MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem7 Structured version   Visualization version   GIF version

Theorem ordtypelem7 9359
Description: Lemma for ordtype 9367. ran 𝑂 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem7 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂𝑀)𝑅𝑁𝑁 ∈ ran 𝑂))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑀   𝑗,𝑁,𝑢,𝑤   𝑅,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑁(𝑥,𝑧,𝑣,𝑡,)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem7
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3906 . . . . . 6 (𝑁 ∈ (𝐴 ∖ ran 𝑂) ↔ (𝑁𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂))
2 ordtypelem.1 . . . . . . . . . . . 12 𝐹 = recs(𝐺)
3 ordtypelem.2 . . . . . . . . . . . 12 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
4 ordtypelem.3 . . . . . . . . . . . 12 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
5 ordtypelem.5 . . . . . . . . . . . 12 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
6 ordtypelem.6 . . . . . . . . . . . 12 𝑂 = OrdIso(𝑅, 𝐴)
7 ordtypelem.7 . . . . . . . . . . . 12 (𝜑𝑅 We 𝐴)
8 ordtypelem.8 . . . . . . . . . . . 12 (𝜑𝑅 Se 𝐴)
92, 3, 4, 5, 6, 7, 8ordtypelem4 9356 . . . . . . . . . . 11 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109adantr 481 . . . . . . . . . 10 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
1110fdmd 6648 . . . . . . . . 9 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 = (𝑇 ∩ dom 𝐹))
12 inss1 4172 . . . . . . . . . 10 (𝑇 ∩ dom 𝐹) ⊆ 𝑇
132, 3, 4, 5, 6, 7, 8ordtypelem2 9354 . . . . . . . . . . . 12 (𝜑 → Ord 𝑇)
1413adantr 481 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord 𝑇)
15 ordsson 7674 . . . . . . . . . . 11 (Ord 𝑇𝑇 ⊆ On)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑇 ⊆ On)
1712, 16sstrid 3941 . . . . . . . . 9 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑇 ∩ dom 𝐹) ⊆ On)
1811, 17eqsstrd 3968 . . . . . . . 8 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 ⊆ On)
1918sseld 3929 . . . . . . 7 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂𝑀 ∈ On))
20 eleq1 2824 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂))
21 fveq2 6811 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑂𝑎) = (𝑂𝑏))
2221breq1d 5096 . . . . . . . . . . 11 (𝑎 = 𝑏 → ((𝑂𝑎)𝑅𝑁 ↔ (𝑂𝑏)𝑅𝑁))
2320, 22imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁) ↔ (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)))
2423imbi2d 340 . . . . . . . . 9 (𝑎 = 𝑏 → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁))))
25 eleq1 2824 . . . . . . . . . . 11 (𝑎 = 𝑀 → (𝑎 ∈ dom 𝑂𝑀 ∈ dom 𝑂))
26 fveq2 6811 . . . . . . . . . . . 12 (𝑎 = 𝑀 → (𝑂𝑎) = (𝑂𝑀))
2726breq1d 5096 . . . . . . . . . . 11 (𝑎 = 𝑀 → ((𝑂𝑎)𝑅𝑁 ↔ (𝑂𝑀)𝑅𝑁))
2825, 27imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑀 → ((𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁) ↔ (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁)))
2928imbi2d 340 . . . . . . . . 9 (𝑎 = 𝑀 → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))))
30 r19.21v 3172 . . . . . . . . . 10 (∀𝑏𝑎 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)))
312tfr1a 8273 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐹 ∧ Lim dom 𝐹)
3231simpri 486 . . . . . . . . . . . . . . . . . . . . . 22 Lim dom 𝐹
33 limord 6347 . . . . . . . . . . . . . . . . . . . . . 22 (Lim dom 𝐹 → Ord dom 𝐹)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 Ord dom 𝐹
35 ordin 6318 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹))
3614, 34, 35sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord (𝑇 ∩ dom 𝐹))
37 ordeq 6295 . . . . . . . . . . . . . . . . . . . . 21 (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
3811, 37syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
3936, 38mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord dom 𝑂)
40 ordelss 6304 . . . . . . . . . . . . . . . . . . 19 ((Ord dom 𝑂𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂)
4139, 40sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂)
4241sselda 3930 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏𝑎) → 𝑏 ∈ dom 𝑂)
43 pm5.5 361 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ dom 𝑂 → ((𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ (𝑂𝑏)𝑅𝑁))
4442, 43syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏𝑎) → ((𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ (𝑂𝑏)𝑅𝑁))
4544ralbidva 3168 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁))
46 eldifn 4072 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (𝐴 ∖ ran 𝑂) → ¬ 𝑁 ∈ ran 𝑂)
4746ad2antlr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ 𝑁 ∈ ran 𝑂)
489ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
4948ffnd 6638 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂 Fn (𝑇 ∩ dom 𝐹))
50 simprl 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ∈ dom 𝑂)
5148fdmd 6648 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → dom 𝑂 = (𝑇 ∩ dom 𝐹))
5250, 51eleqtrd 2839 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ∈ (𝑇 ∩ dom 𝐹))
53 fnfvelrn 6997 . . . . . . . . . . . . . . . . . . . 20 ((𝑂 Fn (𝑇 ∩ dom 𝐹) ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝑂𝑎) ∈ ran 𝑂)
5449, 52, 53syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ ran 𝑂)
55 eleq1 2824 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑎) = 𝑁 → ((𝑂𝑎) ∈ ran 𝑂𝑁 ∈ ran 𝑂))
5654, 55syl5ibcom 244 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎) = 𝑁𝑁 ∈ ran 𝑂))
5747, 56mtod 197 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ (𝑂𝑎) = 𝑁)
58 breq1 5089 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑁 → (𝑢𝑅(𝑂𝑎) ↔ 𝑁𝑅(𝑂𝑎)))
5958notbid 317 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑁 → (¬ 𝑢𝑅(𝑂𝑎) ↔ ¬ 𝑁𝑅(𝑂𝑎)))
602, 3, 4, 5, 6, 7, 8ordtypelem1 9353 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑂 = (𝐹𝑇))
6160ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂 = (𝐹𝑇))
6261fveq1d 6813 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) = ((𝐹𝑇)‘𝑎))
6352elin1d 4142 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎𝑇)
6463fvresd 6831 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝐹𝑇)‘𝑎) = (𝐹𝑎))
6562, 64eqtrd 2776 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) = (𝐹𝑎))
66 simpll 764 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝜑)
672, 3, 4, 5, 6, 7, 8ordtypelem3 9355 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
6866, 52, 67syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
6965, 68eqeltrd 2837 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
70 breq2 5090 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = (𝑂𝑎) → (𝑢𝑅𝑣𝑢𝑅(𝑂𝑎)))
7170notbid 317 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (𝑂𝑎) → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑢𝑅(𝑂𝑎)))
7271ralbidv 3170 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑂𝑎) → (∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎)))
7372elrab 3633 . . . . . . . . . . . . . . . . . . . 20 ((𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ↔ ((𝑂𝑎) ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∧ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎)))
7473simprbi 497 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} → ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎))
7569, 74syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎))
76 breq2 5090 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑁 → (𝑗𝑅𝑤𝑗𝑅𝑁))
7776ralbidv 3170 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑁 → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁))
78 eldifi 4071 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (𝐴 ∖ ran 𝑂) → 𝑁𝐴)
7978ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑁𝐴)
80 simprr 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)
8141adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝑂)
8248, 81fssdmd 6656 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ (𝑇 ∩ dom 𝐹))
8382, 12sstrdi 3942 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎𝑇)
84 fveq1 6810 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑂 = (𝐹𝑇) → (𝑂𝑏) = ((𝐹𝑇)‘𝑏))
85 ssel2 3925 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎𝑇𝑏𝑎) → 𝑏𝑇)
8685fvresd 6831 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑇𝑏𝑎) → ((𝐹𝑇)‘𝑏) = (𝐹𝑏))
8784, 86sylan9eq 2796 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑂 = (𝐹𝑇) ∧ (𝑎𝑇𝑏𝑎)) → (𝑂𝑏) = (𝐹𝑏))
8887anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) ∧ 𝑏𝑎) → (𝑂𝑏) = (𝐹𝑏))
8988breq1d 5096 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) ∧ 𝑏𝑎) → ((𝑂𝑏)𝑅𝑁 ↔ (𝐹𝑏)𝑅𝑁))
9089ralbidva 3168 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
9161, 83, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
9280, 91mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁)
9331simpli 484 . . . . . . . . . . . . . . . . . . . . . 22 Fun 𝐹
94 funfn 6500 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐹𝐹 Fn dom 𝐹)
9593, 94mpbi 229 . . . . . . . . . . . . . . . . . . . . 21 𝐹 Fn dom 𝐹
96 inss2 4173 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∩ dom 𝐹) ⊆ dom 𝐹
9782, 96sstrdi 3942 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝐹)
98 breq1 5089 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = (𝐹𝑏) → (𝑗𝑅𝑁 ↔ (𝐹𝑏)𝑅𝑁))
9998ralima 7153 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn dom 𝐹𝑎 ⊆ dom 𝐹) → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
10095, 97, 99sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
10192, 100mpbird 256 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁)
10277, 79, 101elrabd 3635 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑁 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤})
10359, 75, 102rspcdva 3570 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ 𝑁𝑅(𝑂𝑎))
104 weso 5598 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 We 𝐴𝑅 Or 𝐴)
1057, 104syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 Or 𝐴)
106105ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑅 Or 𝐴)
10748, 52ffvelcdmd 7001 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ 𝐴)
108 sotric 5548 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐴 ∧ ((𝑂𝑎) ∈ 𝐴𝑁𝐴)) → ((𝑂𝑎)𝑅𝑁 ↔ ¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎))))
109106, 107, 79, 108syl12anc 834 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎)𝑅𝑁 ↔ ¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎))))
110 ioran 981 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎)) ↔ (¬ (𝑂𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂𝑎)))
111109, 110bitrdi 286 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎)𝑅𝑁 ↔ (¬ (𝑂𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂𝑎))))
11257, 103, 111mpbir2and 710 . . . . . . . . . . . . . . . 16 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎)𝑅𝑁)
113112expr 457 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 → (𝑂𝑎)𝑅𝑁))
11445, 113sylbid 239 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑂𝑎)𝑅𝑁))
115114ex 413 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑂𝑎)𝑅𝑁)))
116115com23 86 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)))
117116a2i 14 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)))
118117a1i 11 . . . . . . . . . 10 (𝑎 ∈ On → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁))))
11930, 118biimtrid 241 . . . . . . . . 9 (𝑎 ∈ On → (∀𝑏𝑎 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁))))
12024, 29, 119tfis3 7750 . . . . . . . 8 (𝑀 ∈ On → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁)))
121120com3l 89 . . . . . . 7 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑀 ∈ On → (𝑂𝑀)𝑅𝑁)))
12219, 121mpdd 43 . . . . . 6 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
1231, 122sylan2br 595 . . . . 5 ((𝜑 ∧ (𝑁𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
124123anassrs 468 . . . 4 (((𝜑𝑁𝐴) ∧ ¬ 𝑁 ∈ ran 𝑂) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
125124impancom 452 . . 3 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → (¬ 𝑁 ∈ ran 𝑂 → (𝑂𝑀)𝑅𝑁))
126125orrd 860 . 2 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ ran 𝑂 ∨ (𝑂𝑀)𝑅𝑁))
127126orcomd 868 1 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂𝑀)𝑅𝑁𝑁 ∈ ran 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wral 3061  wrex 3070  {crab 3403  Vcvv 3440  cdif 3893  cin 3895  wss 3896   class class class wbr 5086  cmpt 5169   Or wor 5519   Se wse 5560   We wwe 5561  dom cdm 5607  ran crn 5608  cres 5609  cima 5610  Ord word 6287  Oncon0 6288  Lim wlim 6289  Fun wfun 6459   Fn wfn 6460  wf 6461  cfv 6465  crio 7272  recscrecs 8249  OrdIsocoi 9344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-oi 9345
This theorem is referenced by:  ordtypelem9  9361  ordtypelem10  9362  oiiniseg  9368
  Copyright terms: Public domain W3C validator