MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzoppg Structured version   Visualization version   GIF version

Theorem gsumzoppg 19874
Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzoppg.b 𝐵 = (Base‘𝐺)
gsumzoppg.0 0 = (0g𝐺)
gsumzoppg.z 𝑍 = (Cntz‘𝐺)
gsumzoppg.o 𝑂 = (oppg𝐺)
gsumzoppg.g (𝜑𝐺 ∈ Mnd)
gsumzoppg.a (𝜑𝐴𝑉)
gsumzoppg.f (𝜑𝐹:𝐴𝐵)
gsumzoppg.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzoppg.n (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzoppg (𝜑 → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))

Proof of Theorem gsumzoppg
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzoppg.g . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
2 gsumzoppg.o . . . . . . . . 9 𝑂 = (oppg𝐺)
32oppgmnd 19286 . . . . . . . 8 (𝐺 ∈ Mnd → 𝑂 ∈ Mnd)
41, 3syl 17 . . . . . . 7 (𝜑𝑂 ∈ Mnd)
5 gsumzoppg.a . . . . . . 7 (𝜑𝐴𝑉)
6 gsumzoppg.0 . . . . . . . . 9 0 = (0g𝐺)
72, 6oppgid 19288 . . . . . . . 8 0 = (0g𝑂)
87gsumz 18763 . . . . . . 7 ((𝑂 ∈ Mnd ∧ 𝐴𝑉) → (𝑂 Σg (𝑘𝐴0 )) = 0 )
94, 5, 8syl2anc 584 . . . . . 6 (𝜑 → (𝑂 Σg (𝑘𝐴0 )) = 0 )
106gsumz 18763 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
111, 5, 10syl2anc 584 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
129, 11eqtr4d 2767 . . . . 5 (𝜑 → (𝑂 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑘𝐴0 )))
1312adantr 480 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑂 Σg (𝑘𝐴0 )) = (𝐺 Σg (𝑘𝐴0 )))
14 gsumzoppg.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
156fvexi 6872 . . . . . . 7 0 ∈ V
1615a1i 11 . . . . . 6 (𝜑0 ∈ V)
17 ssid 3969 . . . . . . 7 (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))
1814, 5fexd 7201 . . . . . . . . 9 (𝜑𝐹 ∈ V)
19 suppimacnv 8153 . . . . . . . . 9 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
2018, 15, 19sylancl 586 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
2120sseq1d 3978 . . . . . . 7 (𝜑 → ((𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })) ↔ (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))))
2217, 21mpbiri 258 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
2314, 5, 16, 22gsumcllem 19838 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → 𝐹 = (𝑘𝐴0 ))
2423oveq2d 7403 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑂 Σg 𝐹) = (𝑂 Σg (𝑘𝐴0 )))
2523oveq2d 7403 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
2613, 24, 253eqtr4d 2774 . . 3 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))
2726ex 412 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
28 simprl 770 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
29 nnuz 12836 . . . . . . . 8 ℕ = (ℤ‘1)
3028, 29eleqtrdi 2838 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ (ℤ‘1))
3114adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴𝐵)
32 ffn 6688 . . . . . . . . . . . 12 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
33 dffn4 6778 . . . . . . . . . . . 12 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
3432, 33sylib 218 . . . . . . . . . . 11 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
35 fof 6772 . . . . . . . . . . 11 (𝐹:𝐴onto→ran 𝐹𝐹:𝐴⟶ran 𝐹)
3631, 34, 353syl 18 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶ran 𝐹)
371adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐺 ∈ Mnd)
38 gsumzoppg.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
3938submacs 18754 . . . . . . . . . . . 12 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
40 acsmre 17613 . . . . . . . . . . . 12 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
4137, 39, 403syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
42 eqid 2729 . . . . . . . . . . 11 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
4331frnd 6696 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹𝐵)
4441, 42, 43mrcssidd 17586 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
4536, 44fssd 6705 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
46 f1of1 6799 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
4746ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
48 cnvimass 6053 . . . . . . . . . . . 12 (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹
4948, 31fssdm 6707 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
50 f1ss 6761 . . . . . . . . . . 11 ((𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })) ∧ (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
5147, 49, 50syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
52 f1f 6756 . . . . . . . . . 10 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
5351, 52syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
54 fco 6712 . . . . . . . . 9 ((𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴) → (𝐹𝑓):(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
5545, 53, 54syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹𝑓):(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
5655ffvelcdmda 7056 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(♯‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐹𝑓)‘𝑥) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
5742mrccl 17572 . . . . . . . . . 10 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ ran 𝐹𝐵) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
5841, 43, 57syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
592oppgsubm 19294 . . . . . . . . 9 (SubMnd‘𝐺) = (SubMnd‘𝑂)
6058, 59eleqtrdi 2838 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂))
61 eqid 2729 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
6261submcl 18739 . . . . . . . . 9 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
63623expb 1120 . . . . . . . 8 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝑂) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
6460, 63sylan 580 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g𝑂)𝑦) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
65 eqid 2729 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
6665, 2, 61oppgplus 19281 . . . . . . . . 9 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
67 gsumzoppg.c . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
6867adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
69 gsumzoppg.z . . . . . . . . . . . . . 14 𝑍 = (Cntz‘𝐺)
70 eqid 2729 . . . . . . . . . . . . . 14 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
7169, 42, 70cntzspan 19774 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
7237, 68, 71syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
7370, 69submcmn2 19769 . . . . . . . . . . . . 13 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
7458, 73syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
7572, 74mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
7675sselda 3946 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → 𝑥 ∈ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
7765, 69cntzi 19261 . . . . . . . . . 10 ((𝑥 ∈ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
7876, 77sylan 580 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
7966, 78eqtr4id 2783 . . . . . . . 8 ((((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → (𝑥(+g𝑂)𝑦) = (𝑥(+g𝐺)𝑦))
8079anasss 466 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∧ 𝑦 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) → (𝑥(+g𝑂)𝑦) = (𝑥(+g𝐺)𝑦))
8130, 56, 64, 80seqfeq4 14016 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (seq1((+g𝑂), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
822, 38oppgbas 19283 . . . . . . 7 𝐵 = (Base‘𝑂)
83 eqid 2729 . . . . . . 7 (Cntz‘𝑂) = (Cntz‘𝑂)
8437, 3syl 17 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑂 ∈ Mnd)
855adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐴𝑉)
862, 69oppgcntz 19296 . . . . . . . 8 (𝑍‘ran 𝐹) = ((Cntz‘𝑂)‘ran 𝐹)
8768, 86sseqtrdi 3987 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ ((Cntz‘𝑂)‘ran 𝐹))
88 suppssdm 8156 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ dom 𝐹
8920, 88eqsstrrdi 3992 . . . . . . . . . 10 (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹)
9014, 89fssdmd 6706 . . . . . . . . 9 (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
9190adantr 480 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
9247, 91, 50syl2anc 584 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
9321adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })) ↔ (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))))
9417, 93mpbiri 258 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
95 f1ofo 6807 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })))
96 forn 6775 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
9795, 96syl 17 . . . . . . . . . 10 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
9897sseq2d 3979 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 }))))
9998ad2antll 729 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 }))))
10094, 99mpbird 257 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
101 eqid 2729 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
10282, 7, 61, 83, 84, 85, 31, 87, 28, 92, 100, 101gsumval3 19837 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝑂 Σg 𝐹) = (seq1((+g𝑂), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
10322adantr 480 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
104103, 99mpbird 257 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
10538, 6, 65, 69, 37, 85, 31, 68, 28, 92, 104, 101gsumval3 19837 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
10681, 102, 1053eqtr4d 2774 . . . . 5 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))
107106expr 456 . . . 4 ((𝜑 ∧ (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
108107exlimdv 1933 . . 3 ((𝜑 ∧ (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
109108expimpd 453 . 2 (𝜑 → (((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 }))) → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)))
110 gsumzoppg.n . . . . 5 (𝜑𝐹 finSupp 0 )
111110fsuppimpd 9320 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
11220, 111eqeltrrd 2829 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) ∈ Fin)
113 fz1f1o 15676 . . 3 ((𝐹 “ (V ∖ { 0 })) ∈ Fin → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
114112, 113syl 17 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
11527, 109, 114mpjaod 860 1 (𝜑 → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cdif 3911  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312  1c1 11069  cn 12186  cuz 12793  ...cfz 13468  seqcseq 13966  chash 14295  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Moorecmre 17543  mrClscmrc 17544  ACScacs 17546  Mndcmnd 18661  SubMndcsubmnd 18709  Cntzccntz 19247  oppgcoppg 19277  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-cntz 19249  df-oppg 19278  df-cmn 19712
This theorem is referenced by:  gsumzinv  19875
  Copyright terms: Public domain W3C validator