| Step | Hyp | Ref
| Expression |
| 1 | | vdw.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Fin) |
| 2 | | vdwlem9.k |
. . 3
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘2)) |
| 3 | | vdwlem9.s |
. . 3
⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
| 4 | | hashcl 14379 |
. . . . 5
⊢ (𝑅 ∈ Fin →
(♯‘𝑅) ∈
ℕ0) |
| 5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘𝑅) ∈
ℕ0) |
| 6 | | nn0p1nn 12545 |
. . . 4
⊢
((♯‘𝑅)
∈ ℕ0 → ((♯‘𝑅) + 1) ∈ ℕ) |
| 7 | 5, 6 | syl 17 |
. . 3
⊢ (𝜑 → ((♯‘𝑅) + 1) ∈
ℕ) |
| 8 | 1, 2, 3, 7 | vdwlem10 17015 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
| 9 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin) |
| 10 | | ovex 7443 |
. . . . . . 7
⊢
(1...𝑛) ∈
V |
| 11 | | elmapg 8858 |
. . . . . . 7
⊢ ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅 ↑m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) |
| 12 | 9, 10, 11 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅 ↑m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) |
| 13 | 12 | biimpa 476 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅) |
| 14 | 5 | nn0red 12568 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑅) ∈
ℝ) |
| 15 | 14 | ltp1d 12177 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑅) < ((♯‘𝑅) + 1)) |
| 16 | | peano2re 11413 |
. . . . . . . . . . . 12
⊢
((♯‘𝑅)
∈ ℝ → ((♯‘𝑅) + 1) ∈ ℝ) |
| 17 | 14, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝑅) + 1) ∈
ℝ) |
| 18 | 14, 17 | ltnled 11387 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝑅) < ((♯‘𝑅) + 1) ↔ ¬
((♯‘𝑅) + 1)
≤ (♯‘𝑅))) |
| 19 | 15, 18 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → ¬
((♯‘𝑅) + 1)
≤ (♯‘𝑅)) |
| 20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅)) |
| 21 | | eluz2nn 12903 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈
(ℤ≥‘2) → 𝐾 ∈ ℕ) |
| 22 | 2, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ) |
| 24 | 23 | nnnn0d 12567 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈
ℕ0) |
| 25 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝑓:(1...𝑛)⟶𝑅) |
| 26 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((♯‘𝑅) + 1) ∈ ℕ) |
| 27 | | eqid 2736 |
. . . . . . . . . 10
⊢
(1...((♯‘𝑅) + 1)) = (1...((♯‘𝑅) + 1)) |
| 28 | 10, 24, 25, 26, 27 | vdwpc 17005 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1)))(∀𝑖 ∈
(1...((♯‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1)))) |
| 29 | 1 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → 𝑅 ∈ Fin) |
| 30 | 25 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → 𝑓:(1...𝑛)⟶𝑅) |
| 31 | 25 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → 𝑓:(1...𝑛)⟶𝑅) |
| 32 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) |
| 33 | | cnvimass 6074 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ⊆ dom 𝑓 |
| 34 | 32, 33 | sstrdi 3976 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ dom 𝑓) |
| 35 | 31, 34 | fssdmd 6729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (1...𝑛)) |
| 36 | 22 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → 𝐾 ∈
ℕ) |
| 37 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → 𝑎 ∈
ℕ) |
| 38 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) → 𝑑 ∈
(ℕ ↑m (1...((♯‘𝑅) + 1)))) |
| 39 | | nnex 12251 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ℕ
∈ V |
| 40 | | ovex 7443 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(1...((♯‘𝑅) + 1)) ∈ V |
| 41 | 39, 40 | elmap 8890 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 ∈ (ℕ
↑m (1...((♯‘𝑅) + 1))) ↔ 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ) |
| 42 | 38, 41 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) → 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ) |
| 43 | 42 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (𝑑‘𝑖) ∈
ℕ) |
| 44 | 37, 43 | nnaddcld 12297 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (𝑎 + (𝑑‘𝑖)) ∈ ℕ) |
| 45 | | vdwapid1 17000 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐾 ∈ ℕ ∧ (𝑎 + (𝑑‘𝑖)) ∈ ℕ ∧ (𝑑‘𝑖) ∈ ℕ) → (𝑎 + (𝑑‘𝑖)) ∈ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
| 46 | 36, 44, 43, 45 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (𝑎 + (𝑑‘𝑖)) ∈ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (𝑎 + (𝑑‘𝑖)) ∈ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
| 48 | 35, 47 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (𝑎 + (𝑑‘𝑖)) ∈ (1...𝑛)) |
| 49 | 48 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) → (𝑎 + (𝑑‘𝑖)) ∈ (1...𝑛))) |
| 50 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑛)⟶𝑅 ∧ (𝑎 + (𝑑‘𝑖)) ∈ (1...𝑛)) → (𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅) |
| 51 | 30, 49, 50 | syl6an 684 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) → (𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅)) |
| 52 | 51 | ralimdva 3153 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) → (∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅)) |
| 53 | 52 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅) |
| 54 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) = (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) |
| 55 | 54 | fmpt 7105 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑖 ∈
(1...((♯‘𝑅) +
1))(𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅 ↔ (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅) |
| 56 | 53, 55 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅) |
| 57 | 56 | frnd 6719 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ⊆ 𝑅) |
| 58 | | ssdomg 9019 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Fin → (ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ⊆ 𝑅 → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅)) |
| 59 | 29, 57, 58 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅) |
| 60 | 29, 57 | ssfid 9278 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ∈ Fin) |
| 61 | | hashdom 14402 |
. . . . . . . . . . . . . 14
⊢ ((ran
(𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ∈ Fin ∧ 𝑅 ∈ Fin) → ((♯‘ran
(𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅)) |
| 62 | 60, 29, 61 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅)) |
| 63 | 59, 62 | mpbird 257 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (♯‘𝑅)) |
| 64 | | breq1 5127 |
. . . . . . . . . . . 12
⊢
((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (♯‘𝑅) ↔ ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
| 65 | 63, 64 | syl5ibcom 245 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
| 66 | 65 | expimpd 453 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) → ((∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
| 67 | 66 | rexlimdvva 3202 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1)))(∀𝑖 ∈
(1...((♯‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
| 68 | 28, 67 | sylbid 240 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 → ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
| 69 | 20, 68 | mtod 198 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ 〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓) |
| 70 | | biorf 936 |
. . . . . . 7
⊢ (¬
〈((♯‘𝑅) +
1), 𝐾〉 PolyAP 𝑓 → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 71 | 69, 70 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 72 | 71 | anassrs 467 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑓:(1...𝑛)⟶𝑅) → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 73 | 13, 72 | syldan 591 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 74 | 73 | ralbidva 3162 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 75 | 74 | rexbidva 3163 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
| 76 | 8, 75 | mpbird 257 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(𝐾 + 1) MonoAP 𝑓) |