MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem11 Structured version   Visualization version   GIF version

Theorem vdwlem11 16903
Description: Lemma for vdw 16906. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
Assertion
Ref Expression
vdwlem11 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝑠,𝐾,𝑛   𝑅,𝑓,𝑛,𝑠   𝜑,𝑓
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem vdwlem11
Dummy variables 𝑎 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . 3 (𝜑𝑅 ∈ Fin)
2 vdwlem9.k . . 3 (𝜑𝐾 ∈ (ℤ‘2))
3 vdwlem9.s . . 3 (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
4 hashcl 14263 . . . . 5 (𝑅 ∈ Fin → (♯‘𝑅) ∈ ℕ0)
51, 4syl 17 . . . 4 (𝜑 → (♯‘𝑅) ∈ ℕ0)
6 nn0p1nn 12423 . . . 4 ((♯‘𝑅) ∈ ℕ0 → ((♯‘𝑅) + 1) ∈ ℕ)
75, 6syl 17 . . 3 (𝜑 → ((♯‘𝑅) + 1) ∈ ℕ)
81, 2, 3, 7vdwlem10 16902 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
91adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
10 ovex 7382 . . . . . . 7 (1...𝑛) ∈ V
11 elmapg 8766 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
129, 10, 11sylancl 586 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
1312biimpa 476 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅)
145nn0red 12446 . . . . . . . . . . 11 (𝜑 → (♯‘𝑅) ∈ ℝ)
1514ltp1d 12055 . . . . . . . . . 10 (𝜑 → (♯‘𝑅) < ((♯‘𝑅) + 1))
16 peano2re 11289 . . . . . . . . . . . 12 ((♯‘𝑅) ∈ ℝ → ((♯‘𝑅) + 1) ∈ ℝ)
1714, 16syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑅) + 1) ∈ ℝ)
1814, 17ltnled 11263 . . . . . . . . . 10 (𝜑 → ((♯‘𝑅) < ((♯‘𝑅) + 1) ↔ ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
1915, 18mpbid 232 . . . . . . . . 9 (𝜑 → ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅))
2019adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅))
21 eluz2nn 12789 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
222, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℕ)
2322adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ)
2423nnnn0d 12445 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ0)
25 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝑓:(1...𝑛)⟶𝑅)
267adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((♯‘𝑅) + 1) ∈ ℕ)
27 eqid 2729 . . . . . . . . . 10 (1...((♯‘𝑅) + 1)) = (1...((♯‘𝑅) + 1))
2810, 24, 25, 26, 27vdwpc 16892 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1)))(∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1))))
291ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑅 ∈ Fin)
3025ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → 𝑓:(1...𝑛)⟶𝑅)
3125ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑓:(1...𝑛)⟶𝑅)
32 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}))
33 cnvimass 6033 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ⊆ dom 𝑓
3432, 33sstrdi 3948 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ dom 𝑓)
3531, 34fssdmd 6670 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (1...𝑛))
3622ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → 𝐾 ∈ ℕ)
37 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → 𝑎 ∈ ℕ)
38 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))
39 nnex 12134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℕ ∈ V
40 ovex 7382 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1...((♯‘𝑅) + 1)) ∈ V
4139, 40elmap 8798 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))) ↔ 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ)
4238, 41sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ)
4342ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (𝑑𝑖) ∈ ℕ)
4437, 43nnaddcld 12180 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ℕ)
45 vdwapid1 16887 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ ∧ (𝑎 + (𝑑𝑖)) ∈ ℕ ∧ (𝑑𝑖) ∈ ℕ) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4636, 44, 43, 45syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4835, 47sseldd 3936 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛))
4948ex 412 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)))
50 ffvelcdm 7015 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑛)⟶𝑅 ∧ (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
5130, 49, 50syl6an 684 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5251ralimdva 3141 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → (∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5352imp 406 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
54 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))
5554fmpt 7044 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅 ↔ (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅)
5653, 55sylib 218 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅)
5756frnd 6660 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅)
58 ssdomg 8925 . . . . . . . . . . . . . 14 (𝑅 ∈ Fin → (ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅 → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
5929, 57, 58sylc 65 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅)
6029, 57ssfid 9158 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin)
61 hashdom 14286 . . . . . . . . . . . . . 14 ((ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin ∧ 𝑅 ∈ Fin) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6260, 29, 61syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6359, 62mpbird 257 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅))
64 breq1 5095 . . . . . . . . . . . 12 ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅) ↔ ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6563, 64syl5ibcom 245 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6665expimpd 453 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → ((∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6766rexlimdvva 3186 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1)))(∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6828, 67sylbid 240 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6920, 68mtod 198 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓)
70 biorf 936 . . . . . . 7 (¬ ⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7169, 70syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7271anassrs 467 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓:(1...𝑛)⟶𝑅) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7313, 72syldan 591 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7473ralbidva 3150 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7574rexbidva 3151 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
768, 75mpbird 257 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  cdom 8870  Fincfn 8872  cr 11008  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cn 12128  2c2 12183  0cn0 12384  cuz 12735  ...cfz 13410  chash 14237  APcvdwa 16877   MonoAP cvdwm 16878   PolyAP cvdwp 16879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-hash 14238  df-vdwap 16880  df-vdwmc 16881  df-vdwpc 16882
This theorem is referenced by:  vdwlem13  16905
  Copyright terms: Public domain W3C validator