MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylthlem1 Structured version   Visualization version   GIF version

Theorem taylthlem1 24526
Description: Lemma for taylth 24528. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'Hôpital's rule. However, since our proof of L'Hôpital assumes that 𝑆 = ℝ, we can only do this part generically, and for taylth 24528 itself we must restrict to . (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylthlem1.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylthlem1.f (𝜑𝐹:𝐴⟶ℂ)
taylthlem1.a (𝜑𝐴𝑆)
taylthlem1.d (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴)
taylthlem1.n (𝜑𝑁 ∈ ℕ)
taylthlem1.b (𝜑𝐵𝐴)
taylthlem1.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
taylthlem1.r 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
taylthlem1.i ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))
Assertion
Ref Expression
taylthlem1 (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝐵,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑛,𝑁,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦   𝑇,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑛)

Proof of Theorem taylthlem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 taylthlem1.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 elfz1end 12664 . . . 4 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
31, 2sylib 210 . . 3 (𝜑𝑁 ∈ (1...𝑁))
4 oveq2 6913 . . . . . . . . . . . 12 (𝑚 = 1 → (𝑁𝑚) = (𝑁 − 1))
54fveq2d 6437 . . . . . . . . . . 11 (𝑚 = 1 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
65fveq1d 6435 . . . . . . . . . 10 (𝑚 = 1 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥))
74fveq2d 6437 . . . . . . . . . . 11 (𝑚 = 1 → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁 − 1)))
87fveq1d 6435 . . . . . . . . . 10 (𝑚 = 1 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥))
96, 8oveq12d 6923 . . . . . . . . 9 (𝑚 = 1 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
10 oveq2 6913 . . . . . . . . 9 (𝑚 = 1 → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑1))
119, 10oveq12d 6923 . . . . . . . 8 (𝑚 = 1 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1)))
1211mpteq2dv 4968 . . . . . . 7 (𝑚 = 1 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))))
1312oveq1d 6920 . . . . . 6 (𝑚 = 1 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵))
1413eleq2d 2892 . . . . 5 (𝑚 = 1 → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵)))
1514imbi2d 332 . . . 4 (𝑚 = 1 → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵))))
16 oveq2 6913 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑁𝑚) = (𝑁𝑛))
1716fveq2d 6437 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁𝑛)))
1817fveq1d 6435 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥))
1916fveq2d 6437 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑛)))
2019fveq1d 6435 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥))
2118, 20oveq12d 6923 . . . . . . . . . 10 (𝑚 = 𝑛 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)))
22 oveq2 6913 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑𝑛))
2321, 22oveq12d 6923 . . . . . . . . 9 (𝑚 = 𝑛 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛)))
2423mpteq2dv 4968 . . . . . . . 8 (𝑚 = 𝑛 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛))))
25 fveq2 6433 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦))
26 fveq2 6433 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦))
2725, 26oveq12d 6923 . . . . . . . . . 10 (𝑥 = 𝑦 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)))
28 oveq1 6912 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐵) = (𝑦𝐵))
2928oveq1d 6920 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝐵)↑𝑛) = ((𝑦𝐵)↑𝑛))
3027, 29oveq12d 6923 . . . . . . . . 9 (𝑥 = 𝑦 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛)) = (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛)))
3130cbvmptv 4973 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑥)) / ((𝑥𝐵)↑𝑛))) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛)))
3224, 31syl6eq 2877 . . . . . . 7 (𝑚 = 𝑛 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))))
3332oveq1d 6920 . . . . . 6 (𝑚 = 𝑛 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))
3433eleq2d 2892 . . . . 5 (𝑚 = 𝑛 → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵)))
3534imbi2d 332 . . . 4 (𝑚 = 𝑛 → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))))
36 oveq2 6913 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝑁𝑚) = (𝑁 − (𝑛 + 1)))
3736fveq2d 6437 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1))))
3837fveq1d 6435 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥))
3936fveq2d 6437 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1))))
4039fveq1d 6435 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥))
4138, 40oveq12d 6923 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)))
42 oveq2 6913 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑(𝑛 + 1)))
4341, 42oveq12d 6923 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1))))
4443mpteq2dv 4968 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))))
4544oveq1d 6920 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))
4645eleq2d 2892 . . . . 5 (𝑚 = (𝑛 + 1) → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵)))
4746imbi2d 332 . . . 4 (𝑚 = (𝑛 + 1) → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))))
48 oveq2 6913 . . . . . . . . . . . 12 (𝑚 = 𝑁 → (𝑁𝑚) = (𝑁𝑁))
4948fveq2d 6437 . . . . . . . . . . 11 (𝑚 = 𝑁 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑚)) = ((𝑆 D𝑛 𝐹)‘(𝑁𝑁)))
5049fveq1d 6435 . . . . . . . . . 10 (𝑚 = 𝑁 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) = (((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥))
5148fveq2d 6437 . . . . . . . . . . 11 (𝑚 = 𝑁 → ((ℂ D𝑛 𝑇)‘(𝑁𝑚)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑁)))
5251fveq1d 6435 . . . . . . . . . 10 (𝑚 = 𝑁 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥) = (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥))
5350, 52oveq12d 6923 . . . . . . . . 9 (𝑚 = 𝑁 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) = ((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)))
54 oveq2 6913 . . . . . . . . 9 (𝑚 = 𝑁 → ((𝑥𝐵)↑𝑚) = ((𝑥𝐵)↑𝑁))
5553, 54oveq12d 6923 . . . . . . . 8 (𝑚 = 𝑁 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)) = (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁)))
5655mpteq2dv 4968 . . . . . . 7 (𝑚 = 𝑁 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))))
5756oveq1d 6920 . . . . . 6 (𝑚 = 𝑁 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵))
5857eleq2d 2892 . . . . 5 (𝑚 = 𝑁 → (0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵) ↔ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵)))
5958imbi2d 332 . . . 4 (𝑚 = 𝑁 → ((𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)) ↔ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵))))
60 taylthlem1.b . . . . . . . . . . . 12 (𝜑𝐵𝐴)
61 fveq2 6433 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) = (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵))
62 fveq2 6433 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) = (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵))
6361, 62oveq12d 6923 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)))
64 eqid 2825 . . . . . . . . . . . . 13 (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))) = (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
65 ovex 6937 . . . . . . . . . . . . 13 ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)) ∈ V
6663, 64, 65fvmpt 6529 . . . . . . . . . . . 12 (𝐵𝐴 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)))
6760, 66syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)))
68 taylthlem1.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ {ℝ, ℂ})
69 taylthlem1.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
70 taylthlem1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑆)
711nnnn0d 11678 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
72 nn0uz 12004 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
7371, 72syl6eleq 2916 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘0))
74 eluzfz2b 12643 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
7573, 74sylib 210 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (0...𝑁))
76 taylthlem1.d . . . . . . . . . . . . . 14 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴)
7760, 76eleqtrrd 2909 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
78 taylthlem1.t . . . . . . . . . . . . 13 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
7968, 69, 70, 75, 77, 78dvntaylp0 24525 . . . . . . . . . . . 12 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵))
8079oveq2d 6921 . . . . . . . . . . 11 (𝜑 → ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝐵)) = ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵)))
81 cnex 10333 . . . . . . . . . . . . . . . 16 ℂ ∈ V
8281a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ∈ V)
83 elpm2r 8140 . . . . . . . . . . . . . . 15 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
8482, 68, 69, 70, 83syl22anc 874 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
85 dvnf 24089 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ)
8668, 84, 71, 85syl3anc 1496 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ)
8786, 77ffvelrnd 6609 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) ∈ ℂ)
8887subidd 10701 . . . . . . . . . . 11 (𝜑 → ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵) − (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐵)) = 0)
8967, 80, 883eqtrd 2865 . . . . . . . . . 10 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = 0)
90 funmpt 6161 . . . . . . . . . . 11 Fun (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
91 ovex 6937 . . . . . . . . . . . . 13 ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)) ∈ V
9291, 64dmmpti 6256 . . . . . . . . . . . 12 dom (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))) = 𝐴
9360, 92syl6eleqr 2917 . . . . . . . . . . 11 (𝜑𝐵 ∈ dom (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))))
94 funbrfvb 6484 . . . . . . . . . . 11 ((Fun (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))) ∧ 𝐵 ∈ dom (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))) → (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = 0 ↔ 𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0))
9590, 93, 94sylancr 583 . . . . . . . . . 10 (𝜑 → (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))‘𝐵) = 0 ↔ 𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0))
9689, 95mpbid 224 . . . . . . . . 9 (𝜑𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0)
97 nnm1nn0 11661 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
981, 97syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 − 1) ∈ ℕ0)
99 dvnf 24089 . . . . . . . . . . . . . 14 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))⟶ℂ)
10068, 84, 98, 99syl3anc 1496 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))⟶ℂ)
101 dvnbss 24090 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ⊆ dom 𝐹)
10268, 84, 98, 101syl3anc 1496 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ⊆ dom 𝐹)
10369, 102fssdmd 6293 . . . . . . . . . . . . . . 15 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ⊆ 𝐴)
104 fzo0end 12855 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
105 elfzofz 12780 . . . . . . . . . . . . . . . . . 18 ((𝑁 − 1) ∈ (0..^𝑁) → (𝑁 − 1) ∈ (0...𝑁))
1061, 104, 1053syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ (0...𝑁))
107 dvn2bss 24092 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
10868, 84, 106, 107syl3anc 1496 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
10976, 108eqsstr3d 3865 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))
110103, 109eqssd 3844 . . . . . . . . . . . . . 14 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) = 𝐴)
111110feq2d 6264 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):dom ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))⟶ℂ ↔ ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):𝐴⟶ℂ))
112100, 111mpbid 224 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):𝐴⟶ℂ)
113112ffvelrnda 6608 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
11476feq2d 6264 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ ↔ ((𝑆 D𝑛 𝐹)‘𝑁):𝐴⟶ℂ))
11586, 114mpbid 224 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝐴⟶ℂ)
116115ffvelrnda 6608 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) ∈ ℂ)
1171nncnd 11368 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
118 1cnd 10351 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
119117, 118npcand 10717 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
120119fveq2d 6437 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 1) + 1)) = ((𝑆 D𝑛 𝐹)‘𝑁))
121 recnprss 24067 . . . . . . . . . . . . . . 15 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
12268, 121syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ℂ)
123 dvnp1 24087 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 − 1) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑁 − 1) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
124122, 84, 98, 123syl3anc 1496 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 1) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
125120, 124eqtr3d 2863 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
126115feqmptd 6496 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦)))
127112feqmptd 6496 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) = (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦)))
128127oveq2d 6921 . . . . . . . . . . . 12 (𝜑 → (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = (𝑆 D (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦))))
129125, 126, 1283eqtr3rd 2870 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦))) = (𝑦𝐴 ↦ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦)))
13070, 122sstrd 3837 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℂ)
131130sselda 3827 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦 ∈ ℂ)
132 1nn0 11636 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
133132a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
134 elpm2r 8140 . . . . . . . . . . . . . . . . . . . 20 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (((𝑆 D𝑛 𝐹)‘(𝑁 − 1)):𝐴⟶ℂ ∧ 𝐴𝑆)) → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ∈ (ℂ ↑pm 𝑆))
13582, 68, 112, 70, 134syl22anc 874 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ∈ (ℂ ↑pm 𝑆))
136 dvn1 24088 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
137122, 135, 136syl2anc 581 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))))
138124, 120eqtr3d 2863 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = ((𝑆 D𝑛 𝐹)‘𝑁))
139137, 138eqtrd 2861 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = ((𝑆 D𝑛 𝐹)‘𝑁))
140139dmeqd 5558 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
14177, 140eleqtrrd 2909 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))‘1))
142 eqid 2825 . . . . . . . . . . . . . . 15 (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵) = (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵)
14368, 112, 70, 133, 141, 142taylpf 24519 . . . . . . . . . . . . . 14 (𝜑 → (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵):ℂ⟶ℂ)
144118, 117pncan3d 10716 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
145144oveq1d 6920 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
146145, 78syl6reqr 2880 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 = ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵))
147146oveq2d 6921 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D𝑛 𝑇) = (ℂ D𝑛 ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵)))
148147fveq1d 6435 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)) = ((ℂ D𝑛 ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵))‘(𝑁 − 1)))
149144fveq2d 6437 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆 D𝑛 𝐹)‘(1 + (𝑁 − 1))) = ((𝑆 D𝑛 𝐹)‘𝑁))
150149dmeqd 5558 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(1 + (𝑁 − 1))) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
15177, 150eleqtrrd 2909 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(1 + (𝑁 − 1))))
15268, 69, 70, 98, 133, 151dvntaylp 24524 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 ((1 + (𝑁 − 1))(𝑆 Tayl 𝐹)𝐵))‘(𝑁 − 1)) = (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵))
153148, 152eqtrd 2861 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)) = (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵))
154153feq1d 6263 . . . . . . . . . . . . . 14 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1)):ℂ⟶ℂ ↔ (1(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑁 − 1)))𝐵):ℂ⟶ℂ))
155143, 154mpbird 249 . . . . . . . . . . . . 13 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)):ℂ⟶ℂ)
156155ffvelrnda 6608 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
157131, 156syldan 587 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
158 0nn0 11635 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
159158a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℕ0)
160 elpm2r 8140 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (((𝑆 D𝑛 𝐹)‘𝑁):𝐴⟶ℂ ∧ 𝐴𝑆)) → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm 𝑆))
16182, 68, 115, 70, 160syl22anc 874 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm 𝑆))
162 dvn0 24086 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0) = ((𝑆 D𝑛 𝐹)‘𝑁))
163122, 161, 162syl2anc 581 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0) = ((𝑆 D𝑛 𝐹)‘𝑁))
164163dmeqd 5558 . . . . . . . . . . . . . . . 16 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
16577, 164eleqtrrd 2909 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑁))‘0))
166 eqid 2825 . . . . . . . . . . . . . . 15 (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵) = (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵)
16768, 115, 70, 159, 165, 166taylpf 24519 . . . . . . . . . . . . . 14 (𝜑 → (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵):ℂ⟶ℂ)
168117addid2d 10556 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0 + 𝑁) = 𝑁)
169168oveq1d 6920 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
170169, 78syl6eqr 2879 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵) = 𝑇)
171170oveq2d 6921 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D𝑛 ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇))
172171fveq1d 6435 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵))‘𝑁) = ((ℂ D𝑛 𝑇)‘𝑁))
173168fveq2d 6437 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆 D𝑛 𝐹)‘(0 + 𝑁)) = ((𝑆 D𝑛 𝐹)‘𝑁))
174173dmeqd 5558 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(0 + 𝑁)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
17577, 174eleqtrrd 2909 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(0 + 𝑁)))
17668, 69, 70, 71, 159, 175dvntaylp 24524 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℂ D𝑛 ((0 + 𝑁)(𝑆 Tayl 𝐹)𝐵))‘𝑁) = (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵))
177172, 176eqtr3d 2863 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑁) = (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵))
178177feq1d 6263 . . . . . . . . . . . . . 14 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑁):ℂ⟶ℂ ↔ (0(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑁))𝐵):ℂ⟶ℂ))
179167, 178mpbird 249 . . . . . . . . . . . . 13 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑁):ℂ⟶ℂ)
180179ffvelrnda 6608 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) ∈ ℂ)
181131, 180syldan 587 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) ∈ ℂ)
182122sselda 3827 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
183182, 156syldan 587 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) ∈ ℂ)
184182, 180syldan 587 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦) ∈ ℂ)
185 eqid 2825 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
186185cnfldtopon 22956 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
187 toponmax 21101 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
188186, 187mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
189 df-ss 3812 . . . . . . . . . . . . . 14 (𝑆 ⊆ ℂ ↔ (𝑆 ∩ ℂ) = 𝑆)
190122, 189sylib 210 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∩ ℂ) = 𝑆)
191 ssid 3848 . . . . . . . . . . . . . . . . 17 ℂ ⊆ ℂ
192191a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℂ ⊆ ℂ)
193 mapsspm 8156 . . . . . . . . . . . . . . . . 17 (ℂ ↑𝑚 ℂ) ⊆ (ℂ ↑pm ℂ)
19468, 69, 70, 71, 77, 78taylpf 24519 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇:ℂ⟶ℂ)
19581, 81elmap 8151 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ (ℂ ↑𝑚 ℂ) ↔ 𝑇:ℂ⟶ℂ)
196194, 195sylibr 226 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ (ℂ ↑𝑚 ℂ))
197193, 196sseldi 3825 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ (ℂ ↑pm ℂ))
198 dvnp1 24087 . . . . . . . . . . . . . . . 16 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ) ∧ (𝑁 − 1) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘((𝑁 − 1) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))))
199192, 197, 98, 198syl3anc 1496 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − 1) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))))
200119fveq2d 6437 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − 1) + 1)) = ((ℂ D𝑛 𝑇)‘𝑁))
201199, 200eqtr3d 2863 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))) = ((ℂ D𝑛 𝑇)‘𝑁))
202155feqmptd 6496 . . . . . . . . . . . . . . 15 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − 1)) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))
203202oveq2d 6921 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − 1))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))
204179feqmptd 6496 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑁) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
205201, 203, 2043eqtr3d 2869 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
206185, 68, 188, 190, 156, 180, 205dvmptres3 24118 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦𝑆 ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
207 eqid 2825 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
208 resttopon 21336 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
209186, 122, 208sylancr 583 . . . . . . . . . . . . . . 15 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
210 topontop 21088 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
211209, 210syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
212 toponuni 21089 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
213209, 212syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
21470, 213sseqtrd 3866 . . . . . . . . . . . . . 14 (𝜑𝐴 ((TopOpen‘ℂfld) ↾t 𝑆))
215 eqid 2825 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
216215ntrss2 21232 . . . . . . . . . . . . . 14 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝐴 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
217211, 214, 216syl2anc 581 . . . . . . . . . . . . 13 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
218138dmeqd 5558 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
219218, 76eqtrd 2861 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) = 𝐴)
220122, 112, 70, 207, 185dvbssntr 24063 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑁 − 1))) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴))
221219, 220eqsstr3d 3865 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴))
222217, 221eqssd 3844 . . . . . . . . . . . 12 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) = 𝐴)
22368, 183, 184, 206, 70, 207, 185, 222dvmptres2 24124 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))
22468, 113, 116, 129, 157, 181, 223dvmptsub 24129 . . . . . . . . . 10 (𝜑 → (𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))) = (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦))))
225224breqd 4884 . . . . . . . . 9 (𝜑 → (𝐵(𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))0 ↔ 𝐵(𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘𝑁)‘𝑦) − (((ℂ D𝑛 𝑇)‘𝑁)‘𝑦)))0))
22696, 225mpbird 249 . . . . . . . 8 (𝜑𝐵(𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))0)
227 eqid 2825 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵)))
228113, 157subcld 10713 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)) ∈ ℂ)
229228fmpttd 6634 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))):𝐴⟶ℂ)
230207, 185, 227, 122, 229, 70eldv 24061 . . . . . . . 8 (𝜑 → (𝐵(𝑆 D (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))))0 ↔ (𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ∧ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵))))
231226, 230mpbid 224 . . . . . . 7 (𝜑 → (𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ∧ 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵)))
232231simprd 491 . . . . . 6 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵))
233 eldifi 3959 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐴)
234 fveq2 6433 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥))
235 fveq2 6433 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥))
236234, 235oveq12d 6923 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
237 eqid 2825 . . . . . . . . . . . . 13 (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦))) = (𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))
238 ovex 6937 . . . . . . . . . . . . 13 ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) ∈ V
239236, 237, 238fvmpt 6529 . . . . . . . . . . . 12 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
240 fveq2 6433 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵))
241 fveq2 6433 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵))
242240, 241oveq12d 6923 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)))
243 ovex 6937 . . . . . . . . . . . . . . 15 ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)) ∈ V
244242, 237, 243fvmpt 6529 . . . . . . . . . . . . . 14 (𝐵𝐴 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)))
24560, 244syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)))
24668, 69, 70, 106, 77, 78dvntaylp0 24525 . . . . . . . . . . . . . 14 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵) = (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵))
247246oveq2d 6921 . . . . . . . . . . . . 13 (𝜑 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝐵)) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵)))
248112, 60ffvelrnd 6609 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) ∈ ℂ)
249248subidd 10701 . . . . . . . . . . . . 13 (𝜑 → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵) − (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝐵)) = 0)
250245, 247, 2493eqtrd 2865 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵) = 0)
251239, 250oveqan12rd 6925 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) = (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) − 0))
252112ffvelrnda 6608 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) ∈ ℂ)
253130sselda 3827 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
254155ffvelrnda 6608 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥) ∈ ℂ)
255253, 254syldan 587 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥) ∈ ℂ)
256252, 255subcld 10713 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) ∈ ℂ)
257256subid1d 10702 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) − 0) = ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)))
258251, 257eqtr2d 2862 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) = (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)))
259233, 258sylan2 588 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) = (((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)))
260130ssdifssd 3975 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
261260sselda 3827 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ)
262130, 60sseldd 3828 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
263262adantr 474 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
264261, 263subcld 10713 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℂ)
265264exp1d 13297 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑1) = (𝑥𝐵))
266259, 265oveq12d 6923 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1)) = ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵)))
267266mpteq2dva 4967 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))))
268267oveq1d 6920 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝑥) − ((𝑦𝐴 ↦ ((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑦)))‘𝐵)) / (𝑥𝐵))) lim 𝐵))
269232, 268eleqtrrd 2909 . . . . 5 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵))
270269a1i 11 . . . 4 (𝑁 ∈ (ℤ‘1) → (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 1))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 1))‘𝑥)) / ((𝑥𝐵)↑1))) lim 𝐵)))
271 taylthlem1.i . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))
272271expr 450 . . . . . 6 ((𝜑𝑛 ∈ (1..^𝑁)) → (0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵)))
273272expcom 404 . . . . 5 (𝑛 ∈ (1..^𝑁) → (𝜑 → (0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))))
274273a2d 29 . . . 4 (𝑛 ∈ (1..^𝑁) → ((𝜑 → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑛))‘𝑦)) / ((𝑦𝐵)↑𝑛))) lim 𝐵)) → (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑛 + 1)))) lim 𝐵))))
27515, 35, 47, 59, 270, 274fzind2 12881 . . 3 (𝑁 ∈ (1...𝑁) → (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵)))
2763, 275mpcom 38 . 2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵))
277117subidd 10701 . . . . . . . . . 10 (𝜑 → (𝑁𝑁) = 0)
278277fveq2d 6437 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑁)) = ((𝑆 D𝑛 𝐹)‘0))
279 dvn0 24086 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
280122, 84, 279syl2anc 581 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
281278, 280eqtrd 2861 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑁𝑁)) = 𝐹)
282281fveq1d 6435 . . . . . . 7 (𝜑 → (((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) = (𝐹𝑥))
283277fveq2d 6437 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑁)) = ((ℂ D𝑛 𝑇)‘0))
284 dvn0 24086 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝑇)‘0) = 𝑇)
285191, 197, 284sylancr 583 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘0) = 𝑇)
286283, 285eqtrd 2861 . . . . . . . 8 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑁)) = 𝑇)
287286fveq1d 6435 . . . . . . 7 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥) = (𝑇𝑥))
288282, 287oveq12d 6923 . . . . . 6 (𝜑 → ((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) = ((𝐹𝑥) − (𝑇𝑥)))
289288oveq1d 6920 . . . . 5 (𝜑 → (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁)) = (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
290289mpteq2dv 4968 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁))))
291 taylthlem1.r . . . 4 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
292290, 291syl6eqr 2879 . . 3 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) = 𝑅)
293292oveq1d 6920 . 2 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁𝑁))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑁))‘𝑥)) / ((𝑥𝐵)↑𝑁))) lim 𝐵) = (𝑅 lim 𝐵))
294276, 293eleqtrd 2908 1 (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  Vcvv 3414  cdif 3795  cin 3797  wss 3798  {csn 4397  {cpr 4399   cuni 4658   class class class wbr 4873  cmpt 4952  dom cdm 5342  Fun wfun 6117  wf 6119  cfv 6123  (class class class)co 6905  𝑚 cmap 8122  pm cpm 8123  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255  cmin 10585   / cdiv 11009  cn 11350  0cn0 11618  cuz 11968  ...cfz 12619  ..^cfzo 12760  cexp 13154  t crest 16434  TopOpenctopn 16435  fldccnfld 20106  Topctop 21068  TopOnctopon 21085  intcnt 21192   lim climc 24025   D cdv 24026   D𝑛 cdvn 24027   Tayl ctayl 24506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-xnn0 11691  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-icc 12470  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-fac 13354  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-tsms 22300  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030  df-dvn 24031  df-tayl 24508
This theorem is referenced by:  taylth  24528
  Copyright terms: Public domain W3C validator