MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzoppg Structured version   Visualization version   GIF version

Theorem gsumzoppg 19460
Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzoppg.b 𝐵 = (Base‘𝐺)
gsumzoppg.0 0 = (0g𝐺)
gsumzoppg.z 𝑍 = (Cntz‘𝐺)
gsumzoppg.o 𝑂 = (oppg𝐺)
gsumzoppg.g (𝜑𝐺 ∈ Mnd)
gsumzoppg.a (𝜑𝐴𝑉)
gsumzoppg.f (𝜑𝐹:𝐴𝐵)
gsumzoppg.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzoppg.n (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzoppg (𝜑 → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))

Proof of Theorem gsumzoppg
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzoppg.g . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
2 gsumzoppg.o . . . . . . . . 9 𝑂 = (oppg𝐺)
32oppgmnd 18876 . . . . . . . 8 (𝐺 ∈ Mnd → 𝑂 ∈ Mnd)
41, 3syl 17 . . . . . . 7 (𝜑𝑂 ∈ Mnd)
5 gsumzoppg.a . . . . . . 7 (𝜑𝐴𝑉)
6 gsumzoppg.0 . . . . . . . . 9 0 = (0g𝐺)
72, 6oppgid 18878 . . . . . . . 8 0 = (0g𝑂)
87gsumz 18389 . . . . . . 7 ((𝑂 ∈ Mnd ∧ 𝐴𝑉) → (𝑂 Σg (𝑘𝐴0 )) = 0 )
94, 5, 8syl2anc 583 . . . . . 6 (𝜑 → (𝑂 Σg (𝑘𝐴0 )) = 0 )
106gsumz 18389 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
111, 5, 10syl2anc 583 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
129, 11eqtr4d 2781 . . . . 5 (𝜑 → (𝑂 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑘𝐴0 )))
1312adantr 480 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑂 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑘𝐴0 )))
14 gsumzoppg.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
156fvexi 6770 . . . . . . 7 0 ∈ V
1615a1i 11 . . . . . 6 (𝜑0 ∈ V)
17 ssid 3939 . . . . . . 7 (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))
1814, 5fexd 7085 . . . . . . . . 9 (𝜑𝐹 ∈ V)
19 suppimacnv 7961 . . . . . . . . 9 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
2018, 15, 19sylancl 585 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
2120sseq1d 3948 . . . . . . 7 (𝜑 → ((𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })) ↔ (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))))
2217, 21mpbiri 257 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
2314, 5, 16, 22gsumcllem 19424 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → 𝐹 = (𝑘𝐴0 ))
2423oveq2d 7271 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑂 Σg 𝐹) = (𝑂 Σg (𝑘𝐴0 )))
2523oveq2d 7271 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
2613, 24, 253eqtr4d 2788 . . 3 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))
2726ex 412 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
28 simprl 767 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
29 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
3028, 29eleqtrdi 2849 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ (ℤ‘1))
3114adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴𝐵)
32 ffn 6584 . . . . . . . . . . . 12 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
33 dffn4 6678 . . . . . . . . . . . 12 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
3432, 33sylib 217 . . . . . . . . . . 11 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
35 fof 6672 . . . . . . . . . . 11 (𝐹:𝐴onto→ran 𝐹𝐹:𝐴⟶ran 𝐹)
3631, 34, 353syl 18 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶ran 𝐹)
371adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐺 ∈ Mnd)
38 gsumzoppg.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
3938submacs 18380 . . . . . . . . . . . 12 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
40 acsmre 17278 . . . . . . . . . . . 12 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
4137, 39, 403syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
42 eqid 2738 . . . . . . . . . . 11 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
4331frnd 6592 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹𝐵)
4441, 42, 43mrcssidd 17251 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
4536, 44fssd 6602 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
46 f1of1 6699 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
4746ad2antll 725 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
48 cnvimass 5978 . . . . . . . . . . . 12 (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹
4948, 31fssdm 6604 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
50 f1ss 6660 . . . . . . . . . . 11 ((𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })) ∧ (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
5147, 49, 50syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
52 f1f 6654 . . . . . . . . . 10 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
5351, 52syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
54 fco 6608 . . . . . . . . 9 ((𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴) → (𝐹𝑓):(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
5545, 53, 54syl2anc 583 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹𝑓):(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
5655ffvelrnda 6943 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(♯‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐹𝑓)‘𝑥) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
5742mrccl 17237 . . . . . . . . . 10 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ ran 𝐹𝐵) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
5841, 43, 57syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
592oppgsubm 18884 . . . . . . . . 9 (SubMnd‘𝐺) = (SubMnd‘𝑂)
6058, 59eleqtrdi 2849 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂))
61 eqid 2738 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
6261submcl 18366 . . . . . . . . 9 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
63623expb 1118 . . . . . . . 8 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
6460, 63sylan 579 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
65 eqid 2738 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
6665, 2, 61oppgplus 18868 . . . . . . . . 9 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
67 gsumzoppg.c . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
6867adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
69 gsumzoppg.z . . . . . . . . . . . . . 14 𝑍 = (Cntz‘𝐺)
70 eqid 2738 . . . . . . . . . . . . . 14 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
7169, 42, 70cntzspan 19360 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
7237, 68, 71syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
7370, 69submcmn2 19355 . . . . . . . . . . . . 13 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
7458, 73syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
7572, 74mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
7675sselda 3917 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → 𝑥 ∈ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
7765, 69cntzi 18850 . . . . . . . . . 10 ((𝑥 ∈ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
7876, 77sylan 579 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
7966, 78eqtr4id 2798 . . . . . . . 8 ((((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝑂)𝑦) = (𝑥(+g𝐺)𝑦))
8079anasss 466 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g𝑂)𝑦) = (𝑥(+g𝐺)𝑦))
8130, 56, 64, 80seqfeq4 13700 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (seq1((+g𝑂), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
822, 38oppgbas 18871 . . . . . . 7 𝐵 = (Base‘𝑂)
83 eqid 2738 . . . . . . 7 (Cntz‘𝑂) = (Cntz‘𝑂)
8437, 3syl 17 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑂 ∈ Mnd)
855adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐴𝑉)
862, 69oppgcntz 18886 . . . . . . . 8 (𝑍‘ran 𝐹) = ((Cntz‘𝑂)‘ran 𝐹)
8768, 86sseqtrdi 3967 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ ((Cntz‘𝑂)‘ran 𝐹))
88 suppssdm 7964 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ dom 𝐹
8920, 88eqsstrrdi 3972 . . . . . . . . . 10 (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹)
9014, 89fssdmd 6603 . . . . . . . . 9 (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
9190adantr 480 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
9247, 91, 50syl2anc 583 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
9321adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })) ↔ (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))))
9417, 93mpbiri 257 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
95 f1ofo 6707 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })))
96 forn 6675 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
9795, 96syl 17 . . . . . . . . . 10 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
9897sseq2d 3949 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 }))))
9998ad2antll 725 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 }))))
10094, 99mpbird 256 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
101 eqid 2738 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
10282, 7, 61, 83, 84, 85, 31, 87, 28, 92, 100, 101gsumval3 19423 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝑂 Σg 𝐹) = (seq1((+g𝑂), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
10322adantr 480 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
104103, 99mpbird 256 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
10538, 6, 65, 69, 37, 85, 31, 68, 28, 92, 104, 101gsumval3 19423 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
10681, 102, 1053eqtr4d 2788 . . . . 5 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))
107106expr 456 . . . 4 ((𝜑 ∧ (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
108107exlimdv 1937 . . 3 ((𝜑 ∧ (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
109108expimpd 453 . 2 (𝜑 → (((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 }))) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
110 gsumzoppg.n . . . . 5 (𝜑𝐹 finSupp 0 )
111110fsuppimpd 9065 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
11220, 111eqeltrrd 2840 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) ∈ Fin)
113 fz1f1o 15350 . . 3 ((𝐹 “ (V ∖ { 0 })) ∈ Fin → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
114112, 113syl 17 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
11527, 109, 114mpjaod 856 1 (𝜑 → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cdif 3880  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255   supp csupp 7948  Fincfn 8691   finSupp cfsupp 9058  1c1 10803  cn 11903  cuz 12511  ...cfz 13168  seqcseq 13649  chash 13972  Basecbs 16840  s cress 16867  +gcplusg 16888  0gc0g 17067   Σg cgsu 17068  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211  Mndcmnd 18300  SubMndcsubmnd 18344  Cntzccntz 18836  oppgcoppg 18864  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-cntz 18838  df-oppg 18865  df-cmn 19303
This theorem is referenced by:  gsumzinv  19461
  Copyright terms: Public domain W3C validator