MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem7 Structured version   Visualization version   GIF version

Theorem ordtypelem7 9484
Description: Lemma for ordtype 9492. ran 𝑂 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem7 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂𝑀)𝑅𝑁𝑁 ∈ ran 𝑂))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑀   𝑗,𝑁,𝑢,𝑤   𝑅,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑁(𝑥,𝑧,𝑣,𝑡,)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem7
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3927 . . . . . 6 (𝑁 ∈ (𝐴 ∖ ran 𝑂) ↔ (𝑁𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂))
2 ordtypelem.1 . . . . . . . . . . . 12 𝐹 = recs(𝐺)
3 ordtypelem.2 . . . . . . . . . . . 12 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
4 ordtypelem.3 . . . . . . . . . . . 12 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
5 ordtypelem.5 . . . . . . . . . . . 12 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
6 ordtypelem.6 . . . . . . . . . . . 12 𝑂 = OrdIso(𝑅, 𝐴)
7 ordtypelem.7 . . . . . . . . . . . 12 (𝜑𝑅 We 𝐴)
8 ordtypelem.8 . . . . . . . . . . . 12 (𝜑𝑅 Se 𝐴)
92, 3, 4, 5, 6, 7, 8ordtypelem4 9481 . . . . . . . . . . 11 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109adantr 480 . . . . . . . . . 10 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
1110fdmd 6701 . . . . . . . . 9 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 = (𝑇 ∩ dom 𝐹))
12 inss1 4203 . . . . . . . . . 10 (𝑇 ∩ dom 𝐹) ⊆ 𝑇
132, 3, 4, 5, 6, 7, 8ordtypelem2 9479 . . . . . . . . . . . 12 (𝜑 → Ord 𝑇)
1413adantr 480 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord 𝑇)
15 ordsson 7762 . . . . . . . . . . 11 (Ord 𝑇𝑇 ⊆ On)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → 𝑇 ⊆ On)
1712, 16sstrid 3961 . . . . . . . . 9 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑇 ∩ dom 𝐹) ⊆ On)
1811, 17eqsstrd 3984 . . . . . . . 8 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → dom 𝑂 ⊆ On)
1918sseld 3948 . . . . . . 7 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂𝑀 ∈ On))
20 eleq1 2817 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂))
21 fveq2 6861 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑂𝑎) = (𝑂𝑏))
2221breq1d 5120 . . . . . . . . . . 11 (𝑎 = 𝑏 → ((𝑂𝑎)𝑅𝑁 ↔ (𝑂𝑏)𝑅𝑁))
2320, 22imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁) ↔ (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)))
2423imbi2d 340 . . . . . . . . 9 (𝑎 = 𝑏 → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁))))
25 eleq1 2817 . . . . . . . . . . 11 (𝑎 = 𝑀 → (𝑎 ∈ dom 𝑂𝑀 ∈ dom 𝑂))
26 fveq2 6861 . . . . . . . . . . . 12 (𝑎 = 𝑀 → (𝑂𝑎) = (𝑂𝑀))
2726breq1d 5120 . . . . . . . . . . 11 (𝑎 = 𝑀 → ((𝑂𝑎)𝑅𝑁 ↔ (𝑂𝑀)𝑅𝑁))
2825, 27imbi12d 344 . . . . . . . . . 10 (𝑎 = 𝑀 → ((𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁) ↔ (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁)))
2928imbi2d 340 . . . . . . . . 9 (𝑎 = 𝑀 → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))))
30 r19.21v 3159 . . . . . . . . . 10 (∀𝑏𝑎 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) ↔ ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)))
312tfr1a 8365 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐹 ∧ Lim dom 𝐹)
3231simpri 485 . . . . . . . . . . . . . . . . . . . . . 22 Lim dom 𝐹
33 limord 6396 . . . . . . . . . . . . . . . . . . . . . 22 (Lim dom 𝐹 → Ord dom 𝐹)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 Ord dom 𝐹
35 ordin 6365 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹))
3614, 34, 35sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord (𝑇 ∩ dom 𝐹))
37 ordeq 6342 . . . . . . . . . . . . . . . . . . . . 21 (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
3811, 37syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
3936, 38mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → Ord dom 𝑂)
40 ordelss 6351 . . . . . . . . . . . . . . . . . . 19 ((Ord dom 𝑂𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂)
4139, 40sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → 𝑎 ⊆ dom 𝑂)
4241sselda 3949 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏𝑎) → 𝑏 ∈ dom 𝑂)
43 pm5.5 361 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ dom 𝑂 → ((𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ (𝑂𝑏)𝑅𝑁))
4442, 43syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) ∧ 𝑏𝑎) → ((𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ (𝑂𝑏)𝑅𝑁))
4544ralbidva 3155 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) ↔ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁))
46 eldifn 4098 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (𝐴 ∖ ran 𝑂) → ¬ 𝑁 ∈ ran 𝑂)
4746ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ 𝑁 ∈ ran 𝑂)
489ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
4948ffnd 6692 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂 Fn (𝑇 ∩ dom 𝐹))
50 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ∈ dom 𝑂)
5148fdmd 6701 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → dom 𝑂 = (𝑇 ∩ dom 𝐹))
5250, 51eleqtrd 2831 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ∈ (𝑇 ∩ dom 𝐹))
53 fnfvelrn 7055 . . . . . . . . . . . . . . . . . . . 20 ((𝑂 Fn (𝑇 ∩ dom 𝐹) ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝑂𝑎) ∈ ran 𝑂)
5449, 52, 53syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ ran 𝑂)
55 eleq1 2817 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑎) = 𝑁 → ((𝑂𝑎) ∈ ran 𝑂𝑁 ∈ ran 𝑂))
5654, 55syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎) = 𝑁𝑁 ∈ ran 𝑂))
5747, 56mtod 198 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ (𝑂𝑎) = 𝑁)
58 breq1 5113 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑁 → (𝑢𝑅(𝑂𝑎) ↔ 𝑁𝑅(𝑂𝑎)))
5958notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑁 → (¬ 𝑢𝑅(𝑂𝑎) ↔ ¬ 𝑁𝑅(𝑂𝑎)))
602, 3, 4, 5, 6, 7, 8ordtypelem1 9478 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑂 = (𝐹𝑇))
6160ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑂 = (𝐹𝑇))
6261fveq1d 6863 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) = ((𝐹𝑇)‘𝑎))
6352elin1d 4170 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎𝑇)
6463fvresd 6881 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝐹𝑇)‘𝑎) = (𝐹𝑎))
6562, 64eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) = (𝐹𝑎))
66 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝜑)
672, 3, 4, 5, 6, 7, 8ordtypelem3 9480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
6866, 52, 67syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
6965, 68eqeltrd 2829 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
70 breq2 5114 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = (𝑂𝑎) → (𝑢𝑅𝑣𝑢𝑅(𝑂𝑎)))
7170notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (𝑂𝑎) → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑢𝑅(𝑂𝑎)))
7271ralbidv 3157 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑂𝑎) → (∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎)))
7372elrab 3662 . . . . . . . . . . . . . . . . . . . 20 ((𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ↔ ((𝑂𝑎) ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∧ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎)))
7473simprbi 496 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} → ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎))
7569, 74syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅(𝑂𝑎))
76 breq2 5114 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑁 → (𝑗𝑅𝑤𝑗𝑅𝑁))
7776ralbidv 3157 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑁 → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁))
78 eldifi 4097 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (𝐴 ∖ ran 𝑂) → 𝑁𝐴)
7978ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑁𝐴)
80 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)
8141adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝑂)
8248, 81fssdmd 6709 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ (𝑇 ∩ dom 𝐹))
8382, 12sstrdi 3962 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎𝑇)
84 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑂 = (𝐹𝑇) → (𝑂𝑏) = ((𝐹𝑇)‘𝑏))
85 ssel2 3944 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎𝑇𝑏𝑎) → 𝑏𝑇)
8685fvresd 6881 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑇𝑏𝑎) → ((𝐹𝑇)‘𝑏) = (𝐹𝑏))
8784, 86sylan9eq 2785 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑂 = (𝐹𝑇) ∧ (𝑎𝑇𝑏𝑎)) → (𝑂𝑏) = (𝐹𝑏))
8887anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) ∧ 𝑏𝑎) → (𝑂𝑏) = (𝐹𝑏))
8988breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) ∧ 𝑏𝑎) → ((𝑂𝑏)𝑅𝑁 ↔ (𝐹𝑏)𝑅𝑁))
9089ralbidva 3155 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑂 = (𝐹𝑇) ∧ 𝑎𝑇) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
9161, 83, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
9280, 91mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁)
9331simpli 483 . . . . . . . . . . . . . . . . . . . . . 22 Fun 𝐹
94 funfn 6549 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐹𝐹 Fn dom 𝐹)
9593, 94mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 𝐹 Fn dom 𝐹
96 inss2 4204 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∩ dom 𝐹) ⊆ dom 𝐹
9782, 96sstrdi 3962 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑎 ⊆ dom 𝐹)
98 breq1 5113 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = (𝐹𝑏) → (𝑗𝑅𝑁 ↔ (𝐹𝑏)𝑅𝑁))
9998ralima 7214 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn dom 𝐹𝑎 ⊆ dom 𝐹) → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
10095, 97, 99sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁 ↔ ∀𝑏𝑎 (𝐹𝑏)𝑅𝑁))
10192, 100mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑁)
10277, 79, 101elrabd 3664 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑁 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤})
10359, 75, 102rspcdva 3592 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ¬ 𝑁𝑅(𝑂𝑎))
104 weso 5632 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 We 𝐴𝑅 Or 𝐴)
1057, 104syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 Or 𝐴)
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → 𝑅 Or 𝐴)
10748, 52ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎) ∈ 𝐴)
108 sotric 5579 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐴 ∧ ((𝑂𝑎) ∈ 𝐴𝑁𝐴)) → ((𝑂𝑎)𝑅𝑁 ↔ ¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎))))
109106, 107, 79, 108syl12anc 836 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎)𝑅𝑁 ↔ ¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎))))
110 ioran 985 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑂𝑎) = 𝑁𝑁𝑅(𝑂𝑎)) ↔ (¬ (𝑂𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂𝑎)))
111109, 110bitrdi 287 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → ((𝑂𝑎)𝑅𝑁 ↔ (¬ (𝑂𝑎) = 𝑁 ∧ ¬ 𝑁𝑅(𝑂𝑎))))
11257, 103, 111mpbir2and 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ (𝑎 ∈ dom 𝑂 ∧ ∀𝑏𝑎 (𝑂𝑏)𝑅𝑁)) → (𝑂𝑎)𝑅𝑁)
113112expr 456 . . . . . . . . . . . . . . 15 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑂𝑏)𝑅𝑁 → (𝑂𝑎)𝑅𝑁))
11445, 113sylbid 240 . . . . . . . . . . . . . 14 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) ∧ 𝑎 ∈ dom 𝑂) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑂𝑎)𝑅𝑁))
115114ex 412 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑂𝑎)𝑅𝑁)))
116115com23 86 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)))
117116a2i 14 . . . . . . . . . . 11 (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁)))
118117a1i 11 . . . . . . . . . 10 (𝑎 ∈ On → (((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → ∀𝑏𝑎 (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁))))
11930, 118biimtrid 242 . . . . . . . . 9 (𝑎 ∈ On → (∀𝑏𝑎 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑏 ∈ dom 𝑂 → (𝑂𝑏)𝑅𝑁)) → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑎 ∈ dom 𝑂 → (𝑂𝑎)𝑅𝑁))))
12024, 29, 119tfis3 7837 . . . . . . . 8 (𝑀 ∈ On → ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁)))
121120com3l 89 . . . . . . 7 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑀 ∈ On → (𝑂𝑀)𝑅𝑁)))
12219, 121mpdd 43 . . . . . 6 ((𝜑𝑁 ∈ (𝐴 ∖ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
1231, 122sylan2br 595 . . . . 5 ((𝜑 ∧ (𝑁𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂)) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
124123anassrs 467 . . . 4 (((𝜑𝑁𝐴) ∧ ¬ 𝑁 ∈ ran 𝑂) → (𝑀 ∈ dom 𝑂 → (𝑂𝑀)𝑅𝑁))
125124impancom 451 . . 3 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → (¬ 𝑁 ∈ ran 𝑂 → (𝑂𝑀)𝑅𝑁))
126125orrd 863 . 2 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ ran 𝑂 ∨ (𝑂𝑀)𝑅𝑁))
127126orcomd 871 1 (((𝜑𝑁𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂𝑀)𝑅𝑁𝑁 ∈ ran 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917   class class class wbr 5110  cmpt 5191   Or wor 5548   Se wse 5592   We wwe 5593  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Ord word 6334  Oncon0 6335  Lim wlim 6336  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  crio 7346  recscrecs 8342  OrdIsocoi 9469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-oi 9470
This theorem is referenced by:  ordtypelem9  9486  ordtypelem10  9487  oiiniseg  9493
  Copyright terms: Public domain W3C validator