MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem7 Structured version   Visualization version   GIF version

Theorem ordtypelem7 9538
Description: Lemma for ordtype 9546. ran 𝑂 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem7 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂𝑀)𝑅𝑁𝑁 ∈ ran 𝑂))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑀   𝑗,𝑁,𝑢,𝑤   𝑅,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑁(𝑥,𝑧,𝑣,𝑡,)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem7
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3936 . . . . . 6 (𝑁 ∈ (𝐴 ∖ ran 𝑂) ↔ (𝑁𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂))
2 ordtypelem.1 . . . . . . . . . . . 12 𝐹 = recs(𝐺)
3 ordtypelem.2 . . . . . . . . . . . 12 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
4 ordtypelem.3 . . . . . . . . . . . 12 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
5 ordtypelem.5 . . . . . . . . . . . 12 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
6 ordtypelem.6 . . . . . . . . . . . 12 𝑂 = OrdIso(𝑅, 𝐴)
7 ordtypelem.7 . . . . . . . . . . . 12 (𝜑𝑅 We 𝐴)
8 ordtypelem.8 . . . . . . . . . . . 12 (𝜑𝑅 Se 𝐴)
92, 3, 4, 5, 6, 7, 8ordtypelem4 9535 . . . . . . . . . . 11 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109adantr 480 . . . . . . . . . 10 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
1110fdmd 6716 . . . . . . . . 9 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 = (𝑇 ∩ dom 𝐹))
12 inss1 4212 . . . . . . . . . 10 (𝑇 ∩ dom 𝐹) ⊆ 𝑇
132, 3, 4, 5, 6, 7, 8ordtypelem2 9533 . . . . . . . . . . . 12 (𝜑 → Ord 𝑇)
1413adantr 480 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord 𝑇)
15 ordsson 7777 . . . . . . . . . . 11 (Ord 𝑇𝑇 ⊆ On)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑇 ⊆ On)
1712, 16sstrid 3970 . . . . . . . . 9 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑇 ∩ dom 𝐹) ⊆ On)
1811, 17eqsstrd 3993 . . . . . . . 8 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 ⊆ On)
1918sseld 3957 . . . . . . 7 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂𝑀 ∈ On))
20 eleq1 2822 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂))
21 fveq2 6876 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑂𝑎) = (𝑂𝑏))
2221breq1d 5129 . . . . . . . . . . 11 (𝑎 = 𝑏 → ((𝑂𝑎)𝑅𝑁 ↔ (𝑂𝑏)𝑅𝑁))
2320, 22imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁) ↔ (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)))
2423imbi2d 340 . . . . . . . . 9 (𝑎 = 𝑏 → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁))))
25 eleq1 2822 . . . . . . . . . . 11 (𝑎 = 𝑀 → (𝑎 ∈ dom 𝑂𝑀 ∈ dom 𝑂))
26 fveq2 6876 . . . . . . . . . . . 12 (𝑎 = 𝑀 → (𝑂𝑎) = (𝑂𝑀))
2726breq1d 5129 . . . . . . . . . . 11 (𝑎 = 𝑀 → ((𝑂𝑎)𝑅𝑁 ↔ (𝑂𝑀)𝑅𝑁))
2825, 27imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑀 → ((𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁) ↔ (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁)))
2928imbi2d 340 . . . . . . . . 9 (𝑎 = 𝑀 → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))))
30 r19.21v 3165 . . . . . . . . . 10 (∀𝑏𝑎 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)))
312tfr1a 8408 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐹 ∧ Lim dom 𝐹)
3231simpri 485 . . . . . . . . . . . . . . . . . . . . . 22 Lim dom 𝐹
33 limord 6413 . . . . . . . . . . . . . . . . . . . . . 22 (Lim dom 𝐹 → Ord dom 𝐹)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 Ord dom 𝐹
35 ordin 6382 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹))
3614, 34, 35sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord (𝑇 ∩ dom 𝐹))
37 ordeq 6359 . . . . . . . . . . . . . . . . . . . . 21 (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
3811, 37syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
3936, 38mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord dom 𝑂)
40 ordelss 6368 . . . . . . . . . . . . . . . . . . 19 ((Ord dom 𝑂𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂)
4139, 40sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂)
4241sselda 3958 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏𝑎) → 𝑏 ∈ dom 𝑂)
43 pm5.5 361 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ dom 𝑂 → ((𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ (𝑂𝑏)𝑅𝑁))
4442, 43syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏𝑎) → ((𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ (𝑂𝑏)𝑅𝑁))
4544ralbidva 3161 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁))
46 eldifn 4107 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (𝐴 ∖ ran 𝑂) → ¬ 𝑁 ∈ ran 𝑂)
4746ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ 𝑁 ∈ ran 𝑂)
489ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
4948ffnd 6707 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂 Fn (𝑇 ∩ dom 𝐹))
50 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ∈ dom 𝑂)
5148fdmd 6716 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → dom 𝑂 = (𝑇 ∩ dom 𝐹))
5250, 51eleqtrd 2836 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ∈ (𝑇 ∩ dom 𝐹))
53 fnfvelrn 7070 . . . . . . . . . . . . . . . . . . . 20 ((𝑂 Fn (𝑇 ∩ dom 𝐹) ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝑂𝑎) ∈ ran 𝑂)
5449, 52, 53syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ ran 𝑂)
55 eleq1 2822 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑎) = 𝑁 → ((𝑂𝑎) ∈ ran 𝑂𝑁 ∈ ran 𝑂))
5654, 55syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎) = 𝑁𝑁 ∈ ran 𝑂))
5747, 56mtod 198 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ (𝑂𝑎) = 𝑁)
58 breq1 5122 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑁 → (𝑢𝑅(𝑂𝑎) ↔ 𝑁𝑅(𝑂𝑎)))
5958notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑁 → (¬ 𝑢𝑅(𝑂𝑎) ↔ ¬ 𝑁𝑅(𝑂𝑎)))
602, 3, 4, 5, 6, 7, 8ordtypelem1 9532 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑂 = (𝐹𝑇))
6160ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂 = (𝐹𝑇))
6261fveq1d 6878 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) = ((𝐹𝑇)‘𝑎))
6352elin1d 4179 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎𝑇)
6463fvresd 6896 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝐹𝑇)‘𝑎) = (𝐹𝑎))
6562, 64eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) = (𝐹𝑎))
66 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝜑)
672, 3, 4, 5, 6, 7, 8ordtypelem3 9534 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
6866, 52, 67syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
6965, 68eqeltrd 2834 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
70 breq2 5123 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = (𝑂𝑎) → (𝑢𝑅𝑣𝑢𝑅(𝑂𝑎)))
7170notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (𝑂𝑎) → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑢𝑅(𝑂𝑎)))
7271ralbidv 3163 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑂𝑎) → (∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎)))
7372elrab 3671 . . . . . . . . . . . . . . . . . . . 20 ((𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ↔ ((𝑂𝑎) ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∧ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎)))
7473simprbi 496 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} → ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎))
7569, 74syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎))
76 breq2 5123 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑁 → (𝑗𝑅𝑤𝑗𝑅𝑁))
7776ralbidv 3163 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑁 → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁))
78 eldifi 4106 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (𝐴 ∖ ran 𝑂) → 𝑁𝐴)
7978ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑁𝐴)
80 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)
8141adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝑂)
8248, 81fssdmd 6724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ (𝑇 ∩ dom 𝐹))
8382, 12sstrdi 3971 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎𝑇)
84 fveq1 6875 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑂 = (𝐹𝑇) → (𝑂𝑏) = ((𝐹𝑇)‘𝑏))
85 ssel2 3953 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎𝑇𝑏𝑎) → 𝑏𝑇)
8685fvresd 6896 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑇𝑏𝑎) → ((𝐹𝑇)‘𝑏) = (𝐹𝑏))
8784, 86sylan9eq 2790 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑂 = (𝐹𝑇) ∧ (𝑎𝑇𝑏𝑎)) → (𝑂𝑏) = (𝐹𝑏))
8887anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) ∧ 𝑏𝑎) → (𝑂𝑏) = (𝐹𝑏))
8988breq1d 5129 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) ∧ 𝑏𝑎) → ((𝑂𝑏)𝑅𝑁 ↔ (𝐹𝑏)𝑅𝑁))
9089ralbidva 3161 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
9161, 83, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
9280, 91mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁)
9331simpli 483 . . . . . . . . . . . . . . . . . . . . . 22 Fun 𝐹
94 funfn 6566 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐹𝐹 Fn dom 𝐹)
9593, 94mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 𝐹 Fn dom 𝐹
96 inss2 4213 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∩ dom 𝐹) ⊆ dom 𝐹
9782, 96sstrdi 3971 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝐹)
98 breq1 5122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = (𝐹𝑏) → (𝑗𝑅𝑁 ↔ (𝐹𝑏)𝑅𝑁))
9998ralima 7229 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn dom 𝐹𝑎 ⊆ dom 𝐹) → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
10095, 97, 99sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
10192, 100mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁)
10277, 79, 101elrabd 3673 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑁 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤})
10359, 75, 102rspcdva 3602 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ 𝑁𝑅(𝑂𝑎))
104 weso 5645 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 We 𝐴𝑅 Or 𝐴)
1057, 104syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 Or 𝐴)
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑅 Or 𝐴)
10748, 52ffvelcdmd 7075 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ 𝐴)
108 sotric 5591 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐴 ∧ ((𝑂𝑎) ∈ 𝐴𝑁𝐴)) → ((𝑂𝑎)𝑅𝑁 ↔ ¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎))))
109106, 107, 79, 108syl12anc 836 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎)𝑅𝑁 ↔ ¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎))))
110 ioran 985 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎)) ↔ (¬ (𝑂𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂𝑎)))
111109, 110bitrdi 287 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎)𝑅𝑁 ↔ (¬ (𝑂𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂𝑎))))
11257, 103, 111mpbir2and 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎)𝑅𝑁)
113112expr 456 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 → (𝑂𝑎)𝑅𝑁))
11445, 113sylbid 240 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑂𝑎)𝑅𝑁))
115114ex 412 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑂𝑎)𝑅𝑁)))
116115com23 86 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)))
117116a2i 14 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)))
118117a1i 11 . . . . . . . . . 10 (𝑎 ∈ On → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁))))
11930, 118biimtrid 242 . . . . . . . . 9 (𝑎 ∈ On → (∀𝑏𝑎 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁))))
12024, 29, 119tfis3 7853 . . . . . . . 8 (𝑀 ∈ On → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁)))
121120com3l 89 . . . . . . 7 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑀 ∈ On → (𝑂𝑀)𝑅𝑁)))
12219, 121mpdd 43 . . . . . 6 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
1231, 122sylan2br 595 . . . . 5 ((𝜑 ∧ (𝑁𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
124123anassrs 467 . . . 4 (((𝜑𝑁𝐴) ∧ ¬ 𝑁 ∈ ran 𝑂) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
125124impancom 451 . . 3 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → (¬ 𝑁 ∈ ran 𝑂 → (𝑂𝑀)𝑅𝑁))
126125orrd 863 . 2 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ ran 𝑂 ∨ (𝑂𝑀)𝑅𝑁))
127126orcomd 871 1 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂𝑀)𝑅𝑁𝑁 ∈ ran 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  cin 3925  wss 3926   class class class wbr 5119  cmpt 5201   Or wor 5560   Se wse 5604   We wwe 5605  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Ord word 6351  Oncon0 6352  Lim wlim 6353  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  crio 7361  recscrecs 8384  OrdIsocoi 9523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-oi 9524
This theorem is referenced by:  ordtypelem9  9540  ordtypelem10  9541  oiiniseg  9547
  Copyright terms: Public domain W3C validator