Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fssdm | Structured version Visualization version GIF version |
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
fssdm.d | ⊢ 𝐷 ⊆ dom 𝐹 |
fssdm.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
fssdm | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssdm.d | . 2 ⊢ 𝐷 ⊆ dom 𝐹 | |
2 | fssdm.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6595 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrid 3969 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 dom cdm 5580 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-fn 6421 df-f 6422 |
This theorem is referenced by: fisuppfi 9066 wemapso 9240 wemapso2lem 9241 cantnfcl 9355 cantnfle 9359 cantnflt 9360 cantnff 9362 cantnfp1lem3 9368 cantnflem1b 9374 cantnflem1 9377 cantnflem3 9379 cnfcomlem 9387 cnfcom 9388 cnfcom3lem 9391 cnfcom3 9392 fin1a2lem7 10093 isercolllem2 15305 isercolllem3 15306 fsumss 15365 fprodss 15586 vdwlem1 16610 vdwlem5 16614 vdwlem6 16615 ghmpreima 18771 pmtrfconj 18989 gsumval3lem1 19421 gsumval3lem2 19422 gsumval3 19423 gsumzres 19425 gsumzcl2 19426 gsumzf1o 19428 gsumzmhm 19453 gsumzoppg 19460 gsum2d 19488 dpjidcl 19576 lmhmpreima 20225 gsumfsum 20577 regsumsupp 20739 frlmlbs 20914 mplcoe1 21148 mplcoe5 21151 psr1baslem 21266 mdetdiaglem 21655 cnclima 22327 iscncl 22328 cnclsi 22331 txcnmpt 22683 qtopval2 22755 qtopcn 22773 rnelfmlem 23011 fmfnfmlem4 23016 clssubg 23168 tgphaus 23176 tsmsgsum 23198 xmeter 23494 metustss 23613 metustexhalf 23618 restmetu 23632 rrxcph 24461 rrxsuppss 24472 mdegfval 25132 mdegleb 25134 mdegldg 25136 deg1mul3le 25186 plyeq0lem 25276 dgrcl 25299 dgrub 25300 dgrlb 25302 vieta1lem1 25375 suppovss 30919 pwrssmgc 31180 gsumhashmul 31218 rhmpreimaidl 31505 elrspunidl 31508 dimkerim 31610 fedgmullem1 31612 carsggect 32185 sibfof 32207 eulerpartlemsv2 32225 eulerpartlemsf 32226 eulerpartlemt 32238 eulerpartlemgu 32244 eulerpartlemgs2 32247 cvmliftmolem1 33143 cvmlift3lem6 33186 itg2addnclem 35755 keridl 36117 ismrcd1 40436 istopclsd 40438 pwfi2f1o 40837 sge0f1o 43810 smfsuplem1 44231 |
Copyright terms: Public domain | W3C validator |