MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem7 Structured version   Visualization version   GIF version

Theorem ordtypelem7 9521
Description: Lemma for ordtype 9529. ran 𝑂 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem7 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂𝑀)𝑅𝑁𝑁 ∈ ran 𝑂))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑀   𝑗,𝑁,𝑢,𝑤   𝑅,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑁(𝑥,𝑧,𝑣,𝑡,)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem7
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3958 . . . . . 6 (𝑁 ∈ (𝐴 ∖ ran 𝑂) ↔ (𝑁𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂))
2 ordtypelem.1 . . . . . . . . . . . 12 𝐹 = recs(𝐺)
3 ordtypelem.2 . . . . . . . . . . . 12 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
4 ordtypelem.3 . . . . . . . . . . . 12 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
5 ordtypelem.5 . . . . . . . . . . . 12 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
6 ordtypelem.6 . . . . . . . . . . . 12 𝑂 = OrdIso(𝑅, 𝐴)
7 ordtypelem.7 . . . . . . . . . . . 12 (𝜑𝑅 We 𝐴)
8 ordtypelem.8 . . . . . . . . . . . 12 (𝜑𝑅 Se 𝐴)
92, 3, 4, 5, 6, 7, 8ordtypelem4 9518 . . . . . . . . . . 11 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109adantr 481 . . . . . . . . . 10 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
1110fdmd 6728 . . . . . . . . 9 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 = (𝑇 ∩ dom 𝐹))
12 inss1 4228 . . . . . . . . . 10 (𝑇 ∩ dom 𝐹) ⊆ 𝑇
132, 3, 4, 5, 6, 7, 8ordtypelem2 9516 . . . . . . . . . . . 12 (𝜑 → Ord 𝑇)
1413adantr 481 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord 𝑇)
15 ordsson 7772 . . . . . . . . . . 11 (Ord 𝑇𝑇 ⊆ On)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑇 ⊆ On)
1712, 16sstrid 3993 . . . . . . . . 9 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑇 ∩ dom 𝐹) ⊆ On)
1811, 17eqsstrd 4020 . . . . . . . 8 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 ⊆ On)
1918sseld 3981 . . . . . . 7 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂𝑀 ∈ On))
20 eleq1 2821 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂))
21 fveq2 6891 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑂𝑎) = (𝑂𝑏))
2221breq1d 5158 . . . . . . . . . . 11 (𝑎 = 𝑏 → ((𝑂𝑎)𝑅𝑁 ↔ (𝑂𝑏)𝑅𝑁))
2320, 22imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁) ↔ (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)))
2423imbi2d 340 . . . . . . . . 9 (𝑎 = 𝑏 → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁))))
25 eleq1 2821 . . . . . . . . . . 11 (𝑎 = 𝑀 → (𝑎 ∈ dom 𝑂𝑀 ∈ dom 𝑂))
26 fveq2 6891 . . . . . . . . . . . 12 (𝑎 = 𝑀 → (𝑂𝑎) = (𝑂𝑀))
2726breq1d 5158 . . . . . . . . . . 11 (𝑎 = 𝑀 → ((𝑂𝑎)𝑅𝑁 ↔ (𝑂𝑀)𝑅𝑁))
2825, 27imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑀 → ((𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁) ↔ (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁)))
2928imbi2d 340 . . . . . . . . 9 (𝑎 = 𝑀 → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))))
30 r19.21v 3179 . . . . . . . . . 10 (∀𝑏𝑎 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)))
312tfr1a 8396 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐹 ∧ Lim dom 𝐹)
3231simpri 486 . . . . . . . . . . . . . . . . . . . . . 22 Lim dom 𝐹
33 limord 6424 . . . . . . . . . . . . . . . . . . . . . 22 (Lim dom 𝐹 → Ord dom 𝐹)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 Ord dom 𝐹
35 ordin 6394 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹))
3614, 34, 35sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord (𝑇 ∩ dom 𝐹))
37 ordeq 6371 . . . . . . . . . . . . . . . . . . . . 21 (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
3811, 37syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
3936, 38mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord dom 𝑂)
40 ordelss 6380 . . . . . . . . . . . . . . . . . . 19 ((Ord dom 𝑂𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂)
4139, 40sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂)
4241sselda 3982 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏𝑎) → 𝑏 ∈ dom 𝑂)
43 pm5.5 361 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ dom 𝑂 → ((𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ (𝑂𝑏)𝑅𝑁))
4442, 43syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏𝑎) → ((𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ (𝑂𝑏)𝑅𝑁))
4544ralbidva 3175 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁))
46 eldifn 4127 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (𝐴 ∖ ran 𝑂) → ¬ 𝑁 ∈ ran 𝑂)
4746ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ 𝑁 ∈ ran 𝑂)
489ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
4948ffnd 6718 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂 Fn (𝑇 ∩ dom 𝐹))
50 simprl 769 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ∈ dom 𝑂)
5148fdmd 6728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → dom 𝑂 = (𝑇 ∩ dom 𝐹))
5250, 51eleqtrd 2835 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ∈ (𝑇 ∩ dom 𝐹))
53 fnfvelrn 7082 . . . . . . . . . . . . . . . . . . . 20 ((𝑂 Fn (𝑇 ∩ dom 𝐹) ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝑂𝑎) ∈ ran 𝑂)
5449, 52, 53syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ ran 𝑂)
55 eleq1 2821 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑎) = 𝑁 → ((𝑂𝑎) ∈ ran 𝑂𝑁 ∈ ran 𝑂))
5654, 55syl5ibcom 244 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎) = 𝑁𝑁 ∈ ran 𝑂))
5747, 56mtod 197 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ (𝑂𝑎) = 𝑁)
58 breq1 5151 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑁 → (𝑢𝑅(𝑂𝑎) ↔ 𝑁𝑅(𝑂𝑎)))
5958notbid 317 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑁 → (¬ 𝑢𝑅(𝑂𝑎) ↔ ¬ 𝑁𝑅(𝑂𝑎)))
602, 3, 4, 5, 6, 7, 8ordtypelem1 9515 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑂 = (𝐹𝑇))
6160ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂 = (𝐹𝑇))
6261fveq1d 6893 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) = ((𝐹𝑇)‘𝑎))
6352elin1d 4198 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎𝑇)
6463fvresd 6911 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝐹𝑇)‘𝑎) = (𝐹𝑎))
6562, 64eqtrd 2772 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) = (𝐹𝑎))
66 simpll 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝜑)
672, 3, 4, 5, 6, 7, 8ordtypelem3 9517 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
6866, 52, 67syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
6965, 68eqeltrd 2833 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
70 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = (𝑂𝑎) → (𝑢𝑅𝑣𝑢𝑅(𝑂𝑎)))
7170notbid 317 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (𝑂𝑎) → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑢𝑅(𝑂𝑎)))
7271ralbidv 3177 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑂𝑎) → (∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎)))
7372elrab 3683 . . . . . . . . . . . . . . . . . . . 20 ((𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ↔ ((𝑂𝑎) ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∧ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎)))
7473simprbi 497 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} → ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎))
7569, 74syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎))
76 breq2 5152 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑁 → (𝑗𝑅𝑤𝑗𝑅𝑁))
7776ralbidv 3177 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑁 → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁))
78 eldifi 4126 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (𝐴 ∖ ran 𝑂) → 𝑁𝐴)
7978ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑁𝐴)
80 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)
8141adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝑂)
8248, 81fssdmd 6736 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ (𝑇 ∩ dom 𝐹))
8382, 12sstrdi 3994 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎𝑇)
84 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑂 = (𝐹𝑇) → (𝑂𝑏) = ((𝐹𝑇)‘𝑏))
85 ssel2 3977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎𝑇𝑏𝑎) → 𝑏𝑇)
8685fvresd 6911 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑇𝑏𝑎) → ((𝐹𝑇)‘𝑏) = (𝐹𝑏))
8784, 86sylan9eq 2792 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑂 = (𝐹𝑇) ∧ (𝑎𝑇𝑏𝑎)) → (𝑂𝑏) = (𝐹𝑏))
8887anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) ∧ 𝑏𝑎) → (𝑂𝑏) = (𝐹𝑏))
8988breq1d 5158 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) ∧ 𝑏𝑎) → ((𝑂𝑏)𝑅𝑁 ↔ (𝐹𝑏)𝑅𝑁))
9089ralbidva 3175 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
9161, 83, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
9280, 91mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁)
9331simpli 484 . . . . . . . . . . . . . . . . . . . . . 22 Fun 𝐹
94 funfn 6578 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐹𝐹 Fn dom 𝐹)
9593, 94mpbi 229 . . . . . . . . . . . . . . . . . . . . 21 𝐹 Fn dom 𝐹
96 inss2 4229 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∩ dom 𝐹) ⊆ dom 𝐹
9782, 96sstrdi 3994 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝐹)
98 breq1 5151 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = (𝐹𝑏) → (𝑗𝑅𝑁 ↔ (𝐹𝑏)𝑅𝑁))
9998ralima 7242 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn dom 𝐹𝑎 ⊆ dom 𝐹) → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
10095, 97, 99sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
10192, 100mpbird 256 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁)
10277, 79, 101elrabd 3685 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑁 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤})
10359, 75, 102rspcdva 3613 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ 𝑁𝑅(𝑂𝑎))
104 weso 5667 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 We 𝐴𝑅 Or 𝐴)
1057, 104syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 Or 𝐴)
106105ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑅 Or 𝐴)
10748, 52ffvelcdmd 7087 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ 𝐴)
108 sotric 5616 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐴 ∧ ((𝑂𝑎) ∈ 𝐴𝑁𝐴)) → ((𝑂𝑎)𝑅𝑁 ↔ ¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎))))
109106, 107, 79, 108syl12anc 835 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎)𝑅𝑁 ↔ ¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎))))
110 ioran 982 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎)) ↔ (¬ (𝑂𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂𝑎)))
111109, 110bitrdi 286 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎)𝑅𝑁 ↔ (¬ (𝑂𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂𝑎))))
11257, 103, 111mpbir2and 711 . . . . . . . . . . . . . . . 16 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎)𝑅𝑁)
113112expr 457 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 → (𝑂𝑎)𝑅𝑁))
11445, 113sylbid 239 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑂𝑎)𝑅𝑁))
115114ex 413 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑂𝑎)𝑅𝑁)))
116115com23 86 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)))
117116a2i 14 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)))
118117a1i 11 . . . . . . . . . 10 (𝑎 ∈ On → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁))))
11930, 118biimtrid 241 . . . . . . . . 9 (𝑎 ∈ On → (∀𝑏𝑎 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁))))
12024, 29, 119tfis3 7849 . . . . . . . 8 (𝑀 ∈ On → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁)))
121120com3l 89 . . . . . . 7 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑀 ∈ On → (𝑂𝑀)𝑅𝑁)))
12219, 121mpdd 43 . . . . . 6 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
1231, 122sylan2br 595 . . . . 5 ((𝜑 ∧ (𝑁𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
124123anassrs 468 . . . 4 (((𝜑𝑁𝐴) ∧ ¬ 𝑁 ∈ ran 𝑂) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
125124impancom 452 . . 3 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → (¬ 𝑁 ∈ ran 𝑂 → (𝑂𝑀)𝑅𝑁))
126125orrd 861 . 2 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ ran 𝑂 ∨ (𝑂𝑀)𝑅𝑁))
127126orcomd 869 1 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂𝑀)𝑅𝑁𝑁 ∈ ran 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  cdif 3945  cin 3947  wss 3948   class class class wbr 5148  cmpt 5231   Or wor 5587   Se wse 5629   We wwe 5630  dom cdm 5676  ran crn 5677  cres 5678  cima 5679  Ord word 6363  Oncon0 6364  Lim wlim 6365  Fun wfun 6537   Fn wfn 6538  wf 6539  cfv 6543  crio 7366  recscrecs 8372  OrdIsocoi 9506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-oi 9507
This theorem is referenced by:  ordtypelem9  9523  ordtypelem10  9524  oiiniseg  9530
  Copyright terms: Public domain W3C validator