | limcresi 25058 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) |
344 | | resmpt 5948 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1)))) |
345 | 125, 344 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) |
346 | 345 | oveq1i 7294 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
347 | 343, 346 | sseqtri 3958 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
348 | | cncfmptc 24084 |
. . . . . . . 8
⊢ (((1 /
(𝑀 + 1)) ∈ ℝ
∧ 𝐴 ⊆ ℂ
∧ ℝ ⊆ ℂ) → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
349 | 336, 249,
93, 348 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
350 | | eqidd 2740 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (1 / (𝑀 + 1)) = (1 / (𝑀 + 1))) |
351 | 349, 44, 350 | cnmptlimc 25063 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
352 | 347, 351 | sselid 3920 |
. . . . 5
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
353 | 116 | mulcn 24039 |
. . . . . 6
⊢ ·
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
354 | | 0cn 10976 |
. . . . . . 7
⊢ 0 ∈
ℂ |
355 | | opelxpi 5627 |
. . . . . . 7
⊢ ((0
∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → 〈0, (1 /
(𝑀 + 1))〉 ∈
(ℂ × ℂ)) |
356 | 354, 337,
355 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ
× ℂ)) |
357 | 340 | toponunii 22074 |
. . . . . . 7
⊢ (ℂ
× ℂ) = ∪
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) |
358 | 357 | cncnpi 22438 |
. . . . . 6
⊢ ((
· ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) ∧ 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ ×
ℂ)) → · ∈ ((((TopOpen‘ℂfld)
×t (TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
359 | 353, 356,
358 | sylancr 587 |
. . . . 5
⊢ (𝜑 → · ∈
((((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
360 | 335, 338,
160, 160, 116, 341, 342, 352, 359 | limccnp2 25065 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵)) |
361 | 337 | mul02d 11182 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) = 0) |
362 | 176 | fveq1d 6785 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥)) |
363 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥)) |
364 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) |
365 | 363, 364 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
366 | | ovex 7317 |
. . . . . . . . . . 11
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ V |
367 | 365, 179,
366 | fvmpt 6884 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
368 | 314, 367 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
369 | 362, 368 | sylan9eq 2799 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
370 | 230 | fveq1d 6785 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥)) |
371 | | oveq1 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) |
372 | 371 | oveq1d 7299 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑀) = ((𝑥 − 𝐵)↑𝑀)) |
373 | 372 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
374 | | ovex 7317 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) ∈ V |
375 | 373, 233,
374 | fvmpt 6884 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
376 | 314, 375 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
377 | 370, 376 | sylan9eq 2799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
378 | 202 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
379 | 378 | nncnd 11998 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
380 | 379, 327 | mulcomd 11005 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
381 | 377, 380 | eqtrd 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
382 | 369, 381 | oveq12d 7302 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
383 | 378 | nnne0d 12032 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
384 | 322, 327,
379, 334, 383 | divdiv1d 11791 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = (((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
385 | 335, 379,
383 | divrecd 11763 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = ((((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) |
386 | 382, 384,
385 | 3eqtr2rd 2786 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) |
387 | 386 | mpteq2dva 5175 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)))) |
388 | 387 | oveq1d 7299 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
389 | 360, 361,
388 | 3eltr3d 2854 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
390 | 1, 70, 83, 123, 44, 124, 182, 236, 258, 271, 292, 313, 389 | lhop 25189 |
. 2
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵)) |
391 | 314 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ 𝐴) |
392 | | fveq2 6783 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
393 | | fveq2 6783 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
394 | 392, 393 | oveq12d 7302 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
395 | | eqid 2739 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
396 | | ovex 7317 |
. . . . . . 7
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) ∈ V |
397 | 394, 395,
396 | fvmpt 6884 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
398 | 391, 397 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
399 | 371 | oveq1d 7299 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
400 | | eqid 2739 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
401 | | ovex 7317 |
. . . . . . 7
⊢ ((𝑥 − 𝐵)↑(𝑀 + 1)) ∈ V |
402 | 399, 400,
401 | fvmpt 6884 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
403 | 391, 402 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
404 | 398, 403 | oveq12d 7302 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) |
405 | 404 | mpteq2dva 5175 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1))))) |
406 | 405 | oveq1d 7299 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |
407 | 390, 406 | eleqtrd 2842 |
1
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |