MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem11 Structured version   Visualization version   GIF version

Theorem vdwlem11 16692
Description: Lemma for vdw 16695. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
Assertion
Ref Expression
vdwlem11 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝑠,𝐾,𝑛   𝑅,𝑓,𝑛,𝑠   𝜑,𝑓
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem vdwlem11
Dummy variables 𝑎 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . 3 (𝜑𝑅 ∈ Fin)
2 vdwlem9.k . . 3 (𝜑𝐾 ∈ (ℤ‘2))
3 vdwlem9.s . . 3 (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
4 hashcl 14071 . . . . 5 (𝑅 ∈ Fin → (♯‘𝑅) ∈ ℕ0)
51, 4syl 17 . . . 4 (𝜑 → (♯‘𝑅) ∈ ℕ0)
6 nn0p1nn 12272 . . . 4 ((♯‘𝑅) ∈ ℕ0 → ((♯‘𝑅) + 1) ∈ ℕ)
75, 6syl 17 . . 3 (𝜑 → ((♯‘𝑅) + 1) ∈ ℕ)
81, 2, 3, 7vdwlem10 16691 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
91adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
10 ovex 7308 . . . . . . 7 (1...𝑛) ∈ V
11 elmapg 8628 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
129, 10, 11sylancl 586 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
1312biimpa 477 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅)
145nn0red 12294 . . . . . . . . . . 11 (𝜑 → (♯‘𝑅) ∈ ℝ)
1514ltp1d 11905 . . . . . . . . . 10 (𝜑 → (♯‘𝑅) < ((♯‘𝑅) + 1))
16 peano2re 11148 . . . . . . . . . . . 12 ((♯‘𝑅) ∈ ℝ → ((♯‘𝑅) + 1) ∈ ℝ)
1714, 16syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑅) + 1) ∈ ℝ)
1814, 17ltnled 11122 . . . . . . . . . 10 (𝜑 → ((♯‘𝑅) < ((♯‘𝑅) + 1) ↔ ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
1915, 18mpbid 231 . . . . . . . . 9 (𝜑 → ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅))
2019adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅))
21 eluz2nn 12624 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
222, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℕ)
2322adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ)
2423nnnn0d 12293 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ0)
25 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝑓:(1...𝑛)⟶𝑅)
267adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((♯‘𝑅) + 1) ∈ ℕ)
27 eqid 2738 . . . . . . . . . 10 (1...((♯‘𝑅) + 1)) = (1...((♯‘𝑅) + 1))
2810, 24, 25, 26, 27vdwpc 16681 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1)))(∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1))))
291ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑅 ∈ Fin)
3025ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → 𝑓:(1...𝑛)⟶𝑅)
3125ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑓:(1...𝑛)⟶𝑅)
32 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}))
33 cnvimass 5989 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ⊆ dom 𝑓
3432, 33sstrdi 3933 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ dom 𝑓)
3531, 34fssdmd 6619 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (1...𝑛))
3622ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → 𝐾 ∈ ℕ)
37 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → 𝑎 ∈ ℕ)
38 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))
39 nnex 11979 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℕ ∈ V
40 ovex 7308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1...((♯‘𝑅) + 1)) ∈ V
4139, 40elmap 8659 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))) ↔ 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ)
4238, 41sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ)
4342ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (𝑑𝑖) ∈ ℕ)
4437, 43nnaddcld 12025 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ℕ)
45 vdwapid1 16676 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ ∧ (𝑎 + (𝑑𝑖)) ∈ ℕ ∧ (𝑑𝑖) ∈ ℕ) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4636, 44, 43, 45syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4746adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4835, 47sseldd 3922 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛))
4948ex 413 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)))
50 ffvelrn 6959 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑛)⟶𝑅 ∧ (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
5130, 49, 50syl6an 681 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((♯‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5251ralimdva 3108 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → (∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5352imp 407 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
54 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))
5554fmpt 6984 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅 ↔ (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅)
5653, 55sylib 217 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅)
5756frnd 6608 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅)
58 ssdomg 8786 . . . . . . . . . . . . . 14 (𝑅 ∈ Fin → (ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅 → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
5929, 57, 58sylc 65 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅)
6029, 57ssfid 9042 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin)
61 hashdom 14094 . . . . . . . . . . . . . 14 ((ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin ∧ 𝑅 ∈ Fin) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6260, 29, 61syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6359, 62mpbird 256 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅))
64 breq1 5077 . . . . . . . . . . . 12 ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (♯‘𝑅) ↔ ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6563, 64syl5ibcom 244 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6665expimpd 454 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1))))) → ((∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6766rexlimdvva 3223 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...((♯‘𝑅) + 1)))(∀𝑖 ∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6828, 67sylbid 239 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((♯‘𝑅) + 1) ≤ (♯‘𝑅)))
6920, 68mtod 197 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓)
70 biorf 934 . . . . . . 7 (¬ ⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7169, 70syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7271anassrs 468 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓:(1...𝑛)⟶𝑅) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7313, 72syldan 591 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅m (1...𝑛))) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7473ralbidva 3111 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7574rexbidva 3225 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(⟨((♯‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
768, 75mpbird 256 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cdom 8731  Fincfn 8733  cr 10870  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cn 11973  2c2 12028  0cn0 12233  cuz 12582  ...cfz 13239  chash 14044  APcvdwa 16666   MonoAP cvdwm 16667   PolyAP cvdwp 16668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-hash 14045  df-vdwap 16669  df-vdwmc 16670  df-vdwpc 16671
This theorem is referenced by:  vdwlem13  16694
  Copyright terms: Public domain W3C validator