| Step | Hyp | Ref
| Expression |
| 1 | | taylth.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 2 | | taylth.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| 3 | | fz1ssfz0 13645 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(0...𝑁) |
| 4 | | taylthlem2.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) |
| 5 | | fzofzp1 13785 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑀 + 1) ∈ (1...𝑁)) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
| 7 | 3, 6 | sselid 3961 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ (0...𝑁)) |
| 8 | | fznn0sub2 13657 |
. . . . . . . . . 10
⊢ ((𝑀 + 1) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
| 10 | | elfznn0 13642 |
. . . . . . . . 9
⊢ ((𝑁 − (𝑀 + 1)) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
| 12 | | dvnfre 25913 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
| 13 | 2, 1, 11, 12 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
| 14 | | reelprrecn 11226 |
. . . . . . . . . . . 12
⊢ ℝ
∈ {ℝ, ℂ} |
| 15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 16 | | cnex 11215 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
| 17 | 16 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
| 18 | | reex 11225 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
| 19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
| 20 | | ax-resscn 11191 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
| 21 | | fss 6727 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝐴⟶ℂ) |
| 22 | 2, 20, 21 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 23 | | elpm2r 8864 |
. . . . . . . . . . . 12
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 24 | 17, 19, 22, 1, 23 | syl22anc 838 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 25 | | dvnbss 25887 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
| 26 | 15, 24, 11, 25 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
| 27 | 2, 26 | fssdmd 6729 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ 𝐴) |
| 28 | | taylth.d |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) = 𝐴) |
| 29 | | dvn2bss 25889 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
| 30 | 15, 24, 9, 29 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
| 31 | 28, 30 | eqsstrrd 3999 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))) |
| 32 | 27, 31 | eqssd 3981 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = 𝐴) |
| 33 | 32 | feq2d 6697 |
. . . . . . 7
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ)) |
| 34 | 13, 33 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ) |
| 35 | 34 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
| 36 | 1 | sselda 3963 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 37 | | fvres 6900 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ →
((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
| 38 | 37 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
| 39 | | resubdrg 21573 |
. . . . . . . . . . . 12
⊢ (ℝ
∈ (SubRing‘ℂfld) ∧ ℝfld ∈
DivRing) |
| 40 | 39 | simpli 483 |
. . . . . . . . . . 11
⊢ ℝ
∈ (SubRing‘ℂfld) |
| 41 | 40 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
(SubRing‘ℂfld)) |
| 42 | | taylth.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 43 | 42 | nnnn0d 12567 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 44 | | taylth.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| 45 | 44, 28 | eleqtrrd 2838 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
| 46 | | taylth.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
| 47 | 1, 44 | sseldd 3964 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 48 | | elfznn0 13642 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 49 | | dvnfre 25913 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑘 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
| 50 | 2, 1, 48, 49 | syl2an3an 1424 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((ℝ D𝑛
𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
| 51 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁)) |
| 52 | | dvn2bss 25889 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ 𝑘 ∈
(0...𝑁)) → dom
((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
| 53 | 14, 24, 51, 52 | mp3an2ani 1470 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
| 54 | 45 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
| 55 | 53, 54 | sseldd 3964 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑘)) |
| 56 | 50, 55 | ffvelcdmd 7080 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) ∈ ℝ) |
| 57 | 48 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 58 | 57 | faccld 14307 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
| 59 | 56, 58 | nndivred 12299 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℝ) |
| 60 | 15, 22, 1, 43, 45, 46, 41, 47, 59 | taylply2 26332 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ∈ (Poly‘ℝ) ∧
(deg‘𝑇) ≤ 𝑁)) |
| 61 | 60 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈
(Poly‘ℝ)) |
| 62 | | dvnply2 26252 |
. . . . . . . . . 10
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
| 63 | 41, 61, 11, 62 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
| 64 | | plyreres 26247 |
. . . . . . . . 9
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
| 65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
| 66 | 65 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) ∈
ℝ) |
| 67 | 38, 66 | eqeltrrd 2836 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
| 68 | 36, 67 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
| 69 | 35, 68 | resubcld 11670 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ ℝ) |
| 70 | 69 | fmpttd 7110 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))):𝐴⟶ℝ) |
| 71 | 47 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 72 | 36, 71 | resubcld 11670 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦 − 𝐵) ∈ ℝ) |
| 73 | | elfzouz 13685 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈
(ℤ≥‘1)) |
| 74 | 4, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 75 | | nnuz 12900 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 76 | 74, 75 | eleqtrrdi 2846 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 77 | 76 | nnnn0d 12567 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 78 | 77 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑀 ∈
ℕ0) |
| 79 | | 1nn0 12522 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
| 80 | 79 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 1 ∈
ℕ0) |
| 81 | 78, 80 | nn0addcld 12571 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑀 + 1) ∈
ℕ0) |
| 82 | 72, 81 | reexpcld 14186 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℝ) |
| 83 | 82 | fmpttd 7110 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℝ) |
| 84 | | retop 24705 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ Top |
| 85 | | uniretop 24706 |
. . . . . . 7
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 86 | 85 | ntrss2 23000 |
. . . . . 6
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
| 87 | 84, 1, 86 | sylancr 587 |
. . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
| 88 | 42 | nncnd 12261 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 89 | 76 | nncnd 12261 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 90 | | 1cnd 11235 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) |
| 91 | 88, 89, 90 | nppcan2d 11625 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁 − (𝑀 + 1)) + 1) = (𝑁 − 𝑀)) |
| 92 | 91 | fveq2d 6885 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
| 93 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 94 | | dvnp1 25884 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
| 95 | 93, 24, 11, 94 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
| 96 | 92, 95 | eqtr3d 2773 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
| 97 | 96 | dmeqd 5890 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
| 98 | | fzonnsub 13706 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) |
| 99 | 4, 98 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ) |
| 100 | 99 | nnnn0d 12567 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈
ℕ0) |
| 101 | | dvnbss 25887 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
| 102 | 15, 24, 100, 101 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
| 103 | 2, 102 | fssdmd 6729 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ 𝐴) |
| 104 | | elfzofz 13697 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (1...𝑁)) |
| 105 | 4, 104 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
| 106 | 3, 105 | sselid 3961 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
| 107 | | fznn0sub2 13657 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ (0...𝑁)) |
| 108 | 106, 107 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈ (0...𝑁)) |
| 109 | | dvn2bss 25889 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
| 110 | 15, 24, 108, 109 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
| 111 | 28, 110 | eqsstrrd 3999 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))) |
| 112 | 103, 111 | eqssd 3981 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = 𝐴) |
| 113 | 97, 112 | eqtr3d 2773 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) |
| 114 | | fss 6727 |
. . . . . . . 8
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
| 115 | 34, 20, 114 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
| 116 | | eqid 2736 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 117 | 116 | tgioo2 24747 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 118 | 93, 115, 1, 117, 116 | dvbssntr 25858 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) ⊆
((int‘(topGen‘ran (,)))‘𝐴)) |
| 119 | 113, 118 | eqsstrrd 3999 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ((int‘(topGen‘ran
(,)))‘𝐴)) |
| 120 | 87, 119 | eqssd 3981 |
. . . 4
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴) |
| 121 | 85 | isopn3 23009 |
. . . . 5
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
| 122 | 84, 1, 121 | sylancr 587 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
| 123 | 120, 122 | mpbird 257 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (topGen‘ran
(,))) |
| 124 | | eqid 2736 |
. . 3
⊢ (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵}) |
| 125 | | difss 4116 |
. . . 4
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 |
| 126 | 35 | recnd 11268 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
| 127 | | dvnf 25886 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
| 128 | 15, 24, 100, 127 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
| 129 | 112 | feq2d 6697 |
. . . . . . . . 9
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ)) |
| 130 | 128, 129 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ) |
| 131 | 130 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
| 132 | | dvnfre 25913 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
| 133 | 2, 1, 100, 132 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
| 134 | 112 | feq2d 6697 |
. . . . . . . . . 10
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ)) |
| 135 | 133, 134 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ) |
| 136 | 135 | feqmptd 6952 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
| 137 | 34 | feqmptd 6952 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
| 138 | 137 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
| 139 | 96, 136, 138 | 3eqtr3rd 2780 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
| 140 | 68 | recnd 11268 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
| 141 | | fvexd 6896 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ V) |
| 142 | 67 | recnd 11268 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
| 143 | | recn 11224 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
| 144 | | dvnply2 26252 |
. . . . . . . . . . . 12
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
| 145 | 41, 61, 100, 144 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
| 146 | | plyf 26160 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
| 147 | 145, 146 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
| 148 | 147 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
| 149 | 143, 148 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
| 150 | 116 | cnfldtopon 24726 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 151 | | toponmax 22869 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ℂ ∈ (TopOpen‘ℂfld)) |
| 152 | 150, 151 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
(TopOpen‘ℂfld)) |
| 153 | | dfss2 3949 |
. . . . . . . . . 10
⊢ (ℝ
⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) |
| 154 | 93, 153 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ ∩ ℂ) =
ℝ) |
| 155 | | plyf 26160 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
| 156 | 63, 155 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
| 157 | 156 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
| 158 | 91 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))) |
| 159 | | ssid 3986 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
| 160 | 159 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 161 | | mapsspm 8895 |
. . . . . . . . . . . . 13
⊢ (ℂ
↑m ℂ) ⊆ (ℂ ↑pm
ℂ) |
| 162 | | plyf 26160 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ∈ (Poly‘ℝ)
→ 𝑇:ℂ⟶ℂ) |
| 163 | 61, 162 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇:ℂ⟶ℂ) |
| 164 | 16, 16 | elmap 8890 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ (ℂ
↑m ℂ) ↔ 𝑇:ℂ⟶ℂ) |
| 165 | 163, 164 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑m
ℂ)) |
| 166 | 161, 165 | sselid 3961 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑pm
ℂ)) |
| 167 | | dvnp1 25884 |
. . . . . . . . . . . 12
⊢ ((ℂ
⊆ ℂ ∧ 𝑇
∈ (ℂ ↑pm ℂ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
| 168 | 160, 166,
11, 167 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
| 169 | 158, 168 | eqtr3d 2773 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
| 170 | 147 | feqmptd 6952 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 171 | 156 | feqmptd 6952 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
| 172 | 171 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
| 173 | 169, 170,
172 | 3eqtr3rd 2780 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 174 | 116, 15, 152, 154, 157, 148, 173 | dvmptres3 25917 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℝ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 175 | 15, 142, 149, 174, 1, 117, 116, 123 | dvmptres 25924 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 176 | 15, 126, 131, 139, 140, 141, 175 | dvmptsub 25928 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
| 177 | 176 | dmeqd 5890 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = dom (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
| 178 | | ovex 7443 |
. . . . . 6
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) ∈ V |
| 179 | | eqid 2736 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 180 | 178, 179 | dmmpti 6687 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = 𝐴 |
| 181 | 177, 180 | eqtrdi 2787 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = 𝐴) |
| 182 | 125, 181 | sseqtrrid 4007 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))) |
| 183 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) |
| 184 | 47 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℝ) |
| 185 | 184 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℂ) |
| 186 | 183, 185 | subcld 11599 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦 − 𝐵) ∈ ℂ) |
| 187 | 77 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈
ℕ0) |
| 188 | 79 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℕ0) |
| 189 | 187, 188 | nn0addcld 12571 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
| 190 | 186, 189 | expcld 14169 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
| 191 | 143, 190 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
| 192 | 89 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈ ℂ) |
| 193 | | 1cnd 11235 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) |
| 194 | 192, 193 | addcld 11259 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℂ) |
| 195 | 186, 187 | expcld 14169 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
| 196 | 194, 195 | mulcld 11260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
| 197 | 143, 196 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
| 198 | 16 | prid2 4744 |
. . . . . . . . . . 11
⊢ ℂ
∈ {ℝ, ℂ} |
| 199 | 198 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ∈ {ℝ,
ℂ}) |
| 200 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
| 201 | | elfznn 13575 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 + 1) ∈ (1...𝑁) → (𝑀 + 1) ∈ ℕ) |
| 202 | 6, 201 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
| 203 | 202 | nnnn0d 12567 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
| 204 | 203 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
| 205 | 200, 204 | expcld 14169 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑀 + 1)) ∈ ℂ) |
| 206 | | ovexd 7445 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝑀 + 1) · (𝑥↑𝑀)) ∈ V) |
| 207 | 199 | dvmptid 25918 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)) |
| 208 | | 0cnd 11233 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 0 ∈
ℂ) |
| 209 | 47 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 210 | 199, 209 | dvmptc 25919 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝐵)) = (𝑦 ∈ ℂ ↦ 0)) |
| 211 | 199, 183,
193, 207, 185, 208, 210 | dvmptsub 25928 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ (1 −
0))) |
| 212 | | 1m0e1 12366 |
. . . . . . . . . . . 12
⊢ (1
− 0) = 1 |
| 213 | 212 | mpteq2i 5222 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ ↦ (1
− 0)) = (𝑦 ∈
ℂ ↦ 1) |
| 214 | 211, 213 | eqtrdi 2787 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ 1)) |
| 215 | | dvexp 25914 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) ∈ ℕ →
(ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
| 216 | 202, 215 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
| 217 | 89, 90 | pncand 11600 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
| 218 | 217 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥↑((𝑀 + 1) − 1)) = (𝑥↑𝑀)) |
| 219 | 218 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))) = ((𝑀 + 1) · (𝑥↑𝑀))) |
| 220 | 219 | mpteq2dv 5220 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
| 221 | 216, 220 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
| 222 | | oveq1 7417 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑(𝑀 + 1)) = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 223 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑𝑀) = ((𝑦 − 𝐵)↑𝑀)) |
| 224 | 223 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → ((𝑀 + 1) · (𝑥↑𝑀)) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 225 | 199, 199,
186, 193, 205, 206, 214, 221, 222, 224 | dvmptco 25933 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1))) |
| 226 | 196 | mulridd 11257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 227 | 226 | mpteq2dva 5219 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1)) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 228 | 225, 227 | eqtrd 2771 |
. . . . . . . 8
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 229 | 116, 15, 152, 154, 190, 196, 228 | dvmptres3 25917 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℝ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 230 | 15, 191, 197, 229, 1, 117, 116, 123 | dvmptres 25924 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 231 | 230 | dmeqd 5890 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = dom (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 232 | | ovex 7443 |
. . . . . 6
⊢ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ V |
| 233 | | eqid 2736 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 234 | 232, 233 | dmmpti 6687 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = 𝐴 |
| 235 | 231, 234 | eqtrdi 2787 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) |
| 236 | 125, 235 | sseqtrrid 4007 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))) |
| 237 | 15, 22, 1, 9, 45, 46 | dvntaylp0 26337 |
. . . . . 6
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
| 238 | 237 | oveq2d 7426 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
| 239 | 115, 44 | ffvelcdmd 7080 |
. . . . . 6
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) ∈ ℂ) |
| 240 | 239 | subidd 11587 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
| 241 | 238, 240 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
| 242 | 116 | subcn 24811 |
. . . . . . 7
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 243 | 242 | a1i 11 |
. . . . . 6
⊢ (𝜑 → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 244 | | dvcn 25880 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) → ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
| 245 | 93, 115, 1, 113, 244 | syl31anc 1375 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
| 246 | 137, 245 | eqeltrrd 2836 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
| 247 | | plycn 26223 |
. . . . . . . 8
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
| 248 | 63, 247 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
| 249 | 1, 20 | sstrdi 3976 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 250 | | cncfmptid 24862 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑦
∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
| 251 | 249, 159,
250 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
| 252 | 248, 251 | cncfmpt1f 24863 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
| 253 | 116, 243,
246, 252 | cncfmpt2f 24864 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) ∈ (𝐴–cn→ℂ)) |
| 254 | | fveq2 6881 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
| 255 | | fveq2 6881 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
| 256 | 254, 255 | oveq12d 7428 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
| 257 | 253, 44, 256 | cnmptlimc 25848 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
| 258 | 241, 257 | eqeltrrd 2836 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
| 259 | 209 | subidd 11587 |
. . . . . 6
⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
| 260 | 259 | oveq1d 7425 |
. . . . 5
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = (0↑(𝑀 + 1))) |
| 261 | 202 | 0expd 14162 |
. . . . 5
⊢ (𝜑 → (0↑(𝑀 + 1)) = 0) |
| 262 | 260, 261 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = 0) |
| 263 | 249 | sselda 3963 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℂ) |
| 264 | 263, 190 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
| 265 | 264 | fmpttd 7110 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ) |
| 266 | | dvcn 25880 |
. . . . . 6
⊢
(((ℝ ⊆ ℂ ∧ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
| 267 | 93, 265, 1, 235, 266 | syl31anc 1375 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
| 268 | | oveq1 7417 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 − 𝐵) = (𝐵 − 𝐵)) |
| 269 | 268 | oveq1d 7425 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝐵 − 𝐵)↑(𝑀 + 1))) |
| 270 | 267, 44, 269 | cnmptlimc 25848 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
| 271 | 262, 270 | eqeltrrd 2836 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
| 272 | 249 | ssdifssd 4127 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
| 273 | 272 | sselda 3963 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℂ) |
| 274 | 209 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
| 275 | 273, 274 | subcld 11599 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ∈ ℂ) |
| 276 | | eldifsni 4771 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) → 𝑦 ≠ 𝐵) |
| 277 | 276 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ≠ 𝐵) |
| 278 | 273, 274,
277 | subne0d 11608 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ≠ 0) |
| 279 | 202 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
| 280 | 279 | nnzd 12620 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℤ) |
| 281 | 275, 278,
280 | expne0d 14175 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ≠ 0) |
| 282 | 281 | necomd 2988 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 283 | 282 | neneqd 2938 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 284 | 283 | nrexdv 3136 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 285 | | df-ima 5672 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) |
| 286 | 285 | eleq2i 2827 |
. . . . 5
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵}))) |
| 287 | | resmpt 6029 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) |
| 288 | 125, 287 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 289 | | ovex 7443 |
. . . . . 6
⊢ ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ V |
| 290 | 288, 289 | elrnmpti 5947 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 291 | 286, 290 | bitri 275 |
. . . 4
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 292 | 284, 291 | sylnibr 329 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵}))) |
| 293 | 89 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℂ) |
| 294 | | 1cnd 11235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 1 ∈
ℂ) |
| 295 | 293, 294 | addcld 11259 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
| 296 | 273, 195 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
| 297 | 279 | nnne0d 12295 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
| 298 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ) |
| 299 | 298 | nnzd 12620 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
| 300 | 275, 278,
299 | expne0d 14175 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ≠ 0) |
| 301 | 295, 296,
297, 300 | mulne0d 11894 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ≠ 0) |
| 302 | 301 | necomd 2988 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 303 | 302 | neneqd 2938 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 304 | 303 | nrexdv 3136 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 305 | 230 | imaeq1d 6051 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵}))) |
| 306 | | df-ima 5672 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) |
| 307 | 305, 306 | eqtrdi 2787 |
. . . . . 6
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))) |
| 308 | 307 | eleq2d 2821 |
. . . . 5
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})))) |
| 309 | | resmpt 6029 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 310 | 125, 309 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 311 | 310, 232 | elrnmpti 5947 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 312 | 308, 311 | bitrdi 287 |
. . . 4
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 313 | 304, 312 | mtbird 325 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵}))) |
| 314 | | eldifi 4111 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ 𝐴) |
| 315 | 130 | ffvelcdmda 7079 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
| 316 | 314, 315 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
| 317 | 1 | ssdifssd 4127 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℝ) |
| 318 | 317 | sselda 3963 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ) |
| 319 | 318 | recnd 11268 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ) |
| 320 | 147 | ffvelcdmda 7079 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
| 321 | 319, 320 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
| 322 | 316, 321 | subcld 11599 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ ℂ) |
| 323 | 47 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℝ) |
| 324 | 318, 323 | resubcld 11670 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℝ) |
| 325 | 77 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈
ℕ0) |
| 326 | 324, 325 | reexpcld 14186 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℝ) |
| 327 | 326 | recnd 11268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℂ) |
| 328 | 323 | recnd 11268 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
| 329 | 319, 328 | subcld 11599 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℂ) |
| 330 | | eldifsni 4771 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ≠ 𝐵) |
| 331 | 330 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ≠ 𝐵) |
| 332 | 319, 328,
331 | subne0d 11608 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ≠ 0) |
| 333 | 325 | nn0zd 12619 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
| 334 | 329, 332,
333 | expne0d 14175 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ≠ 0) |
| 335 | 322, 327,
334 | divcld 12022 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) ∈ ℂ) |
| 336 | 202 | nnrecred 12296 |
. . . . . . 7
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ) |
| 337 | 336 | recnd 11268 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℂ) |
| 338 | 337 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (1 / (𝑀 + 1)) ∈ ℂ) |
| 339 | | txtopon 23534 |
. . . . . . 7
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
→ ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ))) |
| 340 | 150, 150,
339 | mp2an 692 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ)) |
| 341 | 340 | toponrestid 22864 |
. . . . 5
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) |
| 342 | | taylthlem2.i |
. . . . 5
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) |
| 343 | | limcresi 25843 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) |
| 344 | | resmpt 6029 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1)))) |
| 345 | 125, 344 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) |
| 346 | 345 | oveq1i 7420 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
| 347 | 343, 346 | sseqtri 4012 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
| 348 | | cncfmptc 24861 |
. . . . . . . 8
⊢ (((1 /
(𝑀 + 1)) ∈ ℝ
∧ 𝐴 ⊆ ℂ
∧ ℝ ⊆ ℂ) → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
| 349 | 336, 249,
93, 348 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
| 350 | | eqidd 2737 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (1 / (𝑀 + 1)) = (1 / (𝑀 + 1))) |
| 351 | 349, 44, 350 | cnmptlimc 25848 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
| 352 | 347, 351 | sselid 3961 |
. . . . 5
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
| 353 | 116 | mulcn 24812 |
. . . . . 6
⊢ ·
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 354 | | 0cn 11232 |
. . . . . . 7
⊢ 0 ∈
ℂ |
| 355 | | opelxpi 5696 |
. . . . . . 7
⊢ ((0
∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → 〈0, (1 /
(𝑀 + 1))〉 ∈
(ℂ × ℂ)) |
| 356 | 354, 337,
355 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ
× ℂ)) |
| 357 | 340 | toponunii 22859 |
. . . . . . 7
⊢ (ℂ
× ℂ) = ∪
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) |
| 358 | 357 | cncnpi 23221 |
. . . . . 6
⊢ ((
· ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) ∧ 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ ×
ℂ)) → · ∈ ((((TopOpen‘ℂfld)
×t (TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
| 359 | 353, 356,
358 | sylancr 587 |
. . . . 5
⊢ (𝜑 → · ∈
((((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
| 360 | 335, 338,
160, 160, 116, 341, 342, 352, 359 | limccnp2 25850 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵)) |
| 361 | 337 | mul02d 11438 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) = 0) |
| 362 | 176 | fveq1d 6883 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥)) |
| 363 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥)) |
| 364 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) |
| 365 | 363, 364 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
| 366 | | ovex 7443 |
. . . . . . . . . . 11
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ V |
| 367 | 365, 179,
366 | fvmpt 6991 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
| 368 | 314, 367 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
| 369 | 362, 368 | sylan9eq 2791 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
| 370 | 230 | fveq1d 6883 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥)) |
| 371 | | oveq1 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) |
| 372 | 371 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑀) = ((𝑥 − 𝐵)↑𝑀)) |
| 373 | 372 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
| 374 | | ovex 7443 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) ∈ V |
| 375 | 373, 233,
374 | fvmpt 6991 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
| 376 | 314, 375 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
| 377 | 370, 376 | sylan9eq 2791 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
| 378 | 202 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
| 379 | 378 | nncnd 12261 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
| 380 | 379, 327 | mulcomd 11261 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
| 381 | 377, 380 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
| 382 | 369, 381 | oveq12d 7428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
| 383 | 378 | nnne0d 12295 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
| 384 | 322, 327,
379, 334, 383 | divdiv1d 12053 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = (((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
| 385 | 335, 379,
383 | divrecd 12025 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = ((((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) |
| 386 | 382, 384,
385 | 3eqtr2rd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) |
| 387 | 386 | mpteq2dva 5219 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)))) |
| 388 | 387 | oveq1d 7425 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
| 389 | 360, 361,
388 | 3eltr3d 2849 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
| 390 | 1, 70, 83, 123, 44, 124, 182, 236, 258, 271, 292, 313, 389 | lhop 25978 |
. 2
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵)) |
| 391 | 314 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ 𝐴) |
| 392 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
| 393 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
| 394 | 392, 393 | oveq12d 7428 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
| 395 | | eqid 2736 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
| 396 | | ovex 7443 |
. . . . . . 7
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) ∈ V |
| 397 | 394, 395,
396 | fvmpt 6991 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
| 398 | 391, 397 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
| 399 | 371 | oveq1d 7425 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
| 400 | | eqid 2736 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 401 | | ovex 7443 |
. . . . . . 7
⊢ ((𝑥 − 𝐵)↑(𝑀 + 1)) ∈ V |
| 402 | 399, 400,
401 | fvmpt 6991 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
| 403 | 391, 402 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
| 404 | 398, 403 | oveq12d 7428 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) |
| 405 | 404 | mpteq2dva 5219 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1))))) |
| 406 | 405 | oveq1d 7425 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |
| 407 | 390, 406 | eleqtrd 2837 |
1
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |