MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylthlem2 Structured version   Visualization version   GIF version

Theorem taylthlem2 26434
Description: Lemma for taylth 26436. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11264. (Revised by GG, 19-Apr-2025.)
Hypotheses
Ref Expression
taylth.f (𝜑𝐹:𝐴⟶ℝ)
taylth.a (𝜑𝐴 ⊆ ℝ)
taylth.d (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
taylth.n (𝜑𝑁 ∈ ℕ)
taylth.b (𝜑𝐵𝐴)
taylth.t 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
taylthlem2.m (𝜑𝑀 ∈ (1..^𝑁))
taylthlem2.i (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))) lim 𝐵))
Assertion
Ref Expression
taylthlem2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝑥,𝑇   𝑥,𝑁   𝜑,𝑥

Proof of Theorem taylthlem2
Dummy variables 𝑦 𝑧 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylth.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 taylth.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
3 fz1ssfz0 13680 . . . . . . . . . . 11 (1...𝑁) ⊆ (0...𝑁)
4 taylthlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ (1..^𝑁))
5 fzofzp1 13814 . . . . . . . . . . . 12 (𝑀 ∈ (1..^𝑁) → (𝑀 + 1) ∈ (1...𝑁))
64, 5syl 17 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
73, 6sselid 4006 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (0...𝑁))
8 fznn0sub2 13692 . . . . . . . . . 10 ((𝑀 + 1) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁))
97, 8syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁))
10 elfznn0 13677 . . . . . . . . 9 ((𝑁 − (𝑀 + 1)) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ ℕ0)
119, 10syl 17 . . . . . . . 8 (𝜑 → (𝑁 − (𝑀 + 1)) ∈ ℕ0)
12 dvnfre 26010 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ)
132, 1, 11, 12syl3anc 1371 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ)
14 reelprrecn 11276 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
1514a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 cnex 11265 . . . . . . . . . . . . 13 ℂ ∈ V
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
18 reex 11275 . . . . . . . . . . . . 13 ℝ ∈ V
1918a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
20 ax-resscn 11241 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
21 fss 6763 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
222, 20, 21sylancl 585 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℂ)
23 elpm2r 8903 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
2417, 19, 22, 1, 23syl22anc 838 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
25 dvnbss 25984 . . . . . . . . . . 11 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹)
2615, 24, 11, 25syl3anc 1371 . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹)
272, 26fssdmd 6765 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ 𝐴)
28 taylth.d . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
29 dvn2bss 25986 . . . . . . . . . . 11 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3015, 24, 9, 29syl3anc 1371 . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3128, 30eqsstrrd 4048 . . . . . . . . 9 (𝜑𝐴 ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3227, 31eqssd 4026 . . . . . . . 8 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = 𝐴)
3332feq2d 6733 . . . . . . 7 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ))
3413, 33mpbid 232 . . . . . 6 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ)
3534ffvelcdmda 7118 . . . . 5 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
361sselda 4008 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ)
37 fvres 6939 . . . . . . . 8 (𝑦 ∈ ℝ → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))
3837adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))
39 resubdrg 21649 . . . . . . . . . . . 12 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
4039simpli 483 . . . . . . . . . . 11 ℝ ∈ (SubRing‘ℂfld)
4140a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ (SubRing‘ℂfld))
42 taylth.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
4342nnnn0d 12613 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
44 taylth.b . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
4544, 28eleqtrrd 2847 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑁))
46 taylth.t . . . . . . . . . . . 12 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
471, 44sseldd 4009 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
48 elfznn0 13677 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
49 dvnfre 26010 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑘 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ)
502, 1, 48, 49syl2an3an 1422 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → ((ℝ D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ)
51 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
52 dvn2bss 25986 . . . . . . . . . . . . . . . 16 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑘 ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘𝑘))
5314, 24, 51, 52mp3an2ani 1468 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘𝑘))
5445adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑁))
5553, 54sseldd 4009 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑘))
5650, 55ffvelcdmd 7119 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → (((ℝ D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℝ)
5748adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
5857faccld 14333 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
5956, 58nndivred 12347 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁)) → ((((ℝ D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℝ)
6015, 22, 1, 43, 45, 46, 41, 47, 59taylply2 26427 . . . . . . . . . . 11 (𝜑 → (𝑇 ∈ (Poly‘ℝ) ∧ (deg‘𝑇) ≤ 𝑁))
6160simpld 494 . . . . . . . . . 10 (𝜑𝑇 ∈ (Poly‘ℝ))
62 dvnply2 26347 . . . . . . . . . 10 ((ℝ ∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ))
6341, 61, 11, 62syl3anc 1371 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ))
64 plyreres 26342 . . . . . . . . 9 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ):ℝ⟶ℝ)
6563, 64syl 17 . . . . . . . 8 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ):ℝ⟶ℝ)
6665ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) ∈ ℝ)
6738, 66eqeltrrd 2845 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
6836, 67syldan 590 . . . . 5 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
6935, 68resubcld 11718 . . . 4 ((𝜑𝑦𝐴) → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ ℝ)
7069fmpttd 7149 . . 3 (𝜑 → (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))):𝐴⟶ℝ)
7147adantr 480 . . . . . 6 ((𝜑𝑦𝐴) → 𝐵 ∈ ℝ)
7236, 71resubcld 11718 . . . . 5 ((𝜑𝑦𝐴) → (𝑦𝐵) ∈ ℝ)
73 elfzouz 13720 . . . . . . . . . 10 (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (ℤ‘1))
744, 73syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘1))
75 nnuz 12946 . . . . . . . . 9 ℕ = (ℤ‘1)
7674, 75eleqtrrdi 2855 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
7776nnnn0d 12613 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
7877adantr 480 . . . . . 6 ((𝜑𝑦𝐴) → 𝑀 ∈ ℕ0)
79 1nn0 12569 . . . . . . 7 1 ∈ ℕ0
8079a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → 1 ∈ ℕ0)
8178, 80nn0addcld 12617 . . . . 5 ((𝜑𝑦𝐴) → (𝑀 + 1) ∈ ℕ0)
8272, 81reexpcld 14213 . . . 4 ((𝜑𝑦𝐴) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℝ)
8382fmpttd 7149 . . 3 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℝ)
84 retop 24803 . . . . . 6 (topGen‘ran (,)) ∈ Top
85 uniretop 24804 . . . . . . 7 ℝ = (topGen‘ran (,))
8685ntrss2 23086 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴)
8784, 1, 86sylancr 586 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴)
8842nncnd 12309 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8976nncnd 12309 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
90 1cnd 11285 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
9188, 89, 90nppcan2d 11673 . . . . . . . . . 10 (𝜑 → ((𝑁 − (𝑀 + 1)) + 1) = (𝑁𝑀))
9291fveq2d 6924 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
9320a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
94 dvnp1 25981 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9593, 24, 11, 94syl3anc 1371 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9692, 95eqtr3d 2782 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9796dmeqd 5930 . . . . . . 7 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
98 fzonnsub 13741 . . . . . . . . . . . 12 (𝑀 ∈ (1..^𝑁) → (𝑁𝑀) ∈ ℕ)
994, 98syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁𝑀) ∈ ℕ)
10099nnnn0d 12613 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℕ0)
101 dvnbss 25984 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ dom 𝐹)
10215, 24, 100, 101syl3anc 1371 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ dom 𝐹)
1032, 102fssdmd 6765 . . . . . . . 8 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ 𝐴)
104 elfzofz 13732 . . . . . . . . . . . . 13 (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (1...𝑁))
1054, 104syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (1...𝑁))
1063, 105sselid 4006 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑁))
107 fznn0sub2 13692 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ (0...𝑁))
108106, 107syl 17 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ (0...𝑁))
109 dvn2bss 25986 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
11015, 24, 108, 109syl3anc 1371 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
11128, 110eqsstrrd 4048 . . . . . . . 8 (𝜑𝐴 ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
112103, 111eqssd 4026 . . . . . . 7 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = 𝐴)
11397, 112eqtr3d 2782 . . . . . 6 (𝜑 → dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴)
114 fss 6763 . . . . . . . 8 ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ)
11534, 20, 114sylancl 585 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ)
116 eqid 2740 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
117116tgioo2 24844 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
11893, 115, 1, 117, 116dvbssntr 25955 . . . . . 6 (𝜑 → dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) ⊆ ((int‘(topGen‘ran (,)))‘𝐴))
119113, 118eqsstrrd 4048 . . . . 5 (𝜑𝐴 ⊆ ((int‘(topGen‘ran (,)))‘𝐴))
12087, 119eqssd 4026 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)
12185isopn3 23095 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
12284, 1, 121sylancr 586 . . . 4 (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
123120, 122mpbird 257 . . 3 (𝜑𝐴 ∈ (topGen‘ran (,)))
124 eqid 2740 . . 3 (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵})
125 difss 4159 . . . 4 (𝐴 ∖ {𝐵}) ⊆ 𝐴
12635recnd 11318 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
127 dvnf 25983 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ)
12815, 24, 100, 127syl3anc 1371 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ)
129112feq2d 6733 . . . . . . . . 9 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ ↔ ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℂ))
130128, 129mpbid 232 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℂ)
131130ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
132 dvnfre 26010 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁𝑀) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ)
1332, 1, 100, 132syl3anc 1371 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ)
134112feq2d 6733 . . . . . . . . . 10 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℝ))
135133, 134mpbid 232 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℝ)
136135feqmptd 6990 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦)))
13734feqmptd 6990 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
138137oveq2d 7464 . . . . . . . 8 (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = (ℝ D (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))))
13996, 136, 1383eqtr3rd 2789 . . . . . . 7 (𝜑 → (ℝ D (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦)))
14068recnd 11318 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
141 fvexd 6935 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ V)
14267recnd 11318 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
143 recn 11274 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
144 dvnply2 26347 . . . . . . . . . . . 12 ((ℝ ∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ))
14541, 61, 100, 144syl3anc 1371 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ))
146 plyf 26257 . . . . . . . . . . 11 (((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)):ℂ⟶ℂ)
147145, 146syl 17 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)):ℂ⟶ℂ)
148147ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
149143, 148sylan2 592 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
150116cnfldtopon 24824 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
151 toponmax 22953 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
152150, 151mp1i 13 . . . . . . . . 9 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
153 dfss2 3994 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
15493, 153sylib 218 . . . . . . . . 9 (𝜑 → (ℝ ∩ ℂ) = ℝ)
155 plyf 26257 . . . . . . . . . . 11 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))):ℂ⟶ℂ)
15663, 155syl 17 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))):ℂ⟶ℂ)
157156ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
15891fveq2d 6924 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑀)))
159 ssid 4031 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
160159a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
161 mapsspm 8934 . . . . . . . . . . . . 13 (ℂ ↑m ℂ) ⊆ (ℂ ↑pm ℂ)
162 plyf 26257 . . . . . . . . . . . . . . 15 (𝑇 ∈ (Poly‘ℝ) → 𝑇:ℂ⟶ℂ)
16361, 162syl 17 . . . . . . . . . . . . . 14 (𝜑𝑇:ℂ⟶ℂ)
16416, 16elmap 8929 . . . . . . . . . . . . . 14 (𝑇 ∈ (ℂ ↑m ℂ) ↔ 𝑇:ℂ⟶ℂ)
165163, 164sylibr 234 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (ℂ ↑m ℂ))
166161, 165sselid 4006 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (ℂ ↑pm ℂ))
167 dvnp1 25981 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
168160, 166, 11, 167syl3anc 1371 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
169158, 168eqtr3d 2782 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
170147feqmptd 6990 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
171156feqmptd 6990 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
172171oveq2d 7464 . . . . . . . . . 10 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))
173169, 170, 1723eqtr3rd 2789 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
174116, 15, 152, 154, 157, 148, 173dvmptres3 26014 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℝ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
17515, 142, 149, 174, 1, 117, 116, 123dvmptres 26021 . . . . . . 7 (𝜑 → (ℝ D (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
17615, 126, 131, 139, 140, 141, 175dvmptsub 26025 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))))
177176dmeqd 5930 . . . . 5 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = dom (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))))
178 ovex 7481 . . . . . 6 ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)) ∈ V
179 eqid 2740 . . . . . 6 (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
180178, 179dmmpti 6724 . . . . 5 dom (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))) = 𝐴
181177, 180eqtrdi 2796 . . . 4 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = 𝐴)
182125, 181sseqtrrid 4062 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))))
183 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
18447adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐵 ∈ ℝ)
185184recnd 11318 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝐵 ∈ ℂ)
186183, 185subcld 11647 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑦𝐵) ∈ ℂ)
18777adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℕ0)
18879a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℕ0)
189187, 188nn0addcld 12617 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℕ0)
190186, 189expcld 14196 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
191143, 190sylan2 592 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
19289adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℂ)
193 1cnd 11285 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℂ)
194192, 193addcld 11309 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℂ)
195186, 187expcld 14196 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑦𝐵)↑𝑀) ∈ ℂ)
196194, 195mulcld 11310 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ ℂ)
197143, 196sylan2 592 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ ℂ)
19816prid2 4788 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
199198a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ {ℝ, ℂ})
200 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
201 elfznn 13613 . . . . . . . . . . . . . 14 ((𝑀 + 1) ∈ (1...𝑁) → (𝑀 + 1) ∈ ℕ)
2026, 201syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) ∈ ℕ)
203202nnnn0d 12613 . . . . . . . . . . . 12 (𝜑 → (𝑀 + 1) ∈ ℕ0)
204203adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑀 + 1) ∈ ℕ0)
205200, 204expcld 14196 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑥↑(𝑀 + 1)) ∈ ℂ)
206 ovexd 7483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑀 + 1) · (𝑥𝑀)) ∈ V)
207199dvmptid 26015 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
208 0cnd 11283 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → 0 ∈ ℂ)
20947recnd 11318 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
210199, 209dvmptc 26016 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝐵)) = (𝑦 ∈ ℂ ↦ 0))
211199, 183, 193, 207, 185, 208, 210dvmptsub 26025 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐵))) = (𝑦 ∈ ℂ ↦ (1 − 0)))
212 1m0e1 12414 . . . . . . . . . . . 12 (1 − 0) = 1
213212mpteq2i 5271 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ (1 − 0)) = (𝑦 ∈ ℂ ↦ 1)
214211, 213eqtrdi 2796 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐵))) = (𝑦 ∈ ℂ ↦ 1))
215 dvexp 26011 . . . . . . . . . . . 12 ((𝑀 + 1) ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))))
216202, 215syl 17 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))))
21789, 90pncand 11648 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
218217oveq2d 7464 . . . . . . . . . . . . 13 (𝜑 → (𝑥↑((𝑀 + 1) − 1)) = (𝑥𝑀))
219218oveq2d 7464 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))) = ((𝑀 + 1) · (𝑥𝑀)))
220219mpteq2dv 5268 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥𝑀))))
221216, 220eqtrd 2780 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥𝑀))))
222 oveq1 7455 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → (𝑥↑(𝑀 + 1)) = ((𝑦𝐵)↑(𝑀 + 1)))
223 oveq1 7455 . . . . . . . . . . 11 (𝑥 = (𝑦𝐵) → (𝑥𝑀) = ((𝑦𝐵)↑𝑀))
224223oveq2d 7464 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → ((𝑀 + 1) · (𝑥𝑀)) = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
225199, 199, 186, 193, 205, 206, 214, 221, 222, 224dvmptco 26030 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1)))
226196mulridd 11307 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1) = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
227226mpteq2dva 5266 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1)) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
228225, 227eqtrd 2780 . . . . . . . 8 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
229116, 15, 152, 154, 190, 196, 228dvmptres3 26014 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℝ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
23015, 191, 197, 229, 1, 117, 116, 123dvmptres 26021 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
231230dmeqd 5930 . . . . 5 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = dom (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
232 ovex 7481 . . . . . 6 ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ V
233 eqid 2740 . . . . . 6 (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) = (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
234232, 233dmmpti 6724 . . . . 5 dom (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) = 𝐴
235231, 234eqtrdi 2796 . . . 4 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = 𝐴)
236125, 235sseqtrrid 4062 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))))
23715, 22, 1, 9, 45, 46dvntaylp0 26432 . . . . . 6 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))
238237oveq2d 7464 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)))
239115, 44ffvelcdmd 7119 . . . . . 6 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) ∈ ℂ)
240239subidd 11635 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0)
241238, 240eqtrd 2780 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0)
242116subcn 24907 . . . . . . 7 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
243242a1i 11 . . . . . 6 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
244 dvcn 25977 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴cn→ℂ))
24593, 115, 1, 113, 244syl31anc 1373 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴cn→ℂ))
246137, 245eqeltrrd 2845 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴cn→ℂ))
247 plycn 26320 . . . . . . . 8 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ))
24863, 247syl 17 . . . . . . 7 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ))
2491, 20sstrdi 4021 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
250 cncfmptid 24958 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑦𝐴𝑦) ∈ (𝐴cn→ℂ))
251249, 159, 250sylancl 585 . . . . . . 7 (𝜑 → (𝑦𝐴𝑦) ∈ (𝐴cn→ℂ))
252248, 251cncfmpt1f 24959 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴cn→ℂ))
253116, 243, 246, 252cncfmpt2f 24960 . . . . 5 (𝜑 → (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) ∈ (𝐴cn→ℂ))
254 fveq2 6920 . . . . . 6 (𝑦 = 𝐵 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))
255 fveq2 6920 . . . . . 6 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵))
256254, 255oveq12d 7466 . . . . 5 (𝑦 = 𝐵 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)))
257253, 44, 256cnmptlimc 25945 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) ∈ ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) lim 𝐵))
258241, 257eqeltrrd 2845 . . 3 (𝜑 → 0 ∈ ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) lim 𝐵))
259209subidd 11635 . . . . . 6 (𝜑 → (𝐵𝐵) = 0)
260259oveq1d 7463 . . . . 5 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) = (0↑(𝑀 + 1)))
2612020expd 14189 . . . . 5 (𝜑 → (0↑(𝑀 + 1)) = 0)
262260, 261eqtrd 2780 . . . 4 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) = 0)
263249sselda 4008 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝑦 ∈ ℂ)
264263, 190syldan 590 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
265264fmpttd 7149 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℂ)
266 dvcn 25977 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = 𝐴) → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ∈ (𝐴cn→ℂ))
26793, 265, 1, 235, 266syl31anc 1373 . . . . 5 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ∈ (𝐴cn→ℂ))
268 oveq1 7455 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐵) = (𝐵𝐵))
269268oveq1d 7463 . . . . 5 (𝑦 = 𝐵 → ((𝑦𝐵)↑(𝑀 + 1)) = ((𝐵𝐵)↑(𝑀 + 1)))
270267, 44, 269cnmptlimc 25945 . . . 4 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) lim 𝐵))
271262, 270eqeltrrd 2845 . . 3 (𝜑 → 0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) lim 𝐵))
272249ssdifssd 4170 . . . . . . . . . 10 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
273272sselda 4008 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℂ)
274209adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
275273, 274subcld 11647 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦𝐵) ∈ ℂ)
276 eldifsni 4815 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝐵}) → 𝑦𝐵)
277276adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦𝐵)
278273, 274, 277subne0d 11656 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦𝐵) ≠ 0)
279202adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ)
280279nnzd 12666 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℤ)
281275, 278, 280expne0d 14202 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑(𝑀 + 1)) ≠ 0)
282281necomd 3002 . . . . . 6 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑦𝐵)↑(𝑀 + 1)))
283282neneqd 2951 . . . . 5 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑦𝐵)↑(𝑀 + 1)))
284283nrexdv 3155 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
285 df-ima 5713 . . . . . 6 ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵}))
286285eleq2i 2836 . . . . 5 (0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})))
287 resmpt 6066 . . . . . . 7 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦𝐵)↑(𝑀 + 1))))
288125, 287ax-mp 5 . . . . . 6 ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦𝐵)↑(𝑀 + 1)))
289 ovex 7481 . . . . . 6 ((𝑦𝐵)↑(𝑀 + 1)) ∈ V
290288, 289elrnmpti 5985 . . . . 5 (0 ∈ ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
291286, 290bitri 275 . . . 4 (0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
292284, 291sylnibr 329 . . 3 (𝜑 → ¬ 0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})))
29389adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℂ)
294 1cnd 11285 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 1 ∈ ℂ)
295293, 294addcld 11309 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ)
296273, 195syldan 590 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑𝑀) ∈ ℂ)
297279nnne0d 12343 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0)
29876adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ)
299298nnzd 12666 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ)
300275, 278, 299expne0d 14202 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑𝑀) ≠ 0)
301295, 296, 297, 300mulne0d 11942 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ≠ 0)
302301necomd 3002 . . . . . 6 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
303302neneqd 2951 . . . . 5 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
304303nrexdv 3155 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
305230imaeq1d 6088 . . . . . . 7 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})))
306 df-ima 5713 . . . . . . 7 ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))
307305, 306eqtrdi 2796 . . . . . 6 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})))
308307eleq2d 2830 . . . . 5 (𝜑 → (0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))))
309 resmpt 6066 . . . . . . 7 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
310125, 309ax-mp 5 . . . . . 6 ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
311310, 232elrnmpti 5985 . . . . 5 (0 ∈ ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
312308, 311bitrdi 287 . . . 4 (𝜑 → (0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
313304, 312mtbird 325 . . 3 (𝜑 → ¬ 0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})))
314 eldifi 4154 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐴)
315130ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑥𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
316314, 315sylan2 592 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
3171ssdifssd 4170 . . . . . . . . . . 11 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℝ)
318317sselda 4008 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ)
319318recnd 11318 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ)
320147ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
321319, 320syldan 590 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
322316, 321subcld 11647 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) ∈ ℂ)
32347adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℝ)
324318, 323resubcld 11718 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℝ)
32577adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ0)
326324, 325reexpcld 14213 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ∈ ℝ)
327326recnd 11318 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ∈ ℂ)
328323recnd 11318 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
329319, 328subcld 11647 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℂ)
330 eldifsni 4815 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐵)
331330adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥𝐵)
332319, 328, 331subne0d 11656 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ≠ 0)
333325nn0zd 12665 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ)
334329, 332, 333expne0d 14202 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ≠ 0)
335322, 327, 334divcld 12070 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ)
336202nnrecred 12344 . . . . . . . 8 (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ)
337336recnd 11318 . . . . . . 7 (𝜑 → (1 / (𝑀 + 1)) ∈ ℂ)
338337adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (1 / (𝑀 + 1)) ∈ ℂ)
339 txtopon 23620 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ)))
340150, 150, 339mp2an 691 . . . . . . 7 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ))
341340toponrestid 22948 . . . . . 6 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × ℂ))
342 taylthlem2.i . . . . . 6 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))) lim 𝐵))
343 limcresi 25940 . . . . . . . 8 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵) ⊆ (((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵)
344 resmpt 6066 . . . . . . . . . 10 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))))
345125, 344ax-mp 5 . . . . . . . . 9 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1)))
346345oveq1i 7458 . . . . . . . 8 (((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵)
347343, 346sseqtri 4045 . . . . . . 7 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵) ⊆ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵)
348 cncfmptc 24957 . . . . . . . . 9 (((1 / (𝑀 + 1)) ∈ ℝ ∧ 𝐴 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑥𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴cn→ℝ))
349336, 249, 93, 348syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴cn→ℝ))
350 eqidd 2741 . . . . . . . 8 (𝑥 = 𝐵 → (1 / (𝑀 + 1)) = (1 / (𝑀 + 1)))
351349, 44, 350cnmptlimc 25945 . . . . . . 7 (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵))
352347, 351sselid 4006 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵))
353116mpomulcn 24910 . . . . . . 7 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
354 0cn 11282 . . . . . . . 8 0 ∈ ℂ
355 opelxpi 5737 . . . . . . . 8 ((0 ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ))
356354, 337, 355sylancr 586 . . . . . . 7 (𝜑 → ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ))
357340toponunii 22943 . . . . . . . 8 (ℂ × ℂ) = ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld))
358357cncnpi 23307 . . . . . . 7 (((𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨0, (1 / (𝑀 + 1))⟩))
359353, 356, 358sylancr 586 . . . . . 6 (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨0, (1 / (𝑀 + 1))⟩))
360335, 338, 160, 160, 116, 341, 342, 352, 359limccnp2 25947 . . . . 5 (𝜑 → (0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵))
361 0cnd 11283 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
362361, 337jca 511 . . . . . . . . 9 (𝜑 → (0 ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ))
363 ovmpot 7611 . . . . . . . . 9 ((0 ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → (0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = (0 · (1 / (𝑀 + 1))))
364362, 363syl 17 . . . . . . . 8 (𝜑 → (0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = (0 · (1 / (𝑀 + 1))))
365 df-mpt 5250 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))}
366365a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))})
367 idd 24 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
368367adantrd 491 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
369335, 338jca 511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ))
370 ovmpot 7611 . . . . . . . . . . . . . . . . . 18 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
371369, 370syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
372 eqeq2 2752 . . . . . . . . . . . . . . . . . 18 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ↔ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
373372biimpd 229 . . . . . . . . . . . . . . . . 17 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
374371, 373syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
375374ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))))
376375impd 410 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
377368, 376jcad 512 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) → (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))))
378367adantrd 491 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
379370eqcomd 2746 . . . . . . . . . . . . . . . . . 18 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))
380369, 379syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))
381 eqeq2 2752 . . . . . . . . . . . . . . . . . 18 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) ↔ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))))
382381biimpd 229 . . . . . . . . . . . . . . . . 17 (((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))))
383380, 382syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))))
384383ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) → (𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))))
385384impd 410 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) → 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))))
386378, 385jcad 512 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) → (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))))
387377, 386impbid 212 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) ↔ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))))
388387opabbidv 5232 . . . . . . . . . . 11 (𝜑 → {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))))} = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))})
389366, 388eqtrd 2780 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))})
390 df-mpt 5250 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))}
391390eqcomi 2749 . . . . . . . . . . 11 {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))} = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
392391a1i 11 . . . . . . . . . 10 (𝜑 → {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))} = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
393389, 392eqtrd 2780 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))))
394393oveq1d 7463 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵))
395364, 394jca 511 . . . . . . 7 (𝜑 → ((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = (0 · (1 / (𝑀 + 1))) ∧ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)))
396 eleq12 2834 . . . . . . 7 (((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) = (0 · (1 / (𝑀 + 1))) ∧ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)) → ((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) ↔ (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)))
397395, 396syl 17 . . . . . 6 (𝜑 → ((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) ↔ (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)))
398397biimpd 229 . . . . 5 (𝜑 → ((0(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(1 / (𝑀 + 1)))) lim 𝐵) → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵)))
399360, 398mpd 15 . . . 4 (𝜑 → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵))
400337mul02d 11488 . . . 4 (𝜑 → (0 · (1 / (𝑀 + 1))) = 0)
401176fveq1d 6922 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥))
402 fveq2 6920 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥))
403 fveq2 6920 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥))
404402, 403oveq12d 7466 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
405 ovex 7481 . . . . . . . . . . 11 ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) ∈ V
406404, 179, 405fvmpt 7029 . . . . . . . . . 10 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
407314, 406syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
408401, 407sylan9eq 2800 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
409230fveq1d 6922 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥))
410 oveq1 7455 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦𝐵) = (𝑥𝐵))
411410oveq1d 7463 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝑦𝐵)↑𝑀) = ((𝑥𝐵)↑𝑀))
412411oveq2d 7464 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
413 ovex 7481 . . . . . . . . . . . 12 ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)) ∈ V
414412, 233, 413fvmpt 7029 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
415314, 414syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
416409, 415sylan9eq 2800 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
417202adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ)
418417nncnd 12309 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ)
419418, 327mulcomd 11311 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)) = (((𝑥𝐵)↑𝑀) · (𝑀 + 1)))
420416, 419eqtrd 2780 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = (((𝑥𝐵)↑𝑀) · (𝑀 + 1)))
421408, 420oveq12d 7466 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / (((𝑥𝐵)↑𝑀) · (𝑀 + 1))))
422417nnne0d 12343 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0)
423322, 327, 418, 334, 422divdiv1d 12101 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) / (𝑀 + 1)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / (((𝑥𝐵)↑𝑀) · (𝑀 + 1))))
424335, 418, 422divrecd 12073 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) / (𝑀 + 1)) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
425421, 423, 4243eqtr2rd 2787 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥)))
426425mpteq2dva 5266 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))))
427426oveq1d 7463 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))) lim 𝐵))
428399, 400, 4273eltr3d 2858 . . 3 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))) lim 𝐵))
4291, 70, 83, 123, 44, 124, 182, 236, 258, 271, 292, 313, 428lhop 26075 . 2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) lim 𝐵))
430314adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥𝐴)
431 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥))
432 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))
433431, 432oveq12d 7466 . . . . . . 7 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
434 eqid 2740 . . . . . . 7 (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
435 ovex 7481 . . . . . . 7 ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) ∈ V
436433, 434, 435fvmpt 7029 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
437430, 436syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
438410oveq1d 7463 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝐵)↑(𝑀 + 1)) = ((𝑥𝐵)↑(𝑀 + 1)))
439 eqid 2740 . . . . . . 7 (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) = (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))
440 ovex 7481 . . . . . . 7 ((𝑥𝐵)↑(𝑀 + 1)) ∈ V
441438, 439, 440fvmpt 7029 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥𝐵)↑(𝑀 + 1)))
442430, 441syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥𝐵)↑(𝑀 + 1)))
443437, 442oveq12d 7466 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1))))
444443mpteq2dva 5266 . . 3 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))))
445444oveq1d 7463 . 2 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
446429, 445eleqtrd 2846 1 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cdif 3973  cin 3975  wss 3976  {csn 4648  {cpr 4650  cop 4654   class class class wbr 5166  {copab 5228  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  pm cpm 8885  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520   / cdiv 11947  cn 12293  0cn0 12553  cuz 12903  (,)cioo 13407  ...cfz 13567  ..^cfzo 13711  cexp 14112  !cfa 14322  TopOpenctopn 17481  topGenctg 17497  SubRingcsubrg 20595  DivRingcdr 20751  fldccnfld 21387  fldcrefld 21645  Topctop 22920  TopOnctopon 22937  intcnt 23046   Cn ccn 23253   CnP ccnp 23254   ×t ctx 23589  cnccncf 24921   lim climc 25917   D cdv 25918   D𝑛 cdvn 25919  Polycply 26243  degcdgr 26246   Tayl ctayl 26412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrng 20572  df-subrg 20597  df-drng 20753  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-refld 21646  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-tsms 24156  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-0p 25724  df-limc 25921  df-dv 25922  df-dvn 25923  df-ply 26247  df-idp 26248  df-coe 26249  df-dgr 26250  df-tayl 26414
This theorem is referenced by:  taylth  26436
  Copyright terms: Public domain W3C validator