MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvtaylp Structured version   Visualization version   GIF version

Theorem dvtaylp 24876
Description: The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
dvtaylp.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvtaylp.f (𝜑𝐹:𝐴⟶ℂ)
dvtaylp.a (𝜑𝐴𝑆)
dvtaylp.n (𝜑𝑁 ∈ ℕ0)
dvtaylp.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
Assertion
Ref Expression
dvtaylp (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵))

Proof of Theorem dvtaylp
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 23309 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
32toponrestid 21448 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4 cnelprrecn 10622 . . . . 5 ℂ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℂ ∈ {ℝ, ℂ})
6 toponmax 21453 . . . . 5 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
72, 6mp1i 13 . . . 4 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
8 fzfid 13334 . . . 4 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
9 dvtaylp.s . . . . . . . . 9 (𝜑𝑆 ∈ {ℝ, ℂ})
10 cnex 10610 . . . . . . . . . . 11 ℂ ∈ V
1110a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ V)
12 dvtaylp.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℂ)
13 dvtaylp.a . . . . . . . . . 10 (𝜑𝐴𝑆)
14 elpm2r 8417 . . . . . . . . . 10 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1511, 9, 12, 13, 14syl22anc 836 . . . . . . . . 9 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
16 elfznn0 12993 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
17 dvnf 24442 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
189, 15, 16, 17syl2an3an 1416 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
19 0z 11984 . . . . . . . . . . . 12 0 ∈ ℤ
20 dvtaylp.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
21 peano2nn0 11929 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2220, 21syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 1) ∈ ℕ0)
2322nn0zd 12077 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℤ)
24 fzval2 12888 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (0...(𝑁 + 1)) = ((0[,](𝑁 + 1)) ∩ ℤ))
2519, 23, 24sylancr 587 . . . . . . . . . . 11 (𝜑 → (0...(𝑁 + 1)) = ((0[,](𝑁 + 1)) ∩ ℤ))
2625eleq2d 2902 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↔ 𝑘 ∈ ((0[,](𝑁 + 1)) ∩ ℤ)))
2726biimpa 477 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ((0[,](𝑁 + 1)) ∩ ℤ))
28 dvtaylp.b . . . . . . . . . 10 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
299, 12, 13, 22, 28taylplem1 24869 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,](𝑁 + 1)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3027, 29syldan 591 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3118, 30ffvelrnd 6847 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
3216adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
3332faccld 13637 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (!‘𝑘) ∈ ℕ)
3433nncnd 11646 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (!‘𝑘) ∈ ℂ)
3533nnne0d 11679 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (!‘𝑘) ≠ 0)
3631, 34, 35divcld 11408 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
37363adant3 1126 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
38 simp3 1132 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
39 recnprss 24420 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
409, 39syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
4113, 40sstrd 3980 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
42 dvnbss 24443 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 + 1) ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) ⊆ dom 𝐹)
439, 15, 22, 42syl3anc 1365 . . . . . . . . . . 11 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) ⊆ dom 𝐹)
4412, 43fssdmd 6525 . . . . . . . . . 10 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) ⊆ 𝐴)
4544, 28sseldd 3971 . . . . . . . . 9 (𝜑𝐵𝐴)
4641, 45sseldd 3971 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
47463ad2ant1 1127 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
4838, 47subcld 10989 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
49163ad2ant2 1128 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℕ0)
5048, 49expcld 13503 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)↑𝑘) ∈ ℂ)
5137, 50mulcld 10653 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ ℂ)
52 0cnd 10626 . . . . . 6 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈ ℂ)
5349nn0cnd 11949 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℂ)
5453adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ)
5548adantr 481 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑥𝐵) ∈ ℂ)
5649adantr 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0)
57 simpr 485 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0)
5857neqned 3027 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ≠ 0)
59 elnnne0 11903 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
6056, 58, 59sylanbrc 583 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ)
61 nnm1nn0 11930 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
6260, 61syl 17 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈ ℕ0)
6355, 62expcld 13503 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ((𝑥𝐵)↑(𝑘 − 1)) ∈ ℂ)
6454, 63mulcld 10653 . . . . . 6 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))) ∈ ℂ)
6552, 64ifclda 4503 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
6637, 65mulcld 10653 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) ∈ ℂ)
674a1i 11 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ℂ ∈ {ℝ, ℂ})
68503expa 1112 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)↑𝑘) ∈ ℂ)
69653expa 1112 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
70483expa 1112 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
71 1cnd 10628 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
72 simpr 485 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
7332adantr 481 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → 𝑘 ∈ ℕ0)
7472, 73expcld 13503 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → (𝑦𝑘) ∈ ℂ)
75 c0ex 10627 . . . . . . . . 9 0 ∈ V
76 ovex 7184 . . . . . . . . 9 (𝑘 · (𝑦↑(𝑘 − 1))) ∈ V
7775, 76ifex 4517 . . . . . . . 8 if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1)))) ∈ V
7877a1i 11 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1)))) ∈ V)
79 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
8067dvmptid 24472 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
8146ad2antrr 722 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
82 0cnd 10626 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 0 ∈ ℂ)
8346adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵 ∈ ℂ)
8467, 83dvmptc 24473 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ 𝐵)) = (𝑥 ∈ ℂ ↦ 0))
8567, 79, 71, 80, 81, 82, 84dvmptsub 24482 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝐵))) = (𝑥 ∈ ℂ ↦ (1 − 0)))
86 1m0e1 11750 . . . . . . . . 9 (1 − 0) = 1
8786mpteq2i 5154 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (1 − 0)) = (𝑥 ∈ ℂ ↦ 1)
8885, 87syl6eq 2876 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝐵))) = (𝑥 ∈ ℂ ↦ 1))
89 dvexp2 24469 . . . . . . . 8 (𝑘 ∈ ℕ0 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1))))))
9032, 89syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1))))))
91 oveq1 7158 . . . . . . 7 (𝑦 = (𝑥𝐵) → (𝑦𝑘) = ((𝑥𝐵)↑𝑘))
92 oveq1 7158 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝑦↑(𝑘 − 1)) = ((𝑥𝐵)↑(𝑘 − 1)))
9392oveq2d 7167 . . . . . . . 8 (𝑦 = (𝑥𝐵) → (𝑘 · (𝑦↑(𝑘 − 1))) = (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))
9493ifeq2d 4488 . . . . . . 7 (𝑦 = (𝑥𝐵) → if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1)))) = if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
9567, 67, 70, 71, 74, 78, 88, 90, 91, 94dvmptco 24487 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥𝐵)↑𝑘))) = (𝑥 ∈ ℂ ↦ (if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) · 1)))
9669mulid1d 10650 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → (if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) · 1) = if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
9796mpteq2dva 5157 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑥 ∈ ℂ ↦ (if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) · 1)) = (𝑥 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))))
9895, 97eqtrd 2860 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥𝐵)↑𝑘))) = (𝑥 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))))
9967, 68, 69, 98, 36dvmptcmul 24479 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (𝑥 ∈ ℂ ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))))
1003, 1, 5, 7, 8, 51, 66, 99dvmptfsum 24490 . . 3 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))))
101 1zzd 12005 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℤ)
102 0zd 11985 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 0 ∈ ℤ)
10320nn0zd 12077 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
104103adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℤ)
105 dvfg 24422 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
1069, 105syl 17 . . . . . . 7 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
10740, 12, 13dvbss 24417 . . . . . . . 8 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)
108107, 13sstrd 3980 . . . . . . 7 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑆)
109 1nn0 11905 . . . . . . . . . . . 12 1 ∈ ℕ0
110109a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
111 dvnadd 24444 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (1 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(1 + 𝑁)))
1129, 15, 110, 20, 111syl22anc 836 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(1 + 𝑁)))
113 dvn1 24441 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹))
11440, 15, 113syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹))
115114oveq2d 7167 . . . . . . . . . . 11 (𝜑 → (𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1)) = (𝑆 D𝑛 (𝑆 D 𝐹)))
116115fveq1d 6668 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘𝑁) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁))
117 1cnd 10628 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
11820nn0cnd 11949 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
119117, 118addcomd 10834 . . . . . . . . . . 11 (𝜑 → (1 + 𝑁) = (𝑁 + 1))
120119fveq2d 6670 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 𝐹)‘(1 + 𝑁)) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
121112, 116, 1203eqtr3d 2868 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
122121dmeqd 5772 . . . . . . . 8 (𝜑 → dom ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁) = dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
12328, 122eleqtrrd 2920 . . . . . . 7 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁))
1249, 106, 108, 20, 123taylplem2 24870 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → (((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)) ∈ ℂ)
125 fveq2 6666 . . . . . . . . 9 (𝑗 = (𝑘 − 1) → ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1)))
126125fveq1d 6668 . . . . . . . 8 (𝑗 = (𝑘 − 1) → (((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) = (((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵))
127 fveq2 6666 . . . . . . . 8 (𝑗 = (𝑘 − 1) → (!‘𝑗) = (!‘(𝑘 − 1)))
128126, 127oveq12d 7169 . . . . . . 7 (𝑗 = (𝑘 − 1) → ((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
129 oveq2 7159 . . . . . . 7 (𝑗 = (𝑘 − 1) → ((𝑥𝐵)↑𝑗) = ((𝑥𝐵)↑(𝑘 − 1)))
130128, 129oveq12d 7169 . . . . . 6 (𝑗 = (𝑘 − 1) → (((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)) = (((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
131101, 102, 104, 124, 130fsumshft 15128 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
132 elfznn 12929 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ)
133132adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℕ)
134133nnne0d 11679 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ≠ 0)
135 ifnefalse 4481 . . . . . . . . . 10 (𝑘 ≠ 0 → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) = (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))
136134, 135syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) = (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))
137136oveq2d 7167 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
138 simpll 763 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝜑)
139 fz1ssfz0 12996 . . . . . . . . . . . 12 (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
140139sseli 3966 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ (0...(𝑁 + 1)))
141140adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
142138, 141, 36syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
143133nncnd 11646 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℂ)
144 simplr 765 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑥 ∈ ℂ)
14546ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐵 ∈ ℂ)
146144, 145subcld 10989 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑥𝐵) ∈ ℂ)
147133, 61syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑘 − 1) ∈ ℕ0)
148146, 147expcld 13503 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑥𝐵)↑(𝑘 − 1)) ∈ ℂ)
149142, 143, 148mulassd 10656 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘) · ((𝑥𝐵)↑(𝑘 − 1))) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
150 facp1 13631 . . . . . . . . . . . . 13 ((𝑘 − 1) ∈ ℕ0 → (!‘((𝑘 − 1) + 1)) = ((!‘(𝑘 − 1)) · ((𝑘 − 1) + 1)))
151147, 150syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘((𝑘 − 1) + 1)) = ((!‘(𝑘 − 1)) · ((𝑘 − 1) + 1)))
152 1cnd 10628 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
153143, 152npcand 10993 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
154153fveq2d 6670 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘((𝑘 − 1) + 1)) = (!‘𝑘))
155153oveq2d 7167 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((!‘(𝑘 − 1)) · ((𝑘 − 1) + 1)) = ((!‘(𝑘 − 1)) · 𝑘))
156151, 154, 1553eqtr3d 2868 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘𝑘) = ((!‘(𝑘 − 1)) · 𝑘))
157156oveq2d 7167 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / (!‘𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / ((!‘(𝑘 − 1)) · 𝑘)))
15832nn0cnd 11949 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℂ)
15931, 158, 34, 35div23d 11445 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / (!‘𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘))
160138, 141, 159syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / (!‘𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘))
161138, 141, 31syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
162147faccld 13637 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘(𝑘 − 1)) ∈ ℕ)
163162nncnd 11646 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘(𝑘 − 1)) ∈ ℂ)
164162nnne0d 11679 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘(𝑘 − 1)) ≠ 0)
165161, 163, 143, 164, 134divcan5rd 11435 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / ((!‘(𝑘 − 1)) · 𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘(𝑘 − 1))))
1669ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑆 ∈ {ℝ, ℂ})
16715ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐹 ∈ (ℂ ↑pm 𝑆))
168109a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℕ0)
169 dvnadd 24444 . . . . . . . . . . . . . . 15 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (1 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘(𝑘 − 1)) = ((𝑆 D𝑛 𝐹)‘(1 + (𝑘 − 1))))
170166, 167, 168, 147, 169syl22anc 836 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘(𝑘 − 1)) = ((𝑆 D𝑛 𝐹)‘(1 + (𝑘 − 1))))
171114ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹))
172171oveq2d 7167 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1)) = (𝑆 D𝑛 (𝑆 D 𝐹)))
173172fveq1d 6668 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘(𝑘 − 1)) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1)))
174152, 143pncan3d 10992 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (1 + (𝑘 − 1)) = 𝑘)
175174fveq2d 6670 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘(1 + (𝑘 − 1))) = ((𝑆 D𝑛 𝐹)‘𝑘))
176170, 173, 1753eqtr3rd 2869 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1)))
177176fveq1d 6668 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) = (((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵))
178177oveq1d 7166 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘(𝑘 − 1))) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
179165, 178eqtrd 2860 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / ((!‘(𝑘 − 1)) · 𝑘)) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
180157, 160, 1793eqtr3d 2868 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
181180oveq1d 7166 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘) · ((𝑥𝐵)↑(𝑘 − 1))) = (((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
182137, 149, 1813eqtr2d 2866 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = (((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
183182sumeq2dv 15053 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
184 0p1e1 11751 . . . . . . . 8 (0 + 1) = 1
185184oveq1i 7161 . . . . . . 7 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
186185sumeq1i 15048 . . . . . 6 Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))) = Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1)))
187183, 186syl6eqr 2878 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
188139a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
18969an32s 648 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
190140, 189sylan2 592 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
191142, 190mulcld 10653 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) ∈ ℂ)
192 eldif 3949 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1))) ↔ (𝑘 ∈ (0...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ (1...(𝑁 + 1))))
19359biimpri 229 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑘 ≠ 0) → 𝑘 ∈ ℕ)
19416, 193sylan 580 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → 𝑘 ∈ ℕ)
195 nnuz 12273 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
196194, 195syl6eleq 2927 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → 𝑘 ∈ (ℤ‘1))
197 elfzuz3 12898 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑁 + 1) ∈ (ℤ𝑘))
198197adantr 481 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → (𝑁 + 1) ∈ (ℤ𝑘))
199 elfzuzb 12895 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(𝑁 + 1)) ↔ (𝑘 ∈ (ℤ‘1) ∧ (𝑁 + 1) ∈ (ℤ𝑘)))
200196, 198, 199sylanbrc 583 . . . . . . . . . . . . . 14 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → 𝑘 ∈ (1...(𝑁 + 1)))
201200ex 413 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 ≠ 0 → 𝑘 ∈ (1...(𝑁 + 1))))
202201adantl 482 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 ≠ 0 → 𝑘 ∈ (1...(𝑁 + 1))))
203202necon1bd 3038 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (¬ 𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 = 0))
204203impr 455 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ (𝑘 ∈ (0...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ (1...(𝑁 + 1)))) → 𝑘 = 0)
205192, 204sylan2b 593 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → 𝑘 = 0)
206205iftrued 4477 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) = 0)
207206oveq2d 7167 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0))
208 eldifi 4106 . . . . . . . . 9 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
20936adantlr 711 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
210208, 209sylan2 592 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
211210mul01d 10831 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
212207, 211eqtrd 2860 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = 0)
213 fzfid 13334 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (0...(𝑁 + 1)) ∈ Fin)
214188, 191, 212, 213fsumss 15075 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))))
215131, 187, 2143eqtr2rd 2867 . . . 4 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)))
216215mpteq2dva 5157 . . 3 (𝜑 → (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗))))
217100, 216eqtrd 2860 . 2 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗))))
218 eqid 2825 . . . 4 ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵) = ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)
2199, 12, 13, 22, 28, 218taylpfval 24871 . . 3 (𝜑 → ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
220219oveq2d 7167 . 2 (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
221 eqid 2825 . . 3 (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵)
2229, 106, 108, 20, 123, 221taylpfval 24871 . 2 (𝜑 → (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗))))
223217, 220, 2223eqtr4d 2870 1 (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  Vcvv 3499  cdif 3936  cin 3938  wss 3939  ifcif 4469  {cpr 4565  cmpt 5142  dom cdm 5553  wf 6347  cfv 6351  (class class class)co 7151  pm cpm 8400  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862   / cdiv 11289  cn 11630  0cn0 11889  cz 11973  cuz 12235  [,]cicc 12734  ...cfz 12885  cexp 13422  !cfa 13626  Σcsu 15035  TopOpenctopn 16688  fldccnfld 20464  TopOnctopon 21437   D cdv 24379   D𝑛 cdvn 24380   Tayl ctayl 24859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-icc 12738  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-fac 13627  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-starv 16573  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-unif 16581  df-hom 16582  df-cco 16583  df-rest 16689  df-topn 16690  df-0g 16708  df-gsum 16709  df-topgen 16710  df-pt 16711  df-prds 16714  df-xrs 16768  df-qtop 16773  df-imas 16774  df-xps 16776  df-mre 16850  df-mrc 16851  df-acs 16853  df-mgm 17845  df-sgrp 17893  df-mnd 17904  df-submnd 17948  df-grp 18039  df-minusg 18040  df-mulg 18158  df-cntz 18380  df-cmn 18831  df-abl 18832  df-mgp 19163  df-ur 19175  df-ring 19222  df-cring 19223  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-fbas 20461  df-fg 20462  df-cnfld 20465  df-top 21421  df-topon 21438  df-topsp 21460  df-bases 21473  df-cld 21546  df-ntr 21547  df-cls 21548  df-nei 21625  df-lp 21663  df-perf 21664  df-cn 21754  df-cnp 21755  df-haus 21842  df-tx 22089  df-hmeo 22282  df-fil 22373  df-fm 22465  df-flim 22466  df-flf 22467  df-tsms 22653  df-xms 22848  df-ms 22849  df-tms 22850  df-cncf 23404  df-limc 24382  df-dv 24383  df-dvn 24384  df-tayl 24861
This theorem is referenced by:  dvntaylp  24877
  Copyright terms: Public domain W3C validator