Step | Hyp | Ref
| Expression |
1 | | eldif 3897 |
. . . . . 6
⊢ (𝑁 ∈ (𝐴 ∖ ran 𝑂) ↔ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂)) |
2 | | ordtypelem.1 |
. . . . . . . . . . . 12
⊢ 𝐹 = recs(𝐺) |
3 | | ordtypelem.2 |
. . . . . . . . . . . 12
⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
4 | | ordtypelem.3 |
. . . . . . . . . . . 12
⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
5 | | ordtypelem.5 |
. . . . . . . . . . . 12
⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
6 | | ordtypelem.6 |
. . . . . . . . . . . 12
⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
7 | | ordtypelem.7 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 We 𝐴) |
8 | | ordtypelem.8 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 Se 𝐴) |
9 | 2, 3, 4, 5, 6, 7, 8 | ordtypelem4 9280 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
10 | 9 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
11 | 10 | fdmd 6611 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
12 | | inss1 4162 |
. . . . . . . . . 10
⊢ (𝑇 ∩ dom 𝐹) ⊆ 𝑇 |
13 | 2, 3, 4, 5, 6, 7, 8 | ordtypelem2 9278 |
. . . . . . . . . . . 12
⊢ (𝜑 → Ord 𝑇) |
14 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord 𝑇) |
15 | | ordsson 7633 |
. . . . . . . . . . 11
⊢ (Ord
𝑇 → 𝑇 ⊆ On) |
16 | 14, 15 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑇 ⊆ On) |
17 | 12, 16 | sstrid 3932 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑇 ∩ dom 𝐹) ⊆ On) |
18 | 11, 17 | eqsstrd 3959 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 ⊆ On) |
19 | 18 | sseld 3920 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → 𝑀 ∈ On)) |
20 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (𝑎 ∈ dom 𝑂 ↔ 𝑏 ∈ dom 𝑂)) |
21 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (𝑂‘𝑎) = (𝑂‘𝑏)) |
22 | 21 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → ((𝑂‘𝑎)𝑅𝑁 ↔ (𝑂‘𝑏)𝑅𝑁)) |
23 | 20, 22 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → ((𝑎 ∈ dom 𝑂 → (𝑂‘𝑎)𝑅𝑁) ↔ (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁))) |
24 | 23 | imbi2d 341 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂‘𝑎)𝑅𝑁)) ↔ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁)))) |
25 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑀 → (𝑎 ∈ dom 𝑂 ↔ 𝑀 ∈ dom 𝑂)) |
26 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑀 → (𝑂‘𝑎) = (𝑂‘𝑀)) |
27 | 26 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑀 → ((𝑂‘𝑎)𝑅𝑁 ↔ (𝑂‘𝑀)𝑅𝑁)) |
28 | 25, 27 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑀 → ((𝑎 ∈ dom 𝑂 → (𝑂‘𝑎)𝑅𝑁) ↔ (𝑀 ∈ dom 𝑂 → (𝑂‘𝑀)𝑅𝑁))) |
29 | 28 | imbi2d 341 |
. . . . . . . . 9
⊢ (𝑎 = 𝑀 → (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂‘𝑎)𝑅𝑁)) ↔ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂‘𝑀)𝑅𝑁)))) |
30 | | r19.21v 3113 |
. . . . . . . . . 10
⊢
(∀𝑏 ∈
𝑎 ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁)) ↔ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏 ∈ 𝑎 (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁))) |
31 | 2 | tfr1a 8225 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Fun
𝐹 ∧ Lim dom 𝐹) |
32 | 31 | simpri 486 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ Lim dom
𝐹 |
33 | | limord 6325 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Lim dom
𝐹 → Ord dom 𝐹) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ Ord dom
𝐹 |
35 | | ordin 6296 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Ord
𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹)) |
36 | 14, 34, 35 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord (𝑇 ∩ dom 𝐹)) |
37 | | ordeq 6273 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (dom
𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) |
38 | 11, 37 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) |
39 | 36, 38 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord dom 𝑂) |
40 | | ordelss 6282 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Ord dom
𝑂 ∧ 𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂) |
41 | 39, 40 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂) |
42 | 41 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏 ∈ 𝑎) → 𝑏 ∈ dom 𝑂) |
43 | | pm5.5 362 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ dom 𝑂 → ((𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁) ↔ (𝑂‘𝑏)𝑅𝑁)) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏 ∈ 𝑎) → ((𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁) ↔ (𝑂‘𝑏)𝑅𝑁)) |
45 | 44 | ralbidva 3111 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏 ∈ 𝑎 (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁) ↔ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) |
46 | | eldifn 4062 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ (𝐴 ∖ ran 𝑂) → ¬ 𝑁 ∈ ran 𝑂) |
47 | 46 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ¬ 𝑁 ∈ ran 𝑂) |
48 | 9 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
49 | 48 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑂 Fn (𝑇 ∩ dom 𝐹)) |
50 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑎 ∈ dom 𝑂) |
51 | 48 | fdmd 6611 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
52 | 50, 51 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑎 ∈ (𝑇 ∩ dom 𝐹)) |
53 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑂 Fn (𝑇 ∩ dom 𝐹) ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝑂‘𝑎) ∈ ran 𝑂) |
54 | 49, 52, 53 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → (𝑂‘𝑎) ∈ ran 𝑂) |
55 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑂‘𝑎) = 𝑁 → ((𝑂‘𝑎) ∈ ran 𝑂 ↔ 𝑁 ∈ ran 𝑂)) |
56 | 54, 55 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ((𝑂‘𝑎) = 𝑁 → 𝑁 ∈ ran 𝑂)) |
57 | 47, 56 | mtod 197 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ¬ (𝑂‘𝑎) = 𝑁) |
58 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = 𝑁 → (𝑢𝑅(𝑂‘𝑎) ↔ 𝑁𝑅(𝑂‘𝑎))) |
59 | 58 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = 𝑁 → (¬ 𝑢𝑅(𝑂‘𝑎) ↔ ¬ 𝑁𝑅(𝑂‘𝑎))) |
60 | 2, 3, 4, 5, 6, 7, 8 | ordtypelem1 9277 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
61 | 60 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑂 = (𝐹 ↾ 𝑇)) |
62 | 61 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → (𝑂‘𝑎) = ((𝐹 ↾ 𝑇)‘𝑎)) |
63 | 52 | elin1d 4132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑎 ∈ 𝑇) |
64 | 63 | fvresd 6794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ((𝐹 ↾ 𝑇)‘𝑎) = (𝐹‘𝑎)) |
65 | 62, 64 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → (𝑂‘𝑎) = (𝐹‘𝑎)) |
66 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝜑) |
67 | 2, 3, 4, 5, 6, 7, 8 | ordtypelem3 9279 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑎) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) |
68 | 66, 52, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → (𝐹‘𝑎) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) |
69 | 65, 68 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → (𝑂‘𝑎) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) |
70 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = (𝑂‘𝑎) → (𝑢𝑅𝑣 ↔ 𝑢𝑅(𝑂‘𝑎))) |
71 | 70 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = (𝑂‘𝑎) → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑢𝑅(𝑂‘𝑎))) |
72 | 71 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = (𝑂‘𝑎) → (∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂‘𝑎))) |
73 | 72 | elrab 3624 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑂‘𝑎) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ↔ ((𝑂‘𝑎) ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ∧ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂‘𝑎))) |
74 | 73 | simprbi 497 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑂‘𝑎) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} → ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂‘𝑎)) |
75 | 69, 74 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂‘𝑎)) |
76 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑁 → (𝑗𝑅𝑤 ↔ 𝑗𝑅𝑁)) |
77 | 76 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑁 → (∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑁)) |
78 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ (𝐴 ∖ ran 𝑂) → 𝑁 ∈ 𝐴) |
79 | 78 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑁 ∈ 𝐴) |
80 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁) |
81 | 41 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝑂) |
82 | 48, 81 | fssdmd 6619 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑎 ⊆ (𝑇 ∩ dom 𝐹)) |
83 | 82, 12 | sstrdi 3933 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑎 ⊆ 𝑇) |
84 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑂 = (𝐹 ↾ 𝑇) → (𝑂‘𝑏) = ((𝐹 ↾ 𝑇)‘𝑏)) |
85 | | ssel2 3916 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ⊆ 𝑇 ∧ 𝑏 ∈ 𝑎) → 𝑏 ∈ 𝑇) |
86 | 85 | fvresd 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ⊆ 𝑇 ∧ 𝑏 ∈ 𝑎) → ((𝐹 ↾ 𝑇)‘𝑏) = (𝐹‘𝑏)) |
87 | 84, 86 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑂 = (𝐹 ↾ 𝑇) ∧ (𝑎 ⊆ 𝑇 ∧ 𝑏 ∈ 𝑎)) → (𝑂‘𝑏) = (𝐹‘𝑏)) |
88 | 87 | anassrs 468 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑂 = (𝐹 ↾ 𝑇) ∧ 𝑎 ⊆ 𝑇) ∧ 𝑏 ∈ 𝑎) → (𝑂‘𝑏) = (𝐹‘𝑏)) |
89 | 88 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑂 = (𝐹 ↾ 𝑇) ∧ 𝑎 ⊆ 𝑇) ∧ 𝑏 ∈ 𝑎) → ((𝑂‘𝑏)𝑅𝑁 ↔ (𝐹‘𝑏)𝑅𝑁)) |
90 | 89 | ralbidva 3111 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑂 = (𝐹 ↾ 𝑇) ∧ 𝑎 ⊆ 𝑇) → (∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁 ↔ ∀𝑏 ∈ 𝑎 (𝐹‘𝑏)𝑅𝑁)) |
91 | 61, 83, 90 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → (∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁 ↔ ∀𝑏 ∈ 𝑎 (𝐹‘𝑏)𝑅𝑁)) |
92 | 80, 91 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ∀𝑏 ∈ 𝑎 (𝐹‘𝑏)𝑅𝑁) |
93 | 31 | simpli 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ Fun 𝐹 |
94 | | funfn 6464 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
95 | 93, 94 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐹 Fn dom 𝐹 |
96 | | inss2 4163 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑇 ∩ dom 𝐹) ⊆ dom 𝐹 |
97 | 82, 96 | sstrdi 3933 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝐹) |
98 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = (𝐹‘𝑏) → (𝑗𝑅𝑁 ↔ (𝐹‘𝑏)𝑅𝑁)) |
99 | 98 | ralima 7114 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑎 ⊆ dom 𝐹) → (∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑁 ↔ ∀𝑏 ∈ 𝑎 (𝐹‘𝑏)𝑅𝑁)) |
100 | 95, 97, 99 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → (∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑁 ↔ ∀𝑏 ∈ 𝑎 (𝐹‘𝑏)𝑅𝑁)) |
101 | 92, 100 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑁) |
102 | 77, 79, 101 | elrabd 3626 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑁 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤}) |
103 | 59, 75, 102 | rspcdva 3562 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ¬ 𝑁𝑅(𝑂‘𝑎)) |
104 | | weso 5580 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
105 | 7, 104 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑅 Or 𝐴) |
106 | 105 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → 𝑅 Or 𝐴) |
107 | 48, 52 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → (𝑂‘𝑎) ∈ 𝐴) |
108 | | sotric 5531 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 Or 𝐴 ∧ ((𝑂‘𝑎) ∈ 𝐴 ∧ 𝑁 ∈ 𝐴)) → ((𝑂‘𝑎)𝑅𝑁 ↔ ¬ ((𝑂‘𝑎) = 𝑁 ∨ 𝑁𝑅(𝑂‘𝑎)))) |
109 | 106, 107,
79, 108 | syl12anc 834 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ((𝑂‘𝑎)𝑅𝑁 ↔ ¬ ((𝑂‘𝑎) = 𝑁 ∨ 𝑁𝑅(𝑂‘𝑎)))) |
110 | | ioran 981 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑂‘𝑎) = 𝑁 ∨ 𝑁𝑅(𝑂‘𝑎)) ↔ (¬ (𝑂‘𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂‘𝑎))) |
111 | 109, 110 | bitrdi 287 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → ((𝑂‘𝑎)𝑅𝑁 ↔ (¬ (𝑂‘𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂‘𝑎)))) |
112 | 57, 103, 111 | mpbir2and 710 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁)) → (𝑂‘𝑎)𝑅𝑁) |
113 | 112 | expr 457 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏 ∈ 𝑎 (𝑂‘𝑏)𝑅𝑁 → (𝑂‘𝑎)𝑅𝑁)) |
114 | 45, 113 | sylbid 239 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏 ∈ 𝑎 (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁) → (𝑂‘𝑎)𝑅𝑁)) |
115 | 114 | ex 413 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (∀𝑏 ∈ 𝑎 (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁) → (𝑂‘𝑎)𝑅𝑁))) |
116 | 115 | com23 86 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (∀𝑏 ∈ 𝑎 (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁) → (𝑎 ∈ dom 𝑂 → (𝑂‘𝑎)𝑅𝑁))) |
117 | 116 | a2i 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏 ∈ 𝑎 (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁)) → ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂‘𝑎)𝑅𝑁))) |
118 | 117 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑎 ∈ On → (((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏 ∈ 𝑎 (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁)) → ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂‘𝑎)𝑅𝑁)))) |
119 | 30, 118 | syl5bi 241 |
. . . . . . . . 9
⊢ (𝑎 ∈ On → (∀𝑏 ∈ 𝑎 ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂‘𝑏)𝑅𝑁)) → ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂‘𝑎)𝑅𝑁)))) |
120 | 24, 29, 119 | tfis3 7704 |
. . . . . . . 8
⊢ (𝑀 ∈ On → ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂‘𝑀)𝑅𝑁))) |
121 | 120 | com3l 89 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑀 ∈ On → (𝑂‘𝑀)𝑅𝑁))) |
122 | 19, 121 | mpdd 43 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂‘𝑀)𝑅𝑁)) |
123 | 1, 122 | sylan2br 595 |
. . . . 5
⊢ ((𝜑 ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂‘𝑀)𝑅𝑁)) |
124 | 123 | anassrs 468 |
. . . 4
⊢ (((𝜑 ∧ 𝑁 ∈ 𝐴) ∧ ¬ 𝑁 ∈ ran 𝑂) → (𝑀 ∈ dom 𝑂 → (𝑂‘𝑀)𝑅𝑁)) |
125 | 124 | impancom 452 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ 𝐴) ∧ 𝑀 ∈ dom 𝑂) → (¬ 𝑁 ∈ ran 𝑂 → (𝑂‘𝑀)𝑅𝑁)) |
126 | 125 | orrd 860 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ 𝐴) ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ ran 𝑂 ∨ (𝑂‘𝑀)𝑅𝑁)) |
127 | 126 | orcomd 868 |
1
⊢ (((𝜑 ∧ 𝑁 ∈ 𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝑂)) |