Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fssdm | Structured version Visualization version GIF version |
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
fssdm.d | ⊢ 𝐷 ⊆ dom 𝐹 |
fssdm.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
fssdm | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssdm.d | . 2 ⊢ 𝐷 ⊆ dom 𝐹 | |
2 | fssdm.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6611 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrid 3973 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3887 dom cdm 5589 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-fn 6436 df-f 6437 |
This theorem is referenced by: fisuppfi 9136 wemapso 9310 wemapso2lem 9311 cantnfcl 9425 cantnfle 9429 cantnflt 9430 cantnff 9432 cantnfp1lem3 9438 cantnflem1b 9444 cantnflem1 9447 cantnflem3 9449 cnfcomlem 9457 cnfcom 9458 cnfcom3lem 9461 cnfcom3 9462 fin1a2lem7 10162 isercolllem2 15377 isercolllem3 15378 fsumss 15437 fprodss 15658 vdwlem1 16682 vdwlem5 16686 vdwlem6 16687 ghmpreima 18856 pmtrfconj 19074 gsumval3lem1 19506 gsumval3lem2 19507 gsumval3 19508 gsumzres 19510 gsumzcl2 19511 gsumzf1o 19513 gsumzmhm 19538 gsumzoppg 19545 gsum2d 19573 dpjidcl 19661 lmhmpreima 20310 gsumfsum 20665 regsumsupp 20827 frlmlbs 21004 mplcoe1 21238 mplcoe5 21241 psr1baslem 21356 mdetdiaglem 21747 cnclima 22419 iscncl 22420 cnclsi 22423 txcnmpt 22775 qtopval2 22847 qtopcn 22865 rnelfmlem 23103 fmfnfmlem4 23108 clssubg 23260 tgphaus 23268 tsmsgsum 23290 xmeter 23586 metustss 23707 metustexhalf 23712 restmetu 23726 rrxcph 24556 rrxsuppss 24567 mdegfval 25227 mdegleb 25229 mdegldg 25231 deg1mul3le 25281 plyeq0lem 25371 dgrcl 25394 dgrub 25395 dgrlb 25397 vieta1lem1 25470 suppovss 31017 pwrssmgc 31278 gsumhashmul 31316 rhmpreimaidl 31603 elrspunidl 31606 dimkerim 31708 fedgmullem1 31710 carsggect 32285 sibfof 32307 eulerpartlemsv2 32325 eulerpartlemsf 32326 eulerpartlemt 32338 eulerpartlemgu 32344 eulerpartlemgs2 32347 cvmliftmolem1 33243 cvmlift3lem6 33286 itg2addnclem 35828 keridl 36190 ismrcd1 40520 istopclsd 40522 pwfi2f1o 40921 sge0f1o 43920 smfsuplem1 44344 |
Copyright terms: Public domain | W3C validator |