Step | Hyp | Ref
| Expression |
1 | | vdw.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Fin) |
2 | | vdwlem9.k |
. . 3
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘2)) |
3 | | vdwlem9.s |
. . 3
⊢ (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
4 | | hashcl 13999 |
. . . . 5
⊢ (𝑅 ∈ Fin →
(♯‘𝑅) ∈
ℕ0) |
5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘𝑅) ∈
ℕ0) |
6 | | nn0p1nn 12202 |
. . . 4
⊢
((♯‘𝑅)
∈ ℕ0 → ((♯‘𝑅) + 1) ∈ ℕ) |
7 | 5, 6 | syl 17 |
. . 3
⊢ (𝜑 → ((♯‘𝑅) + 1) ∈
ℕ) |
8 | 1, 2, 3, 7 | vdwlem10 16619 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) |
9 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin) |
10 | | ovex 7288 |
. . . . . . 7
⊢
(1...𝑛) ∈
V |
11 | | elmapg 8586 |
. . . . . . 7
⊢ ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅 ↑m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) |
12 | 9, 10, 11 | sylancl 585 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅 ↑m (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) |
13 | 12 | biimpa 476 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅) |
14 | 5 | nn0red 12224 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑅) ∈
ℝ) |
15 | 14 | ltp1d 11835 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑅) < ((♯‘𝑅) + 1)) |
16 | | peano2re 11078 |
. . . . . . . . . . . 12
⊢
((♯‘𝑅)
∈ ℝ → ((♯‘𝑅) + 1) ∈ ℝ) |
17 | 14, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝑅) + 1) ∈
ℝ) |
18 | 14, 17 | ltnled 11052 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝑅) < ((♯‘𝑅) + 1) ↔ ¬
((♯‘𝑅) + 1)
≤ (♯‘𝑅))) |
19 | 15, 18 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → ¬
((♯‘𝑅) + 1)
≤ (♯‘𝑅)) |
20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ((♯‘𝑅) + 1) ≤ (♯‘𝑅)) |
21 | | eluz2nn 12553 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈
(ℤ≥‘2) → 𝐾 ∈ ℕ) |
22 | 2, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ℕ) |
23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ) |
24 | 23 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈
ℕ0) |
25 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝑓:(1...𝑛)⟶𝑅) |
26 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((♯‘𝑅) + 1) ∈ ℕ) |
27 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1...((♯‘𝑅) + 1)) = (1...((♯‘𝑅) + 1)) |
28 | 10, 24, 25, 26, 27 | vdwpc 16609 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1)))(∀𝑖 ∈
(1...((♯‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1)))) |
29 | 1 | ad3antrrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → 𝑅 ∈ Fin) |
30 | 25 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → 𝑓:(1...𝑛)⟶𝑅) |
31 | 25 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → 𝑓:(1...𝑛)⟶𝑅) |
32 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) |
33 | | cnvimass 5978 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ⊆ dom 𝑓 |
34 | 32, 33 | sstrdi 3929 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ dom 𝑓) |
35 | 31, 34 | fssdmd 6603 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (1...𝑛)) |
36 | 22 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → 𝐾 ∈
ℕ) |
37 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → 𝑎 ∈
ℕ) |
38 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) → 𝑑 ∈
(ℕ ↑m (1...((♯‘𝑅) + 1)))) |
39 | | nnex 11909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ℕ
∈ V |
40 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(1...((♯‘𝑅) + 1)) ∈ V |
41 | 39, 40 | elmap 8617 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 ∈ (ℕ
↑m (1...((♯‘𝑅) + 1))) ↔ 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ) |
42 | 38, 41 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) → 𝑑:(1...((♯‘𝑅) + 1))⟶ℕ) |
43 | 42 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (𝑑‘𝑖) ∈
ℕ) |
44 | 37, 43 | nnaddcld 11955 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (𝑎 + (𝑑‘𝑖)) ∈ ℕ) |
45 | | vdwapid1 16604 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐾 ∈ ℕ ∧ (𝑎 + (𝑑‘𝑖)) ∈ ℕ ∧ (𝑑‘𝑖) ∈ ℕ) → (𝑎 + (𝑑‘𝑖)) ∈ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
46 | 36, 44, 43, 45 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (𝑎 + (𝑑‘𝑖)) ∈ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (𝑎 + (𝑑‘𝑖)) ∈ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖))) |
48 | 35, 47 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) ∧ ((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (𝑎 + (𝑑‘𝑖)) ∈ (1...𝑛)) |
49 | 48 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) → (𝑎 + (𝑑‘𝑖)) ∈ (1...𝑛))) |
50 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑛)⟶𝑅 ∧ (𝑎 + (𝑑‘𝑖)) ∈ (1...𝑛)) → (𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅) |
51 | 30, 49, 50 | syl6an 680 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ 𝑖 ∈
(1...((♯‘𝑅) +
1))) → (((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) → (𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅)) |
52 | 51 | ralimdva 3102 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) → (∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅)) |
53 | 52 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ∀𝑖 ∈ (1...((♯‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅) |
54 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) = (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) |
55 | 54 | fmpt 6966 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑖 ∈
(1...((♯‘𝑅) +
1))(𝑓‘(𝑎 + (𝑑‘𝑖))) ∈ 𝑅 ↔ (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅) |
56 | 53, 55 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))):(1...((♯‘𝑅) + 1))⟶𝑅) |
57 | 56 | frnd 6592 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ⊆ 𝑅) |
58 | | ssdomg 8741 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Fin → (ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ⊆ 𝑅 → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅)) |
59 | 29, 57, 58 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅) |
60 | 29, 57 | ssfid 8971 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ∈ Fin) |
61 | | hashdom 14022 |
. . . . . . . . . . . . . 14
⊢ ((ran
(𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ∈ Fin ∧ 𝑅 ∈ Fin) → ((♯‘ran
(𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅)) |
62 | 60, 29, 61 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (♯‘𝑅) ↔ ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖)))) ≼ 𝑅)) |
63 | 59, 62 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → (♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (♯‘𝑅)) |
64 | | breq1 5073 |
. . . . . . . . . . . 12
⊢
((♯‘ran (𝑖 ∈ (1...((♯‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) ≤ (♯‘𝑅) ↔ ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
65 | 63, 64 | syl5ibcom 244 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) ∧ ∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))})) → ((♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
66 | 65 | expimpd 453 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1))))) → ((∀𝑖
∈ (1...((♯‘𝑅) + 1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
67 | 66 | rexlimdvva 3222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...((♯‘𝑅) +
1)))(∀𝑖 ∈
(1...((♯‘𝑅) +
1))((𝑎 + (𝑑‘𝑖))(AP‘𝐾)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈
(1...((♯‘𝑅) +
1)) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = ((♯‘𝑅) + 1)) → ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
68 | 28, 67 | sylbid 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 → ((♯‘𝑅) + 1) ≤ (♯‘𝑅))) |
69 | 20, 68 | mtod 197 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ 〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓) |
70 | | biorf 933 |
. . . . . . 7
⊢ (¬
〈((♯‘𝑅) +
1), 𝐾〉 PolyAP 𝑓 → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
71 | 69, 70 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
72 | 71 | anassrs 467 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑓:(1...𝑛)⟶𝑅) → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
73 | 13, 72 | syldan 590 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑m (1...𝑛))) → ((𝐾 + 1) MonoAP 𝑓 ↔ (〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
74 | 73 | ralbidva 3119 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
75 | 74 | rexbidva 3224 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(〈((♯‘𝑅) + 1), 𝐾〉 PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))) |
76 | 8, 75 | mpbird 256 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))(𝐾 + 1) MonoAP 𝑓) |