MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvtaylp Structured version   Visualization version   GIF version

Theorem dvtaylp 25538
Description: The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
dvtaylp.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvtaylp.f (𝜑𝐹:𝐴⟶ℂ)
dvtaylp.a (𝜑𝐴𝑆)
dvtaylp.n (𝜑𝑁 ∈ ℕ0)
dvtaylp.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
Assertion
Ref Expression
dvtaylp (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵))

Proof of Theorem dvtaylp
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 23955 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
32toponrestid 22079 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4 cnelprrecn 10973 . . . . 5 ℂ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (𝜑 → ℂ ∈ {ℝ, ℂ})
6 toponmax 22084 . . . . 5 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
72, 6mp1i 13 . . . 4 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
8 fzfid 13702 . . . 4 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
9 dvtaylp.s . . . . . . . . 9 (𝜑𝑆 ∈ {ℝ, ℂ})
10 cnex 10961 . . . . . . . . . . 11 ℂ ∈ V
1110a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ V)
12 dvtaylp.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℂ)
13 dvtaylp.a . . . . . . . . . 10 (𝜑𝐴𝑆)
14 elpm2r 8642 . . . . . . . . . 10 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1511, 9, 12, 13, 14syl22anc 836 . . . . . . . . 9 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
16 elfznn0 13358 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
17 dvnf 25100 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
189, 15, 16, 17syl2an3an 1421 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
19 0z 12339 . . . . . . . . . . . 12 0 ∈ ℤ
20 dvtaylp.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
21 peano2nn0 12282 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2220, 21syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 1) ∈ ℕ0)
2322nn0zd 12433 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℤ)
24 fzval2 13251 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (0...(𝑁 + 1)) = ((0[,](𝑁 + 1)) ∩ ℤ))
2519, 23, 24sylancr 587 . . . . . . . . . . 11 (𝜑 → (0...(𝑁 + 1)) = ((0[,](𝑁 + 1)) ∩ ℤ))
2625eleq2d 2825 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↔ 𝑘 ∈ ((0[,](𝑁 + 1)) ∩ ℤ)))
2726biimpa 477 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ((0[,](𝑁 + 1)) ∩ ℤ))
28 dvtaylp.b . . . . . . . . . 10 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
299, 12, 13, 22, 28taylplem1 25531 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,](𝑁 + 1)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3027, 29syldan 591 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3118, 30ffvelrnd 6971 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
3216adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
3332faccld 14007 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (!‘𝑘) ∈ ℕ)
3433nncnd 11998 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (!‘𝑘) ∈ ℂ)
3533nnne0d 12032 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (!‘𝑘) ≠ 0)
3631, 34, 35divcld 11760 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
37363adant3 1131 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
38 simp3 1137 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
39 recnprss 25077 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
409, 39syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
4113, 40sstrd 3932 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
42 dvnbss 25101 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 + 1) ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) ⊆ dom 𝐹)
439, 15, 22, 42syl3anc 1370 . . . . . . . . . . 11 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) ⊆ dom 𝐹)
4412, 43fssdmd 6628 . . . . . . . . . 10 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) ⊆ 𝐴)
4544, 28sseldd 3923 . . . . . . . . 9 (𝜑𝐵𝐴)
4641, 45sseldd 3923 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
47463ad2ant1 1132 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
4838, 47subcld 11341 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
49163ad2ant2 1133 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℕ0)
5048, 49expcld 13873 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)↑𝑘) ∈ ℂ)
5137, 50mulcld 11004 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ ℂ)
52 0cnd 10977 . . . . . 6 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈ ℂ)
5349nn0cnd 12304 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℂ)
5453adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ)
5548adantr 481 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑥𝐵) ∈ ℂ)
5649adantr 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0)
57 simpr 485 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0)
5857neqned 2951 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ≠ 0)
59 elnnne0 12256 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
6056, 58, 59sylanbrc 583 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ)
61 nnm1nn0 12283 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
6260, 61syl 17 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈ ℕ0)
6355, 62expcld 13873 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ((𝑥𝐵)↑(𝑘 − 1)) ∈ ℂ)
6454, 63mulcld 11004 . . . . . 6 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))) ∈ ℂ)
6552, 64ifclda 4495 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
6637, 65mulcld 11004 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) ∈ ℂ)
674a1i 11 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ℂ ∈ {ℝ, ℂ})
68503expa 1117 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)↑𝑘) ∈ ℂ)
69653expa 1117 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
70483expa 1117 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
71 1cnd 10979 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
72 simpr 485 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
7332adantr 481 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → 𝑘 ∈ ℕ0)
7472, 73expcld 13873 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → (𝑦𝑘) ∈ ℂ)
75 c0ex 10978 . . . . . . . . 9 0 ∈ V
76 ovex 7317 . . . . . . . . 9 (𝑘 · (𝑦↑(𝑘 − 1))) ∈ V
7775, 76ifex 4510 . . . . . . . 8 if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1)))) ∈ V
7877a1i 11 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1)))) ∈ V)
79 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
8067dvmptid 25130 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
8146ad2antrr 723 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
82 0cnd 10977 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 0 ∈ ℂ)
8346adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵 ∈ ℂ)
8467, 83dvmptc 25131 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ 𝐵)) = (𝑥 ∈ ℂ ↦ 0))
8567, 79, 71, 80, 81, 82, 84dvmptsub 25140 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝐵))) = (𝑥 ∈ ℂ ↦ (1 − 0)))
86 1m0e1 12103 . . . . . . . . 9 (1 − 0) = 1
8786mpteq2i 5180 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (1 − 0)) = (𝑥 ∈ ℂ ↦ 1)
8885, 87eqtrdi 2795 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝐵))) = (𝑥 ∈ ℂ ↦ 1))
89 dvexp2 25127 . . . . . . . 8 (𝑘 ∈ ℕ0 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1))))))
9032, 89syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1))))))
91 oveq1 7291 . . . . . . 7 (𝑦 = (𝑥𝐵) → (𝑦𝑘) = ((𝑥𝐵)↑𝑘))
92 oveq1 7291 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝑦↑(𝑘 − 1)) = ((𝑥𝐵)↑(𝑘 − 1)))
9392oveq2d 7300 . . . . . . . 8 (𝑦 = (𝑥𝐵) → (𝑘 · (𝑦↑(𝑘 − 1))) = (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))
9493ifeq2d 4480 . . . . . . 7 (𝑦 = (𝑥𝐵) → if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1)))) = if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
9567, 67, 70, 71, 74, 78, 88, 90, 91, 94dvmptco 25145 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥𝐵)↑𝑘))) = (𝑥 ∈ ℂ ↦ (if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) · 1)))
9669mulid1d 11001 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → (if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) · 1) = if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
9796mpteq2dva 5175 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑥 ∈ ℂ ↦ (if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) · 1)) = (𝑥 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))))
9895, 97eqtrd 2779 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥𝐵)↑𝑘))) = (𝑥 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))))
9967, 68, 69, 98, 36dvmptcmul 25137 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (𝑥 ∈ ℂ ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))))
1003, 1, 5, 7, 8, 51, 66, 99dvmptfsum 25148 . . 3 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))))
101 1zzd 12360 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℤ)
102 0zd 12340 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 0 ∈ ℤ)
10320nn0zd 12433 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
104103adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℤ)
105 dvfg 25079 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
1069, 105syl 17 . . . . . . 7 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
10740, 12, 13dvbss 25074 . . . . . . . 8 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)
108107, 13sstrd 3932 . . . . . . 7 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑆)
109 1nn0 12258 . . . . . . . . . . . 12 1 ∈ ℕ0
110109a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
111 dvnadd 25102 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (1 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(1 + 𝑁)))
1129, 15, 110, 20, 111syl22anc 836 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(1 + 𝑁)))
113 dvn1 25099 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹))
11440, 15, 113syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹))
115114oveq2d 7300 . . . . . . . . . . 11 (𝜑 → (𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1)) = (𝑆 D𝑛 (𝑆 D 𝐹)))
116115fveq1d 6785 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘𝑁) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁))
117 1cnd 10979 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
11820nn0cnd 12304 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
119117, 118addcomd 11186 . . . . . . . . . . 11 (𝜑 → (1 + 𝑁) = (𝑁 + 1))
120119fveq2d 6787 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 𝐹)‘(1 + 𝑁)) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
121112, 116, 1203eqtr3d 2787 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
122121dmeqd 5817 . . . . . . . 8 (𝜑 → dom ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁) = dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
12328, 122eleqtrrd 2843 . . . . . . 7 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁))
1249, 106, 108, 20, 123taylplem2 25532 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → (((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)) ∈ ℂ)
125 fveq2 6783 . . . . . . . . 9 (𝑗 = (𝑘 − 1) → ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1)))
126125fveq1d 6785 . . . . . . . 8 (𝑗 = (𝑘 − 1) → (((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) = (((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵))
127 fveq2 6783 . . . . . . . 8 (𝑗 = (𝑘 − 1) → (!‘𝑗) = (!‘(𝑘 − 1)))
128126, 127oveq12d 7302 . . . . . . 7 (𝑗 = (𝑘 − 1) → ((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
129 oveq2 7292 . . . . . . 7 (𝑗 = (𝑘 − 1) → ((𝑥𝐵)↑𝑗) = ((𝑥𝐵)↑(𝑘 − 1)))
130128, 129oveq12d 7302 . . . . . 6 (𝑗 = (𝑘 − 1) → (((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)) = (((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
131101, 102, 104, 124, 130fsumshft 15501 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
132 elfznn 13294 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ)
133132adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℕ)
134133nnne0d 12032 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ≠ 0)
135 ifnefalse 4472 . . . . . . . . . 10 (𝑘 ≠ 0 → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) = (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))
136134, 135syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) = (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))
137136oveq2d 7300 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
138 simpll 764 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝜑)
139 fz1ssfz0 13361 . . . . . . . . . . . 12 (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
140139sseli 3918 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ (0...(𝑁 + 1)))
141140adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
142138, 141, 36syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
143133nncnd 11998 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℂ)
144 simplr 766 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑥 ∈ ℂ)
14546ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐵 ∈ ℂ)
146144, 145subcld 11341 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑥𝐵) ∈ ℂ)
147133, 61syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑘 − 1) ∈ ℕ0)
148146, 147expcld 13873 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑥𝐵)↑(𝑘 − 1)) ∈ ℂ)
149142, 143, 148mulassd 11007 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘) · ((𝑥𝐵)↑(𝑘 − 1))) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
150 facp1 14001 . . . . . . . . . . . . 13 ((𝑘 − 1) ∈ ℕ0 → (!‘((𝑘 − 1) + 1)) = ((!‘(𝑘 − 1)) · ((𝑘 − 1) + 1)))
151147, 150syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘((𝑘 − 1) + 1)) = ((!‘(𝑘 − 1)) · ((𝑘 − 1) + 1)))
152 1cnd 10979 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
153143, 152npcand 11345 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
154153fveq2d 6787 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘((𝑘 − 1) + 1)) = (!‘𝑘))
155153oveq2d 7300 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((!‘(𝑘 − 1)) · ((𝑘 − 1) + 1)) = ((!‘(𝑘 − 1)) · 𝑘))
156151, 154, 1553eqtr3d 2787 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘𝑘) = ((!‘(𝑘 − 1)) · 𝑘))
157156oveq2d 7300 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / (!‘𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / ((!‘(𝑘 − 1)) · 𝑘)))
15832nn0cnd 12304 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℂ)
15931, 158, 34, 35div23d 11797 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / (!‘𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘))
160138, 141, 159syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / (!‘𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘))
161138, 141, 31syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
162147faccld 14007 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘(𝑘 − 1)) ∈ ℕ)
163162nncnd 11998 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘(𝑘 − 1)) ∈ ℂ)
164162nnne0d 12032 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘(𝑘 − 1)) ≠ 0)
165161, 163, 143, 164, 134divcan5rd 11787 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / ((!‘(𝑘 − 1)) · 𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘(𝑘 − 1))))
1669ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑆 ∈ {ℝ, ℂ})
16715ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐹 ∈ (ℂ ↑pm 𝑆))
168109a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℕ0)
169 dvnadd 25102 . . . . . . . . . . . . . . 15 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (1 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘(𝑘 − 1)) = ((𝑆 D𝑛 𝐹)‘(1 + (𝑘 − 1))))
170166, 167, 168, 147, 169syl22anc 836 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘(𝑘 − 1)) = ((𝑆 D𝑛 𝐹)‘(1 + (𝑘 − 1))))
171114ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹))
172171oveq2d 7300 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1)) = (𝑆 D𝑛 (𝑆 D 𝐹)))
173172fveq1d 6785 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘(𝑘 − 1)) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1)))
174152, 143pncan3d 11344 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (1 + (𝑘 − 1)) = 𝑘)
175174fveq2d 6787 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘(1 + (𝑘 − 1))) = ((𝑆 D𝑛 𝐹)‘𝑘))
176170, 173, 1753eqtr3rd 2788 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1)))
177176fveq1d 6785 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) = (((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵))
178177oveq1d 7299 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘(𝑘 − 1))) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
179165, 178eqtrd 2779 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / ((!‘(𝑘 − 1)) · 𝑘)) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
180157, 160, 1793eqtr3d 2787 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
181180oveq1d 7299 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘) · ((𝑥𝐵)↑(𝑘 − 1))) = (((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
182137, 149, 1813eqtr2d 2785 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = (((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
183182sumeq2dv 15424 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
184 0p1e1 12104 . . . . . . . 8 (0 + 1) = 1
185184oveq1i 7294 . . . . . . 7 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
186185sumeq1i 15419 . . . . . 6 Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))) = Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1)))
187183, 186eqtr4di 2797 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
188139a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
18969an32s 649 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
190140, 189sylan2 593 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
191142, 190mulcld 11004 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) ∈ ℂ)
192 eldif 3898 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1))) ↔ (𝑘 ∈ (0...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ (1...(𝑁 + 1))))
19359biimpri 227 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑘 ≠ 0) → 𝑘 ∈ ℕ)
19416, 193sylan 580 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → 𝑘 ∈ ℕ)
195 nnuz 12630 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
196194, 195eleqtrdi 2850 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → 𝑘 ∈ (ℤ‘1))
197 elfzuz3 13262 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑁 + 1) ∈ (ℤ𝑘))
198197adantr 481 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → (𝑁 + 1) ∈ (ℤ𝑘))
199 elfzuzb 13259 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(𝑁 + 1)) ↔ (𝑘 ∈ (ℤ‘1) ∧ (𝑁 + 1) ∈ (ℤ𝑘)))
200196, 198, 199sylanbrc 583 . . . . . . . . . . . . . 14 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → 𝑘 ∈ (1...(𝑁 + 1)))
201200ex 413 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 ≠ 0 → 𝑘 ∈ (1...(𝑁 + 1))))
202201adantl 482 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 ≠ 0 → 𝑘 ∈ (1...(𝑁 + 1))))
203202necon1bd 2962 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (¬ 𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 = 0))
204203impr 455 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ (𝑘 ∈ (0...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ (1...(𝑁 + 1)))) → 𝑘 = 0)
205192, 204sylan2b 594 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → 𝑘 = 0)
206205iftrued 4468 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) = 0)
207206oveq2d 7300 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0))
208 eldifi 4062 . . . . . . . . 9 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
20936adantlr 712 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
210208, 209sylan2 593 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
211210mul01d 11183 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
212207, 211eqtrd 2779 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = 0)
213 fzfid 13702 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (0...(𝑁 + 1)) ∈ Fin)
214188, 191, 212, 213fsumss 15446 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))))
215131, 187, 2143eqtr2rd 2786 . . . 4 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)))
216215mpteq2dva 5175 . . 3 (𝜑 → (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗))))
217100, 216eqtrd 2779 . 2 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗))))
218 eqid 2739 . . . 4 ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵) = ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)
2199, 12, 13, 22, 28, 218taylpfval 25533 . . 3 (𝜑 → ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
220219oveq2d 7300 . 2 (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
221 eqid 2739 . . 3 (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵)
2229, 106, 108, 20, 123, 221taylpfval 25533 . 2 (𝜑 → (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗))))
223217, 220, 2223eqtr4d 2789 1 (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  Vcvv 3433  cdif 3885  cin 3887  wss 3888  ifcif 4460  {cpr 4564  cmpt 5158  dom cdm 5590  wf 6433  cfv 6437  (class class class)co 7284  pm cpm 8625  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  cmin 11214   / cdiv 11641  cn 11982  0cn0 12242  cz 12328  cuz 12591  [,]cicc 13091  ...cfz 13248  cexp 13791  !cfa 13996  Σcsu 15406  TopOpenctopn 17141  fldccnfld 20606  TopOnctopon 22068   D cdv 25036   D𝑛 cdvn 25037   Tayl ctayl 25521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-icc 13095  df-fz 13249  df-fzo 13392  df-seq 13731  df-exp 13792  df-fac 13997  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-sum 15407  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-grp 18589  df-minusg 18590  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-ring 19794  df-cring 19795  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-tsms 23287  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040  df-dvn 25041  df-tayl 25523
This theorem is referenced by:  dvntaylp  25539
  Copyright terms: Public domain W3C validator