MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem11 Structured version   Visualization version   GIF version

Theorem vdwlem11 16620
Description: Lemma for vdw 16623. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
Assertion
Ref Expression
vdwlem11 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝑠,𝐾,𝑛   𝑅,𝑓,𝑛,𝑠   𝜑,𝑓
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem vdwlem11
Dummy variables 𝑎 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . 3 (𝜑𝑅 ∈ Fin)
2 vdwlem9.k . . 3 (𝜑𝐾 ∈ (ℤ‘2))
3 vdwlem9.s . . 3 (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
4 hashcl 13999 . . . . 5 (𝑅 ∈ Fin → (♯‘𝑅) ∈ ℕ0)
51, 4syl 17 . . . 4 (𝜑 → (♯‘𝑅) ∈ ℕ0)
6 nn0p1nn 12202 . . . 4 ((♯‘𝑅) ∈ ℕ0 → ((♯‘𝑅) + 1) ∈ ℕ)
75, 6syl 17 . . 3 (𝜑 → ((♯‘𝑅) + 1) ∈ ℕ)
81, 2, 3, 7vdwlem10 16619 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
91adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
10 ovex 7288 . . . . . . 7 (1...𝑛) ∈ V
11 elmapg 8586 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
129, 10, 11sylancl 585 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
1312biimpa 476 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅)
145nn0red 12224 . . . . . . . . . . 11 (𝜑 → (♯‘𝑅) ∈ ℝ)
1514ltp1d 11835 . . . . . . . . . 10 (𝜑 → (♯‘𝑅) < ((♯‘𝑅) + 1))
16 peano2re 11078 . . . . . . . . . . . 12 ((♯‘𝑅) ∈ ℝ → ((♯‘𝑅) + 1) ∈ ℝ)
1714, 16syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑅) + 1) ∈ ℝ)
1814, 17ltnled 11052 . . . . . . . . . 10 (𝜑 → ((♯‘𝑅) < ((♯‘𝑅) + 1) ↔ ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
1915, 18mpbid 231 . . . . . . . . 9 (𝜑 → ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅))
2019adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅))
21 eluz2nn 12553 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
222, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℕ)
2322adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ)
2423nnnn0d 12223 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ0)
25 simprr 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝑓:(1...𝑛)⟶𝑅)
267adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((♯‘𝑅) + 1) ∈ ℕ)
27 eqid 2738 . . . . . . . . . 10 (1...((♯‘𝑅) + 1)) = (1...((♯‘𝑅) + 1))
2810, 24, 25, 26, 27vdwpc 16609 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1)))(∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1))))
291ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑅 ∈ Fin)
3025ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → 𝑓:(1...𝑛)⟶𝑅)
3125ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑓:(1...𝑛)⟶𝑅)
32 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}))
33 cnvimass 5978 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ⊆ dom 𝑓
3432, 33sstrdi 3929 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ dom 𝑓)
3531, 34fssdmd 6603 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (1...𝑛))
3622ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → 𝐾 ∈ ℕ)
37 simplrl 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → 𝑎 ∈ ℕ)
38 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))
39 nnex 11909 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℕ ∈ V
40 ovex 7288 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1...((♯‘𝑅) + 1)) ∈ V
4139, 40elmap 8617 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))) ↔ 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ)
4238, 41sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ)
4342ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (𝑑𝑖) ∈ ℕ)
4437, 43nnaddcld 11955 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ℕ)
45 vdwapid1 16604 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ ∧ (𝑎 + (𝑑𝑖)) ∈ ℕ ∧ (𝑑𝑖) ∈ ℕ) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4636, 44, 43, 45syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4835, 47sseldd 3918 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛))
4948ex 412 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)))
50 ffvelrn 6941 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑛)⟶𝑅 ∧ (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
5130, 49, 50syl6an 680 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5251ralimdva 3102 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → (∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5352imp 406 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
54 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))
5554fmpt 6966 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅 ↔ (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅)
5653, 55sylib 217 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅)
5756frnd 6592 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅)
58 ssdomg 8741 . . . . . . . . . . . . . 14 (𝑅 ∈ Fin → (ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅 → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
5929, 57, 58sylc 65 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅)
6029, 57ssfid 8971 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin)
61 hashdom 14022 . . . . . . . . . . . . . 14 ((ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin ∧ 𝑅 ∈ Fin) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6260, 29, 61syl2anc 583 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6359, 62mpbird 256 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅))
64 breq1 5073 . . . . . . . . . . . 12 ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅) ↔ ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6563, 64syl5ibcom 244 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6665expimpd 453 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → ((∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6766rexlimdvva 3222 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1)))(∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6828, 67sylbid 239 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6920, 68mtod 197 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓)
70 biorf 933 . . . . . . 7 (¬ ⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7169, 70syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7271anassrs 467 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓:(1...𝑛)⟶𝑅) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7313, 72syldan 590 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7473ralbidva 3119 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7574rexbidva 3224 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
768, 75mpbird 256 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cdom 8689  Fincfn 8691  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cn 11903  2c2 11958  0cn0 12163  cuz 12511  ...cfz 13168  chash 13972  APcvdwa 16594   MonoAP cvdwm 16595   PolyAP cvdwp 16596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-hash 13973  df-vdwap 16597  df-vdwmc 16598  df-vdwpc 16599
This theorem is referenced by:  vdwlem13  16622
  Copyright terms: Public domain W3C validator