MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylthlem2 Structured version   Visualization version   GIF version

Theorem taylthlem2 25542
Description: Lemma for taylth 25543. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylth.f (𝜑𝐹:𝐴⟶ℝ)
taylth.a (𝜑𝐴 ⊆ ℝ)
taylth.d (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
taylth.n (𝜑𝑁 ∈ ℕ)
taylth.b (𝜑𝐵𝐴)
taylth.t 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
taylthlem2.m (𝜑𝑀 ∈ (1..^𝑁))
taylthlem2.i (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))) lim 𝐵))
Assertion
Ref Expression
taylthlem2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝑥,𝑇   𝑥,𝑁   𝜑,𝑥

Proof of Theorem taylthlem2
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylth.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 taylth.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
3 fz1ssfz0 13361 . . . . . . . . . . 11 (1...𝑁) ⊆ (0...𝑁)
4 taylthlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ (1..^𝑁))
5 fzofzp1 13493 . . . . . . . . . . . 12 (𝑀 ∈ (1..^𝑁) → (𝑀 + 1) ∈ (1...𝑁))
64, 5syl 17 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
73, 6sselid 3920 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (0...𝑁))
8 fznn0sub2 13372 . . . . . . . . . 10 ((𝑀 + 1) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁))
97, 8syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁))
10 elfznn0 13358 . . . . . . . . 9 ((𝑁 − (𝑀 + 1)) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ ℕ0)
119, 10syl 17 . . . . . . . 8 (𝜑 → (𝑁 − (𝑀 + 1)) ∈ ℕ0)
12 dvnfre 25125 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ)
132, 1, 11, 12syl3anc 1370 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ)
14 reelprrecn 10972 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
1514a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 cnex 10961 . . . . . . . . . . . . 13 ℂ ∈ V
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
18 reex 10971 . . . . . . . . . . . . 13 ℝ ∈ V
1918a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
20 ax-resscn 10937 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
21 fss 6626 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
222, 20, 21sylancl 586 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℂ)
23 elpm2r 8642 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
2417, 19, 22, 1, 23syl22anc 836 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
25 dvnbss 25101 . . . . . . . . . . 11 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹)
2615, 24, 11, 25syl3anc 1370 . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹)
272, 26fssdmd 6628 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ 𝐴)
28 taylth.d . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
29 dvn2bss 25103 . . . . . . . . . . 11 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3015, 24, 9, 29syl3anc 1370 . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3128, 30eqsstrrd 3961 . . . . . . . . 9 (𝜑𝐴 ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3227, 31eqssd 3939 . . . . . . . 8 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = 𝐴)
3332feq2d 6595 . . . . . . 7 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ))
3413, 33mpbid 231 . . . . . 6 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ)
3534ffvelrnda 6970 . . . . 5 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
361sselda 3922 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ)
37 fvres 6802 . . . . . . . 8 (𝑦 ∈ ℝ → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))
3837adantl 482 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))
39 resubdrg 20822 . . . . . . . . . . . 12 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
4039simpli 484 . . . . . . . . . . 11 ℝ ∈ (SubRing‘ℂfld)
4140a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ (SubRing‘ℂfld))
42 taylth.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
4342nnnn0d 12302 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
44 taylth.b . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
4544, 28eleqtrrd 2843 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑁))
46 taylth.t . . . . . . . . . . . 12 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
471, 44sseldd 3923 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
48 elfznn0 13358 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
49 dvnfre 25125 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑘 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ)
502, 1, 48, 49syl2an3an 1421 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → ((ℝ D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ)
51 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
52 dvn2bss 25103 . . . . . . . . . . . . . . . 16 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑘 ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘𝑘))
5314, 24, 51, 52mp3an2ani 1467 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘𝑘))
5445adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑁))
5553, 54sseldd 3923 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑘))
5650, 55ffvelrnd 6971 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → (((ℝ D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℝ)
5748adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
5857faccld 14007 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
5956, 58nndivred 12036 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁)) → ((((ℝ D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℝ)
6015, 22, 1, 43, 45, 46, 41, 47, 59taylply2 25536 . . . . . . . . . . 11 (𝜑 → (𝑇 ∈ (Poly‘ℝ) ∧ (deg‘𝑇) ≤ 𝑁))
6160simpld 495 . . . . . . . . . 10 (𝜑𝑇 ∈ (Poly‘ℝ))
62 dvnply2 25456 . . . . . . . . . 10 ((ℝ ∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ))
6341, 61, 11, 62syl3anc 1370 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ))
64 plyreres 25452 . . . . . . . . 9 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ):ℝ⟶ℝ)
6563, 64syl 17 . . . . . . . 8 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ):ℝ⟶ℝ)
6665ffvelrnda 6970 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) ∈ ℝ)
6738, 66eqeltrrd 2841 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
6836, 67syldan 591 . . . . 5 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
6935, 68resubcld 11412 . . . 4 ((𝜑𝑦𝐴) → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ ℝ)
7069fmpttd 6998 . . 3 (𝜑 → (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))):𝐴⟶ℝ)
7147adantr 481 . . . . . 6 ((𝜑𝑦𝐴) → 𝐵 ∈ ℝ)
7236, 71resubcld 11412 . . . . 5 ((𝜑𝑦𝐴) → (𝑦𝐵) ∈ ℝ)
73 elfzouz 13400 . . . . . . . . . 10 (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (ℤ‘1))
744, 73syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘1))
75 nnuz 12630 . . . . . . . . 9 ℕ = (ℤ‘1)
7674, 75eleqtrrdi 2851 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
7776nnnn0d 12302 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
7877adantr 481 . . . . . 6 ((𝜑𝑦𝐴) → 𝑀 ∈ ℕ0)
79 1nn0 12258 . . . . . . 7 1 ∈ ℕ0
8079a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → 1 ∈ ℕ0)
8178, 80nn0addcld 12306 . . . . 5 ((𝜑𝑦𝐴) → (𝑀 + 1) ∈ ℕ0)
8272, 81reexpcld 13890 . . . 4 ((𝜑𝑦𝐴) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℝ)
8382fmpttd 6998 . . 3 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℝ)
84 retop 23934 . . . . . 6 (topGen‘ran (,)) ∈ Top
85 uniretop 23935 . . . . . . 7 ℝ = (topGen‘ran (,))
8685ntrss2 22217 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴)
8784, 1, 86sylancr 587 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴)
8842nncnd 11998 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8976nncnd 11998 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
90 1cnd 10979 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
9188, 89, 90nppcan2d 11367 . . . . . . . . . 10 (𝜑 → ((𝑁 − (𝑀 + 1)) + 1) = (𝑁𝑀))
9291fveq2d 6787 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
9320a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
94 dvnp1 25098 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9593, 24, 11, 94syl3anc 1370 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9692, 95eqtr3d 2781 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9796dmeqd 5817 . . . . . . 7 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
98 fzonnsub 13421 . . . . . . . . . . . 12 (𝑀 ∈ (1..^𝑁) → (𝑁𝑀) ∈ ℕ)
994, 98syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁𝑀) ∈ ℕ)
10099nnnn0d 12302 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℕ0)
101 dvnbss 25101 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ dom 𝐹)
10215, 24, 100, 101syl3anc 1370 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ dom 𝐹)
1032, 102fssdmd 6628 . . . . . . . 8 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ 𝐴)
104 elfzofz 13412 . . . . . . . . . . . . 13 (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (1...𝑁))
1054, 104syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (1...𝑁))
1063, 105sselid 3920 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑁))
107 fznn0sub2 13372 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ (0...𝑁))
108106, 107syl 17 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ (0...𝑁))
109 dvn2bss 25103 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
11015, 24, 108, 109syl3anc 1370 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
11128, 110eqsstrrd 3961 . . . . . . . 8 (𝜑𝐴 ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
112103, 111eqssd 3939 . . . . . . 7 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = 𝐴)
11397, 112eqtr3d 2781 . . . . . 6 (𝜑 → dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴)
114 fss 6626 . . . . . . . 8 ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ)
11534, 20, 114sylancl 586 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ)
116 eqid 2739 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
117116tgioo2 23975 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
11893, 115, 1, 117, 116dvbssntr 25073 . . . . . 6 (𝜑 → dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) ⊆ ((int‘(topGen‘ran (,)))‘𝐴))
119113, 118eqsstrrd 3961 . . . . 5 (𝜑𝐴 ⊆ ((int‘(topGen‘ran (,)))‘𝐴))
12087, 119eqssd 3939 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)
12185isopn3 22226 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
12284, 1, 121sylancr 587 . . . 4 (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
123120, 122mpbird 256 . . 3 (𝜑𝐴 ∈ (topGen‘ran (,)))
124 eqid 2739 . . 3 (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵})
125 difss 4067 . . . 4 (𝐴 ∖ {𝐵}) ⊆ 𝐴
12635recnd 11012 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
127 dvnf 25100 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ)
12815, 24, 100, 127syl3anc 1370 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ)
129112feq2d 6595 . . . . . . . . 9 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ ↔ ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℂ))
130128, 129mpbid 231 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℂ)
131130ffvelrnda 6970 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
132 dvnfre 25125 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁𝑀) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ)
1332, 1, 100, 132syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ)
134112feq2d 6595 . . . . . . . . . 10 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℝ))
135133, 134mpbid 231 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℝ)
136135feqmptd 6846 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦)))
13734feqmptd 6846 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
138137oveq2d 7300 . . . . . . . 8 (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = (ℝ D (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))))
13996, 136, 1383eqtr3rd 2788 . . . . . . 7 (𝜑 → (ℝ D (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦)))
14068recnd 11012 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
141 fvexd 6798 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ V)
14267recnd 11012 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
143 recn 10970 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
144 dvnply2 25456 . . . . . . . . . . . 12 ((ℝ ∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ))
14541, 61, 100, 144syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ))
146 plyf 25368 . . . . . . . . . . 11 (((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)):ℂ⟶ℂ)
147145, 146syl 17 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)):ℂ⟶ℂ)
148147ffvelrnda 6970 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
149143, 148sylan2 593 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
150116cnfldtopon 23955 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
151 toponmax 22084 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
152150, 151mp1i 13 . . . . . . . . 9 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
153 df-ss 3905 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
15493, 153sylib 217 . . . . . . . . 9 (𝜑 → (ℝ ∩ ℂ) = ℝ)
155 plyf 25368 . . . . . . . . . . 11 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))):ℂ⟶ℂ)
15663, 155syl 17 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))):ℂ⟶ℂ)
157156ffvelrnda 6970 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
15891fveq2d 6787 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑀)))
159 ssid 3944 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
160159a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
161 mapsspm 8673 . . . . . . . . . . . . 13 (ℂ ↑m ℂ) ⊆ (ℂ ↑pm ℂ)
162 plyf 25368 . . . . . . . . . . . . . . 15 (𝑇 ∈ (Poly‘ℝ) → 𝑇:ℂ⟶ℂ)
16361, 162syl 17 . . . . . . . . . . . . . 14 (𝜑𝑇:ℂ⟶ℂ)
16416, 16elmap 8668 . . . . . . . . . . . . . 14 (𝑇 ∈ (ℂ ↑m ℂ) ↔ 𝑇:ℂ⟶ℂ)
165163, 164sylibr 233 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (ℂ ↑m ℂ))
166161, 165sselid 3920 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (ℂ ↑pm ℂ))
167 dvnp1 25098 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
168160, 166, 11, 167syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
169158, 168eqtr3d 2781 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
170147feqmptd 6846 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
171156feqmptd 6846 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
172171oveq2d 7300 . . . . . . . . . 10 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))
173169, 170, 1723eqtr3rd 2788 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
174116, 15, 152, 154, 157, 148, 173dvmptres3 25129 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℝ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
17515, 142, 149, 174, 1, 117, 116, 123dvmptres 25136 . . . . . . 7 (𝜑 → (ℝ D (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
17615, 126, 131, 139, 140, 141, 175dvmptsub 25140 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))))
177176dmeqd 5817 . . . . 5 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = dom (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))))
178 ovex 7317 . . . . . 6 ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)) ∈ V
179 eqid 2739 . . . . . 6 (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
180178, 179dmmpti 6586 . . . . 5 dom (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))) = 𝐴
181177, 180eqtrdi 2795 . . . 4 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = 𝐴)
182125, 181sseqtrrid 3975 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))))
183 simpr 485 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
18447adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐵 ∈ ℝ)
185184recnd 11012 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝐵 ∈ ℂ)
186183, 185subcld 11341 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑦𝐵) ∈ ℂ)
18777adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℕ0)
18879a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℕ0)
189187, 188nn0addcld 12306 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℕ0)
190186, 189expcld 13873 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
191143, 190sylan2 593 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
19289adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℂ)
193 1cnd 10979 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℂ)
194192, 193addcld 11003 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℂ)
195186, 187expcld 13873 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑦𝐵)↑𝑀) ∈ ℂ)
196194, 195mulcld 11004 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ ℂ)
197143, 196sylan2 593 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ ℂ)
19816prid2 4700 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
199198a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ {ℝ, ℂ})
200 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
201 elfznn 13294 . . . . . . . . . . . . . 14 ((𝑀 + 1) ∈ (1...𝑁) → (𝑀 + 1) ∈ ℕ)
2026, 201syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) ∈ ℕ)
203202nnnn0d 12302 . . . . . . . . . . . 12 (𝜑 → (𝑀 + 1) ∈ ℕ0)
204203adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑀 + 1) ∈ ℕ0)
205200, 204expcld 13873 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑥↑(𝑀 + 1)) ∈ ℂ)
206 ovexd 7319 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑀 + 1) · (𝑥𝑀)) ∈ V)
207199dvmptid 25130 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
208 0cnd 10977 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → 0 ∈ ℂ)
20947recnd 11012 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
210199, 209dvmptc 25131 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝐵)) = (𝑦 ∈ ℂ ↦ 0))
211199, 183, 193, 207, 185, 208, 210dvmptsub 25140 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐵))) = (𝑦 ∈ ℂ ↦ (1 − 0)))
212 1m0e1 12103 . . . . . . . . . . . 12 (1 − 0) = 1
213212mpteq2i 5180 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ (1 − 0)) = (𝑦 ∈ ℂ ↦ 1)
214211, 213eqtrdi 2795 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐵))) = (𝑦 ∈ ℂ ↦ 1))
215 dvexp 25126 . . . . . . . . . . . 12 ((𝑀 + 1) ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))))
216202, 215syl 17 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))))
21789, 90pncand 11342 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
218217oveq2d 7300 . . . . . . . . . . . . 13 (𝜑 → (𝑥↑((𝑀 + 1) − 1)) = (𝑥𝑀))
219218oveq2d 7300 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))) = ((𝑀 + 1) · (𝑥𝑀)))
220219mpteq2dv 5177 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥𝑀))))
221216, 220eqtrd 2779 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥𝑀))))
222 oveq1 7291 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → (𝑥↑(𝑀 + 1)) = ((𝑦𝐵)↑(𝑀 + 1)))
223 oveq1 7291 . . . . . . . . . . 11 (𝑥 = (𝑦𝐵) → (𝑥𝑀) = ((𝑦𝐵)↑𝑀))
224223oveq2d 7300 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → ((𝑀 + 1) · (𝑥𝑀)) = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
225199, 199, 186, 193, 205, 206, 214, 221, 222, 224dvmptco 25145 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1)))
226196mulid1d 11001 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1) = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
227226mpteq2dva 5175 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1)) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
228225, 227eqtrd 2779 . . . . . . . 8 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
229116, 15, 152, 154, 190, 196, 228dvmptres3 25129 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℝ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
23015, 191, 197, 229, 1, 117, 116, 123dvmptres 25136 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
231230dmeqd 5817 . . . . 5 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = dom (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
232 ovex 7317 . . . . . 6 ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ V
233 eqid 2739 . . . . . 6 (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) = (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
234232, 233dmmpti 6586 . . . . 5 dom (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) = 𝐴
235231, 234eqtrdi 2795 . . . 4 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = 𝐴)
236125, 235sseqtrrid 3975 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))))
23715, 22, 1, 9, 45, 46dvntaylp0 25540 . . . . . 6 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))
238237oveq2d 7300 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)))
239115, 44ffvelrnd 6971 . . . . . 6 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) ∈ ℂ)
240239subidd 11329 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0)
241238, 240eqtrd 2779 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0)
242116subcn 24038 . . . . . . 7 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
243242a1i 11 . . . . . 6 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
244 dvcn 25094 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴cn→ℂ))
24593, 115, 1, 113, 244syl31anc 1372 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴cn→ℂ))
246137, 245eqeltrrd 2841 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴cn→ℂ))
247 plycn 25431 . . . . . . . 8 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ))
24863, 247syl 17 . . . . . . 7 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ))
2491, 20sstrdi 3934 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
250 cncfmptid 24085 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑦𝐴𝑦) ∈ (𝐴cn→ℂ))
251249, 159, 250sylancl 586 . . . . . . 7 (𝜑 → (𝑦𝐴𝑦) ∈ (𝐴cn→ℂ))
252248, 251cncfmpt1f 24086 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴cn→ℂ))
253116, 243, 246, 252cncfmpt2f 24087 . . . . 5 (𝜑 → (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) ∈ (𝐴cn→ℂ))
254 fveq2 6783 . . . . . 6 (𝑦 = 𝐵 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))
255 fveq2 6783 . . . . . 6 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵))
256254, 255oveq12d 7302 . . . . 5 (𝑦 = 𝐵 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)))
257253, 44, 256cnmptlimc 25063 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) ∈ ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) lim 𝐵))
258241, 257eqeltrrd 2841 . . 3 (𝜑 → 0 ∈ ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) lim 𝐵))
259209subidd 11329 . . . . . 6 (𝜑 → (𝐵𝐵) = 0)
260259oveq1d 7299 . . . . 5 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) = (0↑(𝑀 + 1)))
2612020expd 13866 . . . . 5 (𝜑 → (0↑(𝑀 + 1)) = 0)
262260, 261eqtrd 2779 . . . 4 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) = 0)
263249sselda 3922 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝑦 ∈ ℂ)
264263, 190syldan 591 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
265264fmpttd 6998 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℂ)
266 dvcn 25094 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = 𝐴) → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ∈ (𝐴cn→ℂ))
26793, 265, 1, 235, 266syl31anc 1372 . . . . 5 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ∈ (𝐴cn→ℂ))
268 oveq1 7291 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐵) = (𝐵𝐵))
269268oveq1d 7299 . . . . 5 (𝑦 = 𝐵 → ((𝑦𝐵)↑(𝑀 + 1)) = ((𝐵𝐵)↑(𝑀 + 1)))
270267, 44, 269cnmptlimc 25063 . . . 4 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) lim 𝐵))
271262, 270eqeltrrd 2841 . . 3 (𝜑 → 0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) lim 𝐵))
272249ssdifssd 4078 . . . . . . . . . 10 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
273272sselda 3922 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℂ)
274209adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
275273, 274subcld 11341 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦𝐵) ∈ ℂ)
276 eldifsni 4724 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝐵}) → 𝑦𝐵)
277276adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦𝐵)
278273, 274, 277subne0d 11350 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦𝐵) ≠ 0)
279202adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ)
280279nnzd 12434 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℤ)
281275, 278, 280expne0d 13879 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑(𝑀 + 1)) ≠ 0)
282281necomd 3000 . . . . . 6 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑦𝐵)↑(𝑀 + 1)))
283282neneqd 2949 . . . . 5 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑦𝐵)↑(𝑀 + 1)))
284283nrexdv 3199 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
285 df-ima 5603 . . . . . 6 ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵}))
286285eleq2i 2831 . . . . 5 (0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})))
287 resmpt 5948 . . . . . . 7 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦𝐵)↑(𝑀 + 1))))
288125, 287ax-mp 5 . . . . . 6 ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦𝐵)↑(𝑀 + 1)))
289 ovex 7317 . . . . . 6 ((𝑦𝐵)↑(𝑀 + 1)) ∈ V
290288, 289elrnmpti 5872 . . . . 5 (0 ∈ ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
291286, 290bitri 274 . . . 4 (0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
292284, 291sylnibr 329 . . 3 (𝜑 → ¬ 0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})))
29389adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℂ)
294 1cnd 10979 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 1 ∈ ℂ)
295293, 294addcld 11003 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ)
296273, 195syldan 591 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑𝑀) ∈ ℂ)
297279nnne0d 12032 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0)
29876adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ)
299298nnzd 12434 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ)
300275, 278, 299expne0d 13879 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑𝑀) ≠ 0)
301295, 296, 297, 300mulne0d 11636 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ≠ 0)
302301necomd 3000 . . . . . 6 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
303302neneqd 2949 . . . . 5 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
304303nrexdv 3199 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
305230imaeq1d 5971 . . . . . . 7 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})))
306 df-ima 5603 . . . . . . 7 ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))
307305, 306eqtrdi 2795 . . . . . 6 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})))
308307eleq2d 2825 . . . . 5 (𝜑 → (0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))))
309 resmpt 5948 . . . . . . 7 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
310125, 309ax-mp 5 . . . . . 6 ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
311310, 232elrnmpti 5872 . . . . 5 (0 ∈ ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
312308, 311bitrdi 287 . . . 4 (𝜑 → (0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
313304, 312mtbird 325 . . 3 (𝜑 → ¬ 0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})))
314 eldifi 4062 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐴)
315130ffvelrnda 6970 . . . . . . . 8 ((𝜑𝑥𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
316314, 315sylan2 593 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
3171ssdifssd 4078 . . . . . . . . . 10 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℝ)
318317sselda 3922 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ)
319318recnd 11012 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ)
320147ffvelrnda 6970 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
321319, 320syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
322316, 321subcld 11341 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) ∈ ℂ)
32347adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℝ)
324318, 323resubcld 11412 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℝ)
32577adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ0)
326324, 325reexpcld 13890 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ∈ ℝ)
327326recnd 11012 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ∈ ℂ)
328323recnd 11012 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
329319, 328subcld 11341 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℂ)
330 eldifsni 4724 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐵)
331330adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥𝐵)
332319, 328, 331subne0d 11350 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ≠ 0)
333325nn0zd 12433 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ)
334329, 332, 333expne0d 13879 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ≠ 0)
335322, 327, 334divcld 11760 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ)
336202nnrecred 12033 . . . . . . 7 (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ)
337336recnd 11012 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ℂ)
338337adantr 481 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (1 / (𝑀 + 1)) ∈ ℂ)
339 txtopon 22751 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ)))
340150, 150, 339mp2an 689 . . . . . 6 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ))
341340toponrestid 22079 . . . . 5 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × ℂ))
342 taylthlem2.i . . . . 5 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))) lim 𝐵))
343 limcresi 25058 . . . . . . 7 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵) ⊆ (((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵)
344 resmpt 5948 . . . . . . . . 9 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))))
345125, 344ax-mp 5 . . . . . . . 8 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1)))
346345oveq1i 7294 . . . . . . 7 (((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵)
347343, 346sseqtri 3958 . . . . . 6 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵) ⊆ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵)
348 cncfmptc 24084 . . . . . . . 8 (((1 / (𝑀 + 1)) ∈ ℝ ∧ 𝐴 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑥𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴cn→ℝ))
349336, 249, 93, 348syl3anc 1370 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴cn→ℝ))
350 eqidd 2740 . . . . . . 7 (𝑥 = 𝐵 → (1 / (𝑀 + 1)) = (1 / (𝑀 + 1)))
351349, 44, 350cnmptlimc 25063 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵))
352347, 351sselid 3920 . . . . 5 (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵))
353116mulcn 24039 . . . . . 6 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
354 0cn 10976 . . . . . . 7 0 ∈ ℂ
355 opelxpi 5627 . . . . . . 7 ((0 ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ))
356354, 337, 355sylancr 587 . . . . . 6 (𝜑 → ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ))
357340toponunii 22074 . . . . . . 7 (ℂ × ℂ) = ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld))
358357cncnpi 22438 . . . . . 6 (( · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ)) → · ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨0, (1 / (𝑀 + 1))⟩))
359353, 356, 358sylancr 587 . . . . 5 (𝜑 → · ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨0, (1 / (𝑀 + 1))⟩))
360335, 338, 160, 160, 116, 341, 342, 352, 359limccnp2 25065 . . . 4 (𝜑 → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵))
361337mul02d 11182 . . . 4 (𝜑 → (0 · (1 / (𝑀 + 1))) = 0)
362176fveq1d 6785 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥))
363 fveq2 6783 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥))
364 fveq2 6783 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥))
365363, 364oveq12d 7302 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
366 ovex 7317 . . . . . . . . . . 11 ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) ∈ V
367365, 179, 366fvmpt 6884 . . . . . . . . . 10 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
368314, 367syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
369362, 368sylan9eq 2799 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
370230fveq1d 6785 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥))
371 oveq1 7291 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦𝐵) = (𝑥𝐵))
372371oveq1d 7299 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝑦𝐵)↑𝑀) = ((𝑥𝐵)↑𝑀))
373372oveq2d 7300 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
374 ovex 7317 . . . . . . . . . . . 12 ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)) ∈ V
375373, 233, 374fvmpt 6884 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
376314, 375syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
377370, 376sylan9eq 2799 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
378202adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ)
379378nncnd 11998 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ)
380379, 327mulcomd 11005 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)) = (((𝑥𝐵)↑𝑀) · (𝑀 + 1)))
381377, 380eqtrd 2779 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = (((𝑥𝐵)↑𝑀) · (𝑀 + 1)))
382369, 381oveq12d 7302 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / (((𝑥𝐵)↑𝑀) · (𝑀 + 1))))
383378nnne0d 12032 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0)
384322, 327, 379, 334, 383divdiv1d 11791 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) / (𝑀 + 1)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / (((𝑥𝐵)↑𝑀) · (𝑀 + 1))))
385335, 379, 383divrecd 11763 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) / (𝑀 + 1)) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
386382, 384, 3853eqtr2rd 2786 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥)))
387386mpteq2dva 5175 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))))
388387oveq1d 7299 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))) lim 𝐵))
389360, 361, 3883eltr3d 2854 . . 3 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))) lim 𝐵))
3901, 70, 83, 123, 44, 124, 182, 236, 258, 271, 292, 313, 389lhop 25189 . 2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) lim 𝐵))
391314adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥𝐴)
392 fveq2 6783 . . . . . . . 8 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥))
393 fveq2 6783 . . . . . . . 8 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))
394392, 393oveq12d 7302 . . . . . . 7 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
395 eqid 2739 . . . . . . 7 (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
396 ovex 7317 . . . . . . 7 ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) ∈ V
397394, 395, 396fvmpt 6884 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
398391, 397syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
399371oveq1d 7299 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝐵)↑(𝑀 + 1)) = ((𝑥𝐵)↑(𝑀 + 1)))
400 eqid 2739 . . . . . . 7 (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) = (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))
401 ovex 7317 . . . . . . 7 ((𝑥𝐵)↑(𝑀 + 1)) ∈ V
402399, 400, 401fvmpt 6884 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥𝐵)↑(𝑀 + 1)))
403391, 402syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥𝐵)↑(𝑀 + 1)))
404398, 403oveq12d 7302 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1))))
405404mpteq2dva 5175 . . 3 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))))
406405oveq1d 7299 . 2 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
407390, 406eleqtrd 2842 1 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wne 2944  wrex 3066  Vcvv 3433  cdif 3885  cin 3887  wss 3888  {csn 4562  {cpr 4564  cop 4568   class class class wbr 5075  cmpt 5158   × cxp 5588  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  wf 6433  cfv 6437  (class class class)co 7284  m cmap 8624  pm cpm 8625  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  cle 11019  cmin 11214   / cdiv 11641  cn 11982  0cn0 12242  cuz 12591  (,)cioo 13088  ...cfz 13248  ..^cfzo 13391  cexp 13791  !cfa 13996  TopOpenctopn 17141  topGenctg 17157  DivRingcdr 20000  SubRingcsubrg 20029  fldccnfld 20606  fldcrefld 20818  Topctop 22051  TopOnctopon 22068  intcnt 22177   Cn ccn 22384   CnP ccnp 22385   ×t ctx 22720  cnccncf 24048   lim climc 25035   D cdv 25036   D𝑛 cdvn 25037  Polycply 25354  degcdgr 25357   Tayl ctayl 25521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-tpos 8051  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-xnn0 12315  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-seq 13731  df-exp 13792  df-fac 13997  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-rlim 15207  df-sum 15407  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-grp 18589  df-minusg 18590  df-mulg 18710  df-subg 18761  df-cntz 18932  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-ring 19794  df-cring 19795  df-oppr 19871  df-dvdsr 19892  df-unit 19893  df-invr 19923  df-dvr 19934  df-drng 20002  df-subrg 20031  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-refld 20819  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-tsms 23287  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-0p 24843  df-limc 25039  df-dv 25040  df-dvn 25041  df-ply 25358  df-idp 25359  df-coe 25360  df-dgr 25361  df-tayl 25523
This theorem is referenced by:  taylth  25543
  Copyright terms: Public domain W3C validator