MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylthlem2 Structured version   Visualization version   GIF version

Theorem taylthlem2 26339
Description: Lemma for taylth 26341. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11214. (Revised by GG, 19-Apr-2025.)
Hypotheses
Ref Expression
taylth.f (𝜑𝐹:𝐴⟶ℝ)
taylth.a (𝜑𝐴 ⊆ ℝ)
taylth.d (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
taylth.n (𝜑𝑁 ∈ ℕ)
taylth.b (𝜑𝐵𝐴)
taylth.t 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
taylthlem2.m (𝜑𝑀 ∈ (1..^𝑁))
taylthlem2.i (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))) lim 𝐵))
Assertion
Ref Expression
taylthlem2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝑥,𝑇   𝑥,𝑁   𝜑,𝑥

Proof of Theorem taylthlem2
Dummy variables 𝑦 𝑧 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylth.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 taylth.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
3 fz1ssfz0 13645 . . . . . . . . . . 11 (1...𝑁) ⊆ (0...𝑁)
4 taylthlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ (1..^𝑁))
5 fzofzp1 13785 . . . . . . . . . . . 12 (𝑀 ∈ (1..^𝑁) → (𝑀 + 1) ∈ (1...𝑁))
64, 5syl 17 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
73, 6sselid 3961 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (0...𝑁))
8 fznn0sub2 13657 . . . . . . . . . 10 ((𝑀 + 1) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁))
97, 8syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁))
10 elfznn0 13642 . . . . . . . . 9 ((𝑁 − (𝑀 + 1)) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ ℕ0)
119, 10syl 17 . . . . . . . 8 (𝜑 → (𝑁 − (𝑀 + 1)) ∈ ℕ0)
12 dvnfre 25913 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ)
132, 1, 11, 12syl3anc 1373 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ)
14 reelprrecn 11226 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
1514a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 cnex 11215 . . . . . . . . . . . . 13 ℂ ∈ V
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
18 reex 11225 . . . . . . . . . . . . 13 ℝ ∈ V
1918a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
20 ax-resscn 11191 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
21 fss 6727 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
222, 20, 21sylancl 586 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℂ)
23 elpm2r 8864 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
2417, 19, 22, 1, 23syl22anc 838 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
25 dvnbss 25887 . . . . . . . . . . 11 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹)
2615, 24, 11, 25syl3anc 1373 . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹)
272, 26fssdmd 6729 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ 𝐴)
28 taylth.d . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
29 dvn2bss 25889 . . . . . . . . . . 11 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3015, 24, 9, 29syl3anc 1373 . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3128, 30eqsstrrd 3999 . . . . . . . . 9 (𝜑𝐴 ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3227, 31eqssd 3981 . . . . . . . 8 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = 𝐴)
3332feq2d 6697 . . . . . . 7 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ))
3413, 33mpbid 232 . . . . . 6 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ)
3534ffvelcdmda 7079 . . . . 5 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
361sselda 3963 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ)
37 fvres 6900 . . . . . . . 8 (𝑦 ∈ ℝ → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))
3837adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))
39 resubdrg 21573 . . . . . . . . . . . 12 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
4039simpli 483 . . . . . . . . . . 11 ℝ ∈ (SubRing‘ℂfld)
4140a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ (SubRing‘ℂfld))
42 taylth.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
4342nnnn0d 12567 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
44 taylth.b . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
4544, 28eleqtrrd 2838 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑁))
46 taylth.t . . . . . . . . . . . 12 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
471, 44sseldd 3964 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
48 elfznn0 13642 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
49 dvnfre 25913 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑘 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ)
502, 1, 48, 49syl2an3an 1424 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → ((ℝ D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ)
51 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
52 dvn2bss 25889 . . . . . . . . . . . . . . . 16 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑘 ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘𝑘))
5314, 24, 51, 52mp3an2ani 1470 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘𝑘))
5445adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑁))
5553, 54sseldd 3964 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑘))
5650, 55ffvelcdmd 7080 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → (((ℝ D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℝ)
5748adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
5857faccld 14307 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
5956, 58nndivred 12299 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁)) → ((((ℝ D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℝ)
6015, 22, 1, 43, 45, 46, 41, 47, 59taylply2 26332 . . . . . . . . . . 11 (𝜑 → (𝑇 ∈ (Poly‘ℝ) ∧ (deg‘𝑇) ≤ 𝑁))
6160simpld 494 . . . . . . . . . 10 (𝜑𝑇 ∈ (Poly‘ℝ))
62 dvnply2 26252 . . . . . . . . . 10 ((ℝ ∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ))
6341, 61, 11, 62syl3anc 1373 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ))
64 plyreres 26247 . . . . . . . . 9 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ):ℝ⟶ℝ)
6563, 64syl 17 . . . . . . . 8 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ):ℝ⟶ℝ)
6665ffvelcdmda 7079 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) ∈ ℝ)
6738, 66eqeltrrd 2836 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
6836, 67syldan 591 . . . . 5 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
6935, 68resubcld 11670 . . . 4 ((𝜑𝑦𝐴) → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ ℝ)
7069fmpttd 7110 . . 3 (𝜑 → (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))):𝐴⟶ℝ)
7147adantr 480 . . . . . 6 ((𝜑𝑦𝐴) → 𝐵 ∈ ℝ)
7236, 71resubcld 11670 . . . . 5 ((𝜑𝑦𝐴) → (𝑦𝐵) ∈ ℝ)
73 elfzouz 13685 . . . . . . . . . 10 (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (ℤ‘1))
744, 73syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘1))
75 nnuz 12900 . . . . . . . . 9 ℕ = (ℤ‘1)
7674, 75eleqtrrdi 2846 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
7776nnnn0d 12567 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
7877adantr 480 . . . . . 6 ((𝜑𝑦𝐴) → 𝑀 ∈ ℕ0)
79 1nn0 12522 . . . . . . 7 1 ∈ ℕ0
8079a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → 1 ∈ ℕ0)
8178, 80nn0addcld 12571 . . . . 5 ((𝜑𝑦𝐴) → (𝑀 + 1) ∈ ℕ0)
8272, 81reexpcld 14186 . . . 4 ((𝜑𝑦𝐴) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℝ)
8382fmpttd 7110 . . 3 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℝ)
84 retop 24705 . . . . . 6 (topGen‘ran (,)) ∈ Top
85 uniretop 24706 . . . . . . 7 ℝ = (topGen‘ran (,))
8685ntrss2 23000 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴)
8784, 1, 86sylancr 587 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴)
8842nncnd 12261 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8976nncnd 12261 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
90 1cnd 11235 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
9188, 89, 90nppcan2d 11625 . . . . . . . . . 10 (𝜑 → ((𝑁 − (𝑀 + 1)) + 1) = (𝑁𝑀))
9291fveq2d 6885 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
9320a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
94 dvnp1 25884 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9593, 24, 11, 94syl3anc 1373 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9692, 95eqtr3d 2773 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9796dmeqd 5890 . . . . . . 7 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
98 fzonnsub 13706 . . . . . . . . . . . 12 (𝑀 ∈ (1..^𝑁) → (𝑁𝑀) ∈ ℕ)
994, 98syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁𝑀) ∈ ℕ)
10099nnnn0d 12567 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℕ0)
101 dvnbss 25887 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ dom 𝐹)
10215, 24, 100, 101syl3anc 1373 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ dom 𝐹)
1032, 102fssdmd 6729 . . . . . . . 8 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ 𝐴)
104 elfzofz 13697 . . . . . . . . . . . . 13 (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (1...𝑁))
1054, 104syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (1...𝑁))
1063, 105sselid 3961 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑁))
107 fznn0sub2 13657 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ (0...𝑁))
108106, 107syl 17 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ (0...𝑁))
109 dvn2bss 25889 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
11015, 24, 108, 109syl3anc 1373 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
11128, 110eqsstrrd 3999 . . . . . . . 8 (𝜑𝐴 ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
112103, 111eqssd 3981 . . . . . . 7 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = 𝐴)
11397, 112eqtr3d 2773 . . . . . 6 (𝜑 → dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴)
114 fss 6727 . . . . . . . 8 ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ)
11534, 20, 114sylancl 586 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ)
116 tgioo4 24749 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
117 eqid 2736 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
11893, 115, 1, 116, 117dvbssntr 25858 . . . . . 6 (𝜑 → dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) ⊆ ((int‘(topGen‘ran (,)))‘𝐴))
119113, 118eqsstrrd 3999 . . . . 5 (𝜑𝐴 ⊆ ((int‘(topGen‘ran (,)))‘𝐴))
12087, 119eqssd 3981 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)
12185isopn3 23009 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
12284, 1, 121sylancr 587 . . . 4 (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
123120, 122mpbird 257 . . 3 (𝜑𝐴 ∈ (topGen‘ran (,)))
124 eqid 2736 . . 3 (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵})
125 difss 4116 . . . 4 (𝐴 ∖ {𝐵}) ⊆ 𝐴
12635recnd 11268 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
127 dvnf 25886 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ)
12815, 24, 100, 127syl3anc 1373 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ)
129112feq2d 6697 . . . . . . . . 9 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ ↔ ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℂ))
130128, 129mpbid 232 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℂ)
131130ffvelcdmda 7079 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
132 dvnfre 25913 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁𝑀) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ)
1332, 1, 100, 132syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ)
134112feq2d 6697 . . . . . . . . . 10 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℝ))
135133, 134mpbid 232 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℝ)
136135feqmptd 6952 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦)))
13734feqmptd 6952 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
138137oveq2d 7426 . . . . . . . 8 (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = (ℝ D (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))))
13996, 136, 1383eqtr3rd 2780 . . . . . . 7 (𝜑 → (ℝ D (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦)))
14068recnd 11268 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
141 fvexd 6896 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ V)
14267recnd 11268 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
143 recn 11224 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
144 dvnply2 26252 . . . . . . . . . . . 12 ((ℝ ∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ))
14541, 61, 100, 144syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ))
146 plyf 26160 . . . . . . . . . . 11 (((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)):ℂ⟶ℂ)
147145, 146syl 17 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)):ℂ⟶ℂ)
148147ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
149143, 148sylan2 593 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
150117cnfldtopon 24726 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
151 toponmax 22869 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
152150, 151mp1i 13 . . . . . . . . 9 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
153 dfss2 3949 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
15493, 153sylib 218 . . . . . . . . 9 (𝜑 → (ℝ ∩ ℂ) = ℝ)
155 plyf 26160 . . . . . . . . . . 11 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))):ℂ⟶ℂ)
15663, 155syl 17 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))):ℂ⟶ℂ)
157156ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
15891fveq2d 6885 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑀)))
159 ssid 3986 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
160159a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
161 mapsspm 8895 . . . . . . . . . . . . 13 (ℂ ↑m ℂ) ⊆ (ℂ ↑pm ℂ)
162 plyf 26160 . . . . . . . . . . . . . . 15 (𝑇 ∈ (Poly‘ℝ) → 𝑇:ℂ⟶ℂ)
16361, 162syl 17 . . . . . . . . . . . . . 14 (𝜑𝑇:ℂ⟶ℂ)
16416, 16elmap 8890 . . . . . . . . . . . . . 14 (𝑇 ∈ (ℂ ↑m ℂ) ↔ 𝑇:ℂ⟶ℂ)
165163, 164sylibr 234 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (ℂ ↑m ℂ))
166161, 165sselid 3961 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (ℂ ↑pm ℂ))
167 dvnp1 25884 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
168160, 166, 11, 167syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
169158, 168eqtr3d 2773 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
170147feqmptd 6952 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
171156feqmptd 6952 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
172171oveq2d 7426 . . . . . . . . . 10 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))
173169, 170, 1723eqtr3rd 2780 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
174117, 15, 152, 154, 157, 148, 173dvmptres3 25917 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℝ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
17515, 142, 149, 174, 1, 116, 117, 123dvmptres 25924 . . . . . . 7 (𝜑 → (ℝ D (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
17615, 126, 131, 139, 140, 141, 175dvmptsub 25928 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))))
177176dmeqd 5890 . . . . 5 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = dom (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))))
178 ovex 7443 . . . . . 6 ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)) ∈ V
179 eqid 2736 . . . . . 6 (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
180178, 179dmmpti 6687 . . . . 5 dom (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))) = 𝐴
181177, 180eqtrdi 2787 . . . 4 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = 𝐴)
182125, 181sseqtrrid 4007 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))))
183 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
18447adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐵 ∈ ℝ)
185184recnd 11268 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝐵 ∈ ℂ)
186183, 185subcld 11599 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑦𝐵) ∈ ℂ)
18777adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℕ0)
18879a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℕ0)
189187, 188nn0addcld 12571 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℕ0)
190186, 189expcld 14169 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
191143, 190sylan2 593 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
19289adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℂ)
193 1cnd 11235 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℂ)
194192, 193addcld 11259 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℂ)
195186, 187expcld 14169 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑦𝐵)↑𝑀) ∈ ℂ)
196194, 195mulcld 11260 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ ℂ)
197143, 196sylan2 593 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ ℂ)
19816prid2 4744 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
199198a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ {ℝ, ℂ})
200 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
201 elfznn 13575 . . . . . . . . . . . . . 14 ((𝑀 + 1) ∈ (1...𝑁) → (𝑀 + 1) ∈ ℕ)
2026, 201syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) ∈ ℕ)
203202nnnn0d 12567 . . . . . . . . . . . 12 (𝜑 → (𝑀 + 1) ∈ ℕ0)
204203adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑀 + 1) ∈ ℕ0)
205200, 204expcld 14169 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑥↑(𝑀 + 1)) ∈ ℂ)
206 ovexd 7445 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑀 + 1) · (𝑥𝑀)) ∈ V)
207199dvmptid 25918 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
208 0cnd 11233 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → 0 ∈ ℂ)
20947recnd 11268 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
210199, 209dvmptc 25919 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝐵)) = (𝑦 ∈ ℂ ↦ 0))
211199, 183, 193, 207, 185, 208, 210dvmptsub 25928 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐵))) = (𝑦 ∈ ℂ ↦ (1 − 0)))
212 1m0e1 12366 . . . . . . . . . . . 12 (1 − 0) = 1
213212mpteq2i 5222 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ (1 − 0)) = (𝑦 ∈ ℂ ↦ 1)
214211, 213eqtrdi 2787 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐵))) = (𝑦 ∈ ℂ ↦ 1))
215 dvexp 25914 . . . . . . . . . . . 12 ((𝑀 + 1) ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))))
216202, 215syl 17 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))))
21789, 90pncand 11600 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
218217oveq2d 7426 . . . . . . . . . . . . 13 (𝜑 → (𝑥↑((𝑀 + 1) − 1)) = (𝑥𝑀))
219218oveq2d 7426 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))) = ((𝑀 + 1) · (𝑥𝑀)))
220219mpteq2dv 5220 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥𝑀))))
221216, 220eqtrd 2771 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥𝑀))))
222 oveq1 7417 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → (𝑥↑(𝑀 + 1)) = ((𝑦𝐵)↑(𝑀 + 1)))
223 oveq1 7417 . . . . . . . . . . 11 (𝑥 = (𝑦𝐵) → (𝑥𝑀) = ((𝑦𝐵)↑𝑀))
224223oveq2d 7426 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → ((𝑀 + 1) · (𝑥𝑀)) = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
225199, 199, 186, 193, 205, 206, 214, 221, 222, 224dvmptco 25933 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1)))
226196mulridd 11257 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1) = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
227226mpteq2dva 5219 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1)) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
228225, 227eqtrd 2771 . . . . . . . 8 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
229117, 15, 152, 154, 190, 196, 228dvmptres3 25917 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℝ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
23015, 191, 197, 229, 1, 116, 117, 123dvmptres 25924 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
231230dmeqd 5890 . . . . 5 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = dom (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
232 ovex 7443 . . . . . 6 ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ V
233 eqid 2736 . . . . . 6 (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) = (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
234232, 233dmmpti 6687 . . . . 5 dom (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) = 𝐴
235231, 234eqtrdi 2787 . . . 4 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = 𝐴)
236125, 235sseqtrrid 4007 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))))
23715, 22, 1, 9, 45, 46dvntaylp0 26337 . . . . . 6 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))
238237oveq2d 7426 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)))
239115, 44ffvelcdmd 7080 . . . . . 6 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) ∈ ℂ)
240239subidd 11587 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0)
241238, 240eqtrd 2771 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0)
242117subcn 24811 . . . . . . 7 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
243242a1i 11 . . . . . 6 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
244 dvcn 25880 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴cn→ℂ))
24593, 115, 1, 113, 244syl31anc 1375 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴cn→ℂ))
246137, 245eqeltrrd 2836 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴cn→ℂ))
247 plycn 26223 . . . . . . . 8 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ))
24863, 247syl 17 . . . . . . 7 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ))
2491, 20sstrdi 3976 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
250 cncfmptid 24862 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑦𝐴𝑦) ∈ (𝐴cn→ℂ))
251249, 159, 250sylancl 586 . . . . . . 7 (𝜑 → (𝑦𝐴𝑦) ∈ (𝐴cn→ℂ))
252248, 251cncfmpt1f 24863 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴cn→ℂ))
253117, 243, 246, 252cncfmpt2f 24864 . . . . 5 (𝜑 → (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) ∈ (𝐴cn→ℂ))
254 fveq2 6881 . . . . . 6 (𝑦 = 𝐵 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))
255 fveq2 6881 . . . . . 6 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵))
256254, 255oveq12d 7428 . . . . 5 (𝑦 = 𝐵 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)))
257253, 44, 256cnmptlimc 25848 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) ∈ ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) lim 𝐵))
258241, 257eqeltrrd 2836 . . 3 (𝜑 → 0 ∈ ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) lim 𝐵))
259209subidd 11587 . . . . . 6 (𝜑 → (𝐵𝐵) = 0)
260259oveq1d 7425 . . . . 5 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) = (0↑(𝑀 + 1)))
2612020expd 14162 . . . . 5 (𝜑 → (0↑(𝑀 + 1)) = 0)
262260, 261eqtrd 2771 . . . 4 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) = 0)
263249sselda 3963 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝑦 ∈ ℂ)
264263, 190syldan 591 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
265264fmpttd 7110 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℂ)
266 dvcn 25880 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = 𝐴) → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ∈ (𝐴cn→ℂ))
26793, 265, 1, 235, 266syl31anc 1375 . . . . 5 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ∈ (𝐴cn→ℂ))
268 oveq1 7417 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐵) = (𝐵𝐵))
269268oveq1d 7425 . . . . 5 (𝑦 = 𝐵 → ((𝑦𝐵)↑(𝑀 + 1)) = ((𝐵𝐵)↑(𝑀 + 1)))
270267, 44, 269cnmptlimc 25848 . . . 4 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) lim 𝐵))
271262, 270eqeltrrd 2836 . . 3 (𝜑 → 0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) lim 𝐵))
272249ssdifssd 4127 . . . . . . . . . 10 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
273272sselda 3963 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℂ)
274209adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
275273, 274subcld 11599 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦𝐵) ∈ ℂ)
276 eldifsni 4771 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝐵}) → 𝑦𝐵)
277276adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦𝐵)
278273, 274, 277subne0d 11608 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦𝐵) ≠ 0)
279202adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ)
280279nnzd 12620 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℤ)
281275, 278, 280expne0d 14175 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑(𝑀 + 1)) ≠ 0)
282281necomd 2988 . . . . . 6 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑦𝐵)↑(𝑀 + 1)))
283282neneqd 2938 . . . . 5 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑦𝐵)↑(𝑀 + 1)))
284283nrexdv 3136 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
285 df-ima 5672 . . . . . 6 ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵}))
286285eleq2i 2827 . . . . 5 (0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})))
287 resmpt 6029 . . . . . . 7 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦𝐵)↑(𝑀 + 1))))
288125, 287ax-mp 5 . . . . . 6 ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦𝐵)↑(𝑀 + 1)))
289 ovex 7443 . . . . . 6 ((𝑦𝐵)↑(𝑀 + 1)) ∈ V
290288, 289elrnmpti 5947 . . . . 5 (0 ∈ ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
291286, 290bitri 275 . . . 4 (0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
292284, 291sylnibr 329 . . 3 (𝜑 → ¬ 0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})))
29389adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℂ)
294 1cnd 11235 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 1 ∈ ℂ)
295293, 294addcld 11259 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ)
296273, 195syldan 591 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑𝑀) ∈ ℂ)
297279nnne0d 12295 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0)
29876adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ)
299298nnzd 12620 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ)
300275, 278, 299expne0d 14175 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑𝑀) ≠ 0)
301295, 296, 297, 300mulne0d 11894 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ≠ 0)
302301necomd 2988 . . . . . 6 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
303302neneqd 2938 . . . . 5 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
304303nrexdv 3136 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
305230imaeq1d 6051 . . . . . . 7 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})))
306 df-ima 5672 . . . . . . 7 ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))
307305, 306eqtrdi 2787 . . . . . 6 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})))
308307eleq2d 2821 . . . . 5 (𝜑 → (0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))))
309 resmpt 6029 . . . . . . 7 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
310125, 309ax-mp 5 . . . . . 6 ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
311310, 232elrnmpti 5947 . . . . 5 (0 ∈ ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
312308, 311bitrdi 287 . . . 4 (𝜑 → (0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
313304, 312mtbird 325 . . 3 (𝜑 → ¬ 0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})))
314 eldifi 4111 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐴)
315130ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑥𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
316314, 315sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
3171ssdifssd 4127 . . . . . . . . . . 11 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℝ)
318317sselda 3963 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ)
319318recnd 11268 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ)
320147ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
321319, 320syldan 591 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
322316, 321subcld 11599 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) ∈ ℂ)
32347adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℝ)
324318, 323resubcld 11670 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℝ)
32577adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ0)
326324, 325reexpcld 14186 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ∈ ℝ)
327326recnd 11268 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ∈ ℂ)
328323recnd 11268 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
329319, 328subcld 11599 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℂ)
330 eldifsni 4771 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐵)
331330adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥𝐵)
332319, 328, 331subne0d 11608 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ≠ 0)
333325nn0zd 12619 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ)
334329, 332, 333expne0d 14175 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ≠ 0)
335322, 327, 334divcld 12022 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ)
336202nnrecred 12296 . . . . . . . 8 (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ)
337336recnd 11268 . . . . . . 7 (𝜑 → (1 / (𝑀 + 1)) ∈ ℂ)
338337adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (1 / (𝑀 + 1)) ∈ ℂ)
339 txtopon 23534 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ)))
340150, 150, 339mp2an 692 . . . . . . 7 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ))
341340toponrestid 22864 . . . . . 6 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × ℂ))
342 taylthlem2.i . . . . . 6 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))) lim 𝐵))
343 limcresi 25843 . . . . . . . 8 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵) ⊆ (((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵)
344 resmpt 6029 . . . . . . . . . 10 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))))
345125, 344ax-mp 5 . . . . . . . . 9 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1)))
346345oveq1i 7420 . . . . . . . 8 (((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵)
347343, 346sseqtri 4012 . . . . . . 7 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵) ⊆ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵)
348 cncfmptc 24861 . . . . . . . . 9 (((1 / (𝑀 + 1)) ∈ ℝ ∧ 𝐴 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑥𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴cn→ℝ))
349336, 249, 93, 348syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴cn→ℝ))
350 eqidd 2737 . . . . . . . 8 (𝑥 = 𝐵 → (1 / (𝑀 + 1)) = (1 / (𝑀 + 1)))
351349, 44, 350cnmptlimc 25848 . . . . . . 7 (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵))
352347, 351sselid 3961 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵))
353117mpomulcn 24814 . . . . . . 7 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
354 0cn 11232 . . . . . . . 8 0 ∈ ℂ
355 opelxpi 5696 . . . . . . . 8 ((0 ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ))
356354, 337, 355sylancr 587 . . . . . . 7 (𝜑 → ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ))
357340toponunii 22859 . . . . . . . 8 (ℂ × ℂ) = ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld))
358357cncnpi 23221 . . . . . . 7 (((𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨0, (1 / (𝑀 + 1))⟩))
359353, 356, 358sylancr 587 . . . . . 6 (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨0, (1 / (𝑀 + 1))⟩))
360335, 338, 160, 160, 117, 341, 342, 352, 359limccnp2 25850 . . . . 5 (𝜑 → (0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵))
361 0cnd 11233 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
362361, 337jca 511 . . . . . . . . 9 (𝜑 → (0 ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ))
363 ovmpot 7573 . . . . . . . . 9 ((0 ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → (0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = (0 · (1 / (𝑀 + 1))))
364362, 363syl 17 . . . . . . . 8 (𝜑 → (0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = (0 · (1 / (𝑀 + 1))))
365 df-mpt 5207 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))}
366365a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))})
367 idd 24 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
368367adantrd 491 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
369335, 338jca 511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ))
370 ovmpot 7573 . . . . . . . . . . . . . . . . . 18 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
371369, 370syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
372 eqeq2 2748 . . . . . . . . . . . . . . . . . 18 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ↔ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
373372biimpd 229 . . . . . . . . . . . . . . . . 17 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
374371, 373syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
375374ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))))
376375impd 410 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
377368, 376jcad 512 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) → (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))))
378367adantrd 491 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
379370eqcomd 2742 . . . . . . . . . . . . . . . . . 18 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))
380369, 379syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))
381 eqeq2 2748 . . . . . . . . . . . . . . . . . 18 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) ↔ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))))
382381biimpd 229 . . . . . . . . . . . . . . . . 17 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))))
383380, 382syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))))
384383ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))))
385384impd 410 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))))
386378, 385jcad 512 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) → (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))))
387377, 386impbid 212 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) ↔ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))))
388387opabbidv 5190 . . . . . . . . . . 11 (𝜑 → {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))} = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))})
389366, 388eqtrd 2771 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))})
390 df-mpt 5207 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))}
391390eqcomi 2745 . . . . . . . . . . 11 {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))} = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
392391a1i 11 . . . . . . . . . 10 (𝜑 → {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))} = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
393389, 392eqtrd 2771 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
394393oveq1d 7425 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵))
395364, 394jca 511 . . . . . . 7 (𝜑 → ((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = (0 · (1 / (𝑀 + 1))) ∧ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)))
396 eleq12 2825 . . . . . . 7 (((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = (0 · (1 / (𝑀 + 1))) ∧ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)) → ((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) ↔ (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)))
397395, 396syl 17 . . . . . 6 (𝜑 → ((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) ↔ (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)))
398397biimpd 229 . . . . 5 (𝜑 → ((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)))
399360, 398mpd 15 . . . 4 (𝜑 → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵))
400337mul02d 11438 . . . 4 (𝜑 → (0 · (1 / (𝑀 + 1))) = 0)
401176fveq1d 6883 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥))
402 fveq2 6881 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥))
403 fveq2 6881 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥))
404402, 403oveq12d 7428 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
405 ovex 7443 . . . . . . . . . . 11 ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) ∈ V
406404, 179, 405fvmpt 6991 . . . . . . . . . 10 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
407314, 406syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
408401, 407sylan9eq 2791 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
409230fveq1d 6883 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥))
410 oveq1 7417 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦𝐵) = (𝑥𝐵))
411410oveq1d 7425 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝑦𝐵)↑𝑀) = ((𝑥𝐵)↑𝑀))
412411oveq2d 7426 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
413 ovex 7443 . . . . . . . . . . . 12 ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)) ∈ V
414412, 233, 413fvmpt 6991 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
415314, 414syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
416409, 415sylan9eq 2791 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
417202adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ)
418417nncnd 12261 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ)
419418, 327mulcomd 11261 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)) = (((𝑥𝐵)↑𝑀) · (𝑀 + 1)))
420416, 419eqtrd 2771 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = (((𝑥𝐵)↑𝑀) · (𝑀 + 1)))
421408, 420oveq12d 7428 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / (((𝑥𝐵)↑𝑀) · (𝑀 + 1))))
422417nnne0d 12295 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0)
423322, 327, 418, 334, 422divdiv1d 12053 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) / (𝑀 + 1)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / (((𝑥𝐵)↑𝑀) · (𝑀 + 1))))
424335, 418, 422divrecd 12025 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) / (𝑀 + 1)) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
425421, 423, 4243eqtr2rd 2778 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥)))
426425mpteq2dva 5219 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))))
427426oveq1d 7425 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))) lim 𝐵))
428399, 400, 4273eltr3d 2849 . . 3 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))) lim 𝐵))
4291, 70, 83, 123, 44, 124, 182, 236, 258, 271, 292, 313, 428lhop 25978 . 2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) lim 𝐵))
430314adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥𝐴)
431 fveq2 6881 . . . . . . . 8 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥))
432 fveq2 6881 . . . . . . . 8 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))
433431, 432oveq12d 7428 . . . . . . 7 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
434 eqid 2736 . . . . . . 7 (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
435 ovex 7443 . . . . . . 7 ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) ∈ V
436433, 434, 435fvmpt 6991 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
437430, 436syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
438410oveq1d 7425 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝐵)↑(𝑀 + 1)) = ((𝑥𝐵)↑(𝑀 + 1)))
439 eqid 2736 . . . . . . 7 (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) = (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))
440 ovex 7443 . . . . . . 7 ((𝑥𝐵)↑(𝑀 + 1)) ∈ V
441438, 439, 440fvmpt 6991 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥𝐵)↑(𝑀 + 1)))
442430, 441syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥𝐵)↑(𝑀 + 1)))
443437, 442oveq12d 7428 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1))))
444443mpteq2dva 5219 . . 3 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))))
445444oveq1d 7425 . 2 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
446429, 445eleqtrd 2837 1 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  Vcvv 3464  cdif 3928  cin 3930  wss 3931  {csn 4606  {cpr 4608  cop 4612   class class class wbr 5124  {copab 5186  cmpt 5206   × cxp 5657  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  m cmap 8845  pm cpm 8846  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cle 11275  cmin 11471   / cdiv 11899  cn 12245  0cn0 12506  cuz 12857  (,)cioo 13367  ...cfz 13529  ..^cfzo 13676  cexp 14084  !cfa 14296  TopOpenctopn 17440  topGenctg 17456  SubRingcsubrg 20534  DivRingcdr 20694  fldccnfld 21320  fldcrefld 21569  Topctop 22836  TopOnctopon 22853  intcnt 22960   Cn ccn 23167   CnP ccnp 23168   ×t ctx 23503  cnccncf 24825   lim climc 25820   D cdv 25821   D𝑛 cdvn 25822  Polycply 26146  degcdgr 26149   Tayl ctayl 26317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14297  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-subrng 20511  df-subrg 20535  df-drng 20696  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-refld 21570  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tsms 24070  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-0p 25628  df-limc 25824  df-dv 25825  df-dvn 25826  df-ply 26150  df-idp 26151  df-coe 26152  df-dgr 26153  df-tayl 26319
This theorem is referenced by:  taylth  26341
  Copyright terms: Public domain W3C validator