Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . . 6
β’
(TopOpenββfld) =
(TopOpenββfld) |
2 | 1 | cnfldtopon 24290 |
. . . . 5
β’
(TopOpenββfld) β
(TopOnββ) |
3 | 2 | toponrestid 22414 |
. . . 4
β’
(TopOpenββfld) =
((TopOpenββfld) βΎt
β) |
4 | | cnelprrecn 11199 |
. . . . 5
β’ β
β {β, β} |
5 | 4 | a1i 11 |
. . . 4
β’ (π β β β {β,
β}) |
6 | | toponmax 22419 |
. . . . 5
β’
((TopOpenββfld) β (TopOnββ)
β β β (TopOpenββfld)) |
7 | 2, 6 | mp1i 13 |
. . . 4
β’ (π β β β
(TopOpenββfld)) |
8 | | fzfid 13934 |
. . . 4
β’ (π β (0...(π + 1)) β Fin) |
9 | | dvtaylp.s |
. . . . . . . . 9
β’ (π β π β {β, β}) |
10 | | cnex 11187 |
. . . . . . . . . . 11
β’ β
β V |
11 | 10 | a1i 11 |
. . . . . . . . . 10
β’ (π β β β
V) |
12 | | dvtaylp.f |
. . . . . . . . . 10
β’ (π β πΉ:π΄βΆβ) |
13 | | dvtaylp.a |
. . . . . . . . . 10
β’ (π β π΄ β π) |
14 | | elpm2r 8835 |
. . . . . . . . . 10
β’
(((β β V β§ π β {β, β}) β§ (πΉ:π΄βΆβ β§ π΄ β π)) β πΉ β (β βpm π)) |
15 | 11, 9, 12, 13, 14 | syl22anc 837 |
. . . . . . . . 9
β’ (π β πΉ β (β βpm π)) |
16 | | elfznn0 13590 |
. . . . . . . . 9
β’ (π β (0...(π + 1)) β π β β0) |
17 | | dvnf 25435 |
. . . . . . . . 9
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β
β0) β ((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ) |
18 | 9, 15, 16, 17 | syl2an3an 1422 |
. . . . . . . 8
β’ ((π β§ π β (0...(π + 1))) β ((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ) |
19 | | 0z 12565 |
. . . . . . . . . . . 12
β’ 0 β
β€ |
20 | | dvtaylp.n |
. . . . . . . . . . . . . 14
β’ (π β π β
β0) |
21 | | peano2nn0 12508 |
. . . . . . . . . . . . . 14
β’ (π β β0
β (π + 1) β
β0) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β (π + 1) β
β0) |
23 | 22 | nn0zd 12580 |
. . . . . . . . . . . 12
β’ (π β (π + 1) β β€) |
24 | | fzval2 13483 |
. . . . . . . . . . . 12
β’ ((0
β β€ β§ (π +
1) β β€) β (0...(π + 1)) = ((0[,](π + 1)) β© β€)) |
25 | 19, 23, 24 | sylancr 587 |
. . . . . . . . . . 11
β’ (π β (0...(π + 1)) = ((0[,](π + 1)) β© β€)) |
26 | 25 | eleq2d 2819 |
. . . . . . . . . 10
β’ (π β (π β (0...(π + 1)) β π β ((0[,](π + 1)) β© β€))) |
27 | 26 | biimpa 477 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π + 1))) β π β ((0[,](π + 1)) β© β€)) |
28 | | dvtaylp.b |
. . . . . . . . . 10
β’ (π β π΅ β dom ((π Dπ πΉ)β(π + 1))) |
29 | 9, 12, 13, 22, 28 | taylplem1 25866 |
. . . . . . . . 9
β’ ((π β§ π β ((0[,](π + 1)) β© β€)) β π΅ β dom ((π Dπ πΉ)βπ)) |
30 | 27, 29 | syldan 591 |
. . . . . . . 8
β’ ((π β§ π β (0...(π + 1))) β π΅ β dom ((π Dπ πΉ)βπ)) |
31 | 18, 30 | ffvelcdmd 7084 |
. . . . . . 7
β’ ((π β§ π β (0...(π + 1))) β (((π Dπ πΉ)βπ)βπ΅) β β) |
32 | 16 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π + 1))) β π β β0) |
33 | 32 | faccld 14240 |
. . . . . . . 8
β’ ((π β§ π β (0...(π + 1))) β (!βπ) β β) |
34 | 33 | nncnd 12224 |
. . . . . . 7
β’ ((π β§ π β (0...(π + 1))) β (!βπ) β β) |
35 | 33 | nnne0d 12258 |
. . . . . . 7
β’ ((π β§ π β (0...(π + 1))) β (!βπ) β 0) |
36 | 31, 34, 35 | divcld 11986 |
. . . . . 6
β’ ((π β§ π β (0...(π + 1))) β ((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) β β) |
37 | 36 | 3adant3 1132 |
. . . . 5
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β ((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) β β) |
38 | | simp3 1138 |
. . . . . . 7
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β π₯ β β) |
39 | | recnprss 25412 |
. . . . . . . . . . 11
β’ (π β {β, β}
β π β
β) |
40 | 9, 39 | syl 17 |
. . . . . . . . . 10
β’ (π β π β β) |
41 | 13, 40 | sstrd 3991 |
. . . . . . . . 9
β’ (π β π΄ β β) |
42 | | dvnbss 25436 |
. . . . . . . . . . . 12
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ (π + 1) β
β0) β dom ((π Dπ πΉ)β(π + 1)) β dom πΉ) |
43 | 9, 15, 22, 42 | syl3anc 1371 |
. . . . . . . . . . 11
β’ (π β dom ((π Dπ πΉ)β(π + 1)) β dom πΉ) |
44 | 12, 43 | fssdmd 6733 |
. . . . . . . . . 10
β’ (π β dom ((π Dπ πΉ)β(π + 1)) β π΄) |
45 | 44, 28 | sseldd 3982 |
. . . . . . . . 9
β’ (π β π΅ β π΄) |
46 | 41, 45 | sseldd 3982 |
. . . . . . . 8
β’ (π β π΅ β β) |
47 | 46 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β π΅ β β) |
48 | 38, 47 | subcld 11567 |
. . . . . 6
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β (π₯ β π΅) β β) |
49 | 16 | 3ad2ant2 1134 |
. . . . . 6
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β π β β0) |
50 | 48, 49 | expcld 14107 |
. . . . 5
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β ((π₯ β π΅)βπ) β β) |
51 | 37, 50 | mulcld 11230 |
. . . 4
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)) β β) |
52 | | 0cnd 11203 |
. . . . . 6
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ π = 0) β 0 β
β) |
53 | 49 | nn0cnd 12530 |
. . . . . . . 8
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β π β β) |
54 | 53 | adantr 481 |
. . . . . . 7
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ Β¬ π = 0) β π β β) |
55 | 48 | adantr 481 |
. . . . . . . 8
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ Β¬ π = 0) β (π₯ β π΅) β β) |
56 | 49 | adantr 481 |
. . . . . . . . . 10
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ Β¬ π = 0) β π β β0) |
57 | | simpr 485 |
. . . . . . . . . . 11
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ Β¬ π = 0) β Β¬ π = 0) |
58 | 57 | neqned 2947 |
. . . . . . . . . 10
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ Β¬ π = 0) β π β 0) |
59 | | elnnne0 12482 |
. . . . . . . . . 10
β’ (π β β β (π β β0
β§ π β
0)) |
60 | 56, 58, 59 | sylanbrc 583 |
. . . . . . . . 9
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ Β¬ π = 0) β π β β) |
61 | | nnm1nn0 12509 |
. . . . . . . . 9
β’ (π β β β (π β 1) β
β0) |
62 | 60, 61 | syl 17 |
. . . . . . . 8
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ Β¬ π = 0) β (π β 1) β
β0) |
63 | 55, 62 | expcld 14107 |
. . . . . . 7
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ Β¬ π = 0) β ((π₯ β π΅)β(π β 1)) β β) |
64 | 54, 63 | mulcld 11230 |
. . . . . 6
β’ (((π β§ π β (0...(π + 1)) β§ π₯ β β) β§ Β¬ π = 0) β (π Β· ((π₯ β π΅)β(π β 1))) β
β) |
65 | 52, 64 | ifclda 4562 |
. . . . 5
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) β
β) |
66 | 37, 65 | mulcld 11230 |
. . . 4
β’ ((π β§ π β (0...(π + 1)) β§ π₯ β β) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) β
β) |
67 | 4 | a1i 11 |
. . . . 5
β’ ((π β§ π β (0...(π + 1))) β β β {β,
β}) |
68 | 50 | 3expa 1118 |
. . . . 5
β’ (((π β§ π β (0...(π + 1))) β§ π₯ β β) β ((π₯ β π΅)βπ) β β) |
69 | 65 | 3expa 1118 |
. . . . 5
β’ (((π β§ π β (0...(π + 1))) β§ π₯ β β) β if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) β
β) |
70 | 48 | 3expa 1118 |
. . . . . . 7
β’ (((π β§ π β (0...(π + 1))) β§ π₯ β β) β (π₯ β π΅) β β) |
71 | | 1cnd 11205 |
. . . . . . 7
β’ (((π β§ π β (0...(π + 1))) β§ π₯ β β) β 1 β
β) |
72 | | simpr 485 |
. . . . . . . 8
β’ (((π β§ π β (0...(π + 1))) β§ π¦ β β) β π¦ β β) |
73 | 32 | adantr 481 |
. . . . . . . 8
β’ (((π β§ π β (0...(π + 1))) β§ π¦ β β) β π β β0) |
74 | 72, 73 | expcld 14107 |
. . . . . . 7
β’ (((π β§ π β (0...(π + 1))) β§ π¦ β β) β (π¦βπ) β β) |
75 | | c0ex 11204 |
. . . . . . . . 9
β’ 0 β
V |
76 | | ovex 7438 |
. . . . . . . . 9
β’ (π Β· (π¦β(π β 1))) β V |
77 | 75, 76 | ifex 4577 |
. . . . . . . 8
β’ if(π = 0, 0, (π Β· (π¦β(π β 1)))) β V |
78 | 77 | a1i 11 |
. . . . . . 7
β’ (((π β§ π β (0...(π + 1))) β§ π¦ β β) β if(π = 0, 0, (π Β· (π¦β(π β 1)))) β V) |
79 | | simpr 485 |
. . . . . . . . 9
β’ (((π β§ π β (0...(π + 1))) β§ π₯ β β) β π₯ β β) |
80 | 67 | dvmptid 25465 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π + 1))) β (β D (π₯ β β β¦ π₯)) = (π₯ β β β¦ 1)) |
81 | 46 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ π β (0...(π + 1))) β§ π₯ β β) β π΅ β β) |
82 | | 0cnd 11203 |
. . . . . . . . 9
β’ (((π β§ π β (0...(π + 1))) β§ π₯ β β) β 0 β
β) |
83 | 46 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (0...(π + 1))) β π΅ β β) |
84 | 67, 83 | dvmptc 25466 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π + 1))) β (β D (π₯ β β β¦ π΅)) = (π₯ β β β¦ 0)) |
85 | 67, 79, 71, 80, 81, 82, 84 | dvmptsub 25475 |
. . . . . . . 8
β’ ((π β§ π β (0...(π + 1))) β (β D (π₯ β β β¦ (π₯ β π΅))) = (π₯ β β β¦ (1 β
0))) |
86 | | 1m0e1 12329 |
. . . . . . . . 9
β’ (1
β 0) = 1 |
87 | 86 | mpteq2i 5252 |
. . . . . . . 8
β’ (π₯ β β β¦ (1
β 0)) = (π₯ β
β β¦ 1) |
88 | 85, 87 | eqtrdi 2788 |
. . . . . . 7
β’ ((π β§ π β (0...(π + 1))) β (β D (π₯ β β β¦ (π₯ β π΅))) = (π₯ β β β¦ 1)) |
89 | | dvexp2 25462 |
. . . . . . . 8
β’ (π β β0
β (β D (π¦ β
β β¦ (π¦βπ))) = (π¦ β β β¦ if(π = 0, 0, (π Β· (π¦β(π β 1)))))) |
90 | 32, 89 | syl 17 |
. . . . . . 7
β’ ((π β§ π β (0...(π + 1))) β (β D (π¦ β β β¦ (π¦βπ))) = (π¦ β β β¦ if(π = 0, 0, (π Β· (π¦β(π β 1)))))) |
91 | | oveq1 7412 |
. . . . . . 7
β’ (π¦ = (π₯ β π΅) β (π¦βπ) = ((π₯ β π΅)βπ)) |
92 | | oveq1 7412 |
. . . . . . . . 9
β’ (π¦ = (π₯ β π΅) β (π¦β(π β 1)) = ((π₯ β π΅)β(π β 1))) |
93 | 92 | oveq2d 7421 |
. . . . . . . 8
β’ (π¦ = (π₯ β π΅) β (π Β· (π¦β(π β 1))) = (π Β· ((π₯ β π΅)β(π β 1)))) |
94 | 93 | ifeq2d 4547 |
. . . . . . 7
β’ (π¦ = (π₯ β π΅) β if(π = 0, 0, (π Β· (π¦β(π β 1)))) = if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) |
95 | 67, 67, 70, 71, 74, 78, 88, 90, 91, 94 | dvmptco 25480 |
. . . . . 6
β’ ((π β§ π β (0...(π + 1))) β (β D (π₯ β β β¦ ((π₯ β π΅)βπ))) = (π₯ β β β¦ (if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) Β· 1))) |
96 | 69 | mulridd 11227 |
. . . . . . 7
β’ (((π β§ π β (0...(π + 1))) β§ π₯ β β) β (if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) Β· 1) = if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) |
97 | 96 | mpteq2dva 5247 |
. . . . . 6
β’ ((π β§ π β (0...(π + 1))) β (π₯ β β β¦ (if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) Β· 1)) = (π₯ β β β¦ if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))))) |
98 | 95, 97 | eqtrd 2772 |
. . . . 5
β’ ((π β§ π β (0...(π + 1))) β (β D (π₯ β β β¦ ((π₯ β π΅)βπ))) = (π₯ β β β¦ if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))))) |
99 | 67, 68, 69, 98, 36 | dvmptcmul 25472 |
. . . 4
β’ ((π β§ π β (0...(π + 1))) β (β D (π₯ β β β¦
(((((π
Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))) = (π₯ β β β¦ (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))))) |
100 | 3, 1, 5, 7, 8, 51,
66, 99 | dvmptfsum 25483 |
. . 3
β’ (π β (β D (π₯ β β β¦
Ξ£π β (0...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))) = (π₯ β β β¦ Ξ£π β (0...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))))) |
101 | | 1zzd 12589 |
. . . . . 6
β’ ((π β§ π₯ β β) β 1 β
β€) |
102 | | 0zd 12566 |
. . . . . 6
β’ ((π β§ π₯ β β) β 0 β
β€) |
103 | 20 | nn0zd 12580 |
. . . . . . 7
β’ (π β π β β€) |
104 | 103 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β β) β π β β€) |
105 | | dvfg 25414 |
. . . . . . . 8
β’ (π β {β, β}
β (π D πΉ):dom (π D πΉ)βΆβ) |
106 | 9, 105 | syl 17 |
. . . . . . 7
β’ (π β (π D πΉ):dom (π D πΉ)βΆβ) |
107 | 40, 12, 13 | dvbss 25409 |
. . . . . . . 8
β’ (π β dom (π D πΉ) β π΄) |
108 | 107, 13 | sstrd 3991 |
. . . . . . 7
β’ (π β dom (π D πΉ) β π) |
109 | | 1nn0 12484 |
. . . . . . . . . . . 12
β’ 1 β
β0 |
110 | 109 | a1i 11 |
. . . . . . . . . . 11
β’ (π β 1 β
β0) |
111 | | dvnadd 25437 |
. . . . . . . . . . 11
β’ (((π β {β, β} β§
πΉ β (β
βpm π))
β§ (1 β β0 β§ π β β0)) β ((π Dπ ((π Dπ πΉ)β1))βπ) = ((π Dπ πΉ)β(1 + π))) |
112 | 9, 15, 110, 20, 111 | syl22anc 837 |
. . . . . . . . . 10
β’ (π β ((π Dπ ((π Dπ πΉ)β1))βπ) = ((π Dπ πΉ)β(1 + π))) |
113 | | dvn1 25434 |
. . . . . . . . . . . . 13
β’ ((π β β β§ πΉ β (β
βpm π))
β ((π
Dπ πΉ)β1) = (π D πΉ)) |
114 | 40, 15, 113 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (π β ((π Dπ πΉ)β1) = (π D πΉ)) |
115 | 114 | oveq2d 7421 |
. . . . . . . . . . 11
β’ (π β (π Dπ ((π Dπ πΉ)β1)) = (π Dπ (π D πΉ))) |
116 | 115 | fveq1d 6890 |
. . . . . . . . . 10
β’ (π β ((π Dπ ((π Dπ πΉ)β1))βπ) = ((π Dπ (π D πΉ))βπ)) |
117 | | 1cnd 11205 |
. . . . . . . . . . . 12
β’ (π β 1 β
β) |
118 | 20 | nn0cnd 12530 |
. . . . . . . . . . . 12
β’ (π β π β β) |
119 | 117, 118 | addcomd 11412 |
. . . . . . . . . . 11
β’ (π β (1 + π) = (π + 1)) |
120 | 119 | fveq2d 6892 |
. . . . . . . . . 10
β’ (π β ((π Dπ πΉ)β(1 + π)) = ((π Dπ πΉ)β(π + 1))) |
121 | 112, 116,
120 | 3eqtr3d 2780 |
. . . . . . . . 9
β’ (π β ((π Dπ (π D πΉ))βπ) = ((π Dπ πΉ)β(π + 1))) |
122 | 121 | dmeqd 5903 |
. . . . . . . 8
β’ (π β dom ((π Dπ (π D πΉ))βπ) = dom ((π Dπ πΉ)β(π + 1))) |
123 | 28, 122 | eleqtrrd 2836 |
. . . . . . 7
β’ (π β π΅ β dom ((π Dπ (π D πΉ))βπ)) |
124 | 9, 106, 108, 20, 123 | taylplem2 25867 |
. . . . . 6
β’ (((π β§ π₯ β β) β§ π β (0...π)) β (((((π Dπ (π D πΉ))βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)) β β) |
125 | | fveq2 6888 |
. . . . . . . . 9
β’ (π = (π β 1) β ((π Dπ (π D πΉ))βπ) = ((π Dπ (π D πΉ))β(π β 1))) |
126 | 125 | fveq1d 6890 |
. . . . . . . 8
β’ (π = (π β 1) β (((π Dπ (π D πΉ))βπ)βπ΅) = (((π Dπ (π D πΉ))β(π β 1))βπ΅)) |
127 | | fveq2 6888 |
. . . . . . . 8
β’ (π = (π β 1) β (!βπ) = (!β(π β 1))) |
128 | 126, 127 | oveq12d 7423 |
. . . . . . 7
β’ (π = (π β 1) β ((((π Dπ (π D πΉ))βπ)βπ΅) / (!βπ)) = ((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1)))) |
129 | | oveq2 7413 |
. . . . . . 7
β’ (π = (π β 1) β ((π₯ β π΅)βπ) = ((π₯ β π΅)β(π β 1))) |
130 | 128, 129 | oveq12d 7423 |
. . . . . 6
β’ (π = (π β 1) β (((((π Dπ (π D πΉ))βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)) = (((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1))) Β· ((π₯ β π΅)β(π β 1)))) |
131 | 101, 102,
104, 124, 130 | fsumshft 15722 |
. . . . 5
β’ ((π β§ π₯ β β) β Ξ£π β (0...π)(((((π Dπ (π D πΉ))βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)) = Ξ£π β ((0 + 1)...(π + 1))(((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1))) Β· ((π₯ β π΅)β(π β 1)))) |
132 | | elfznn 13526 |
. . . . . . . . . . . 12
β’ (π β (1...(π + 1)) β π β β) |
133 | 132 | adantl 482 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β π β β) |
134 | 133 | nnne0d 12258 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β π β 0) |
135 | | ifnefalse 4539 |
. . . . . . . . . 10
β’ (π β 0 β if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) = (π Β· ((π₯ β π΅)β(π β 1)))) |
136 | 134, 135 | syl 17 |
. . . . . . . . 9
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) = (π Β· ((π₯ β π΅)β(π β 1)))) |
137 | 136 | oveq2d 7421 |
. . . . . . . 8
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) = (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· (π Β· ((π₯ β π΅)β(π β 1))))) |
138 | | simpll 765 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β π) |
139 | | fz1ssfz0 13593 |
. . . . . . . . . . . 12
β’
(1...(π + 1))
β (0...(π +
1)) |
140 | 139 | sseli 3977 |
. . . . . . . . . . 11
β’ (π β (1...(π + 1)) β π β (0...(π + 1))) |
141 | 140 | adantl 482 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β π β (0...(π + 1))) |
142 | 138, 141,
36 | syl2anc 584 |
. . . . . . . . 9
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) β β) |
143 | 133 | nncnd 12224 |
. . . . . . . . 9
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β π β β) |
144 | | simplr 767 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β π₯ β β) |
145 | 46 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β π΅ β β) |
146 | 144, 145 | subcld 11567 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (π₯ β π΅) β β) |
147 | 133, 61 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (π β 1) β
β0) |
148 | 146, 147 | expcld 14107 |
. . . . . . . . 9
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((π₯ β π΅)β(π β 1)) β β) |
149 | 142, 143,
148 | mulassd 11233 |
. . . . . . . 8
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· π) Β· ((π₯ β π΅)β(π β 1))) = (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· (π Β· ((π₯ β π΅)β(π β 1))))) |
150 | | facp1 14234 |
. . . . . . . . . . . . 13
β’ ((π β 1) β
β0 β (!β((π β 1) + 1)) = ((!β(π β 1)) Β· ((π β 1) +
1))) |
151 | 147, 150 | syl 17 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (!β((π β 1) + 1)) = ((!β(π β 1)) Β· ((π β 1) +
1))) |
152 | | 1cnd 11205 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β 1 β
β) |
153 | 143, 152 | npcand 11571 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((π β 1) + 1) = π) |
154 | 153 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (!β((π β 1) + 1)) = (!βπ)) |
155 | 153 | oveq2d 7421 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((!β(π β 1)) Β· ((π β 1) + 1)) = ((!β(π β 1)) Β· π)) |
156 | 151, 154,
155 | 3eqtr3d 2780 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (!βπ) = ((!β(π β 1)) Β· π)) |
157 | 156 | oveq2d 7421 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((((π Dπ πΉ)βπ)βπ΅) Β· π) / (!βπ)) = (((((π Dπ πΉ)βπ)βπ΅) Β· π) / ((!β(π β 1)) Β· π))) |
158 | 32 | nn0cnd 12530 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0...(π + 1))) β π β β) |
159 | 31, 158, 34, 35 | div23d 12023 |
. . . . . . . . . . 11
β’ ((π β§ π β (0...(π + 1))) β (((((π Dπ πΉ)βπ)βπ΅) Β· π) / (!βπ)) = (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· π)) |
160 | 138, 141,
159 | syl2anc 584 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((((π Dπ πΉ)βπ)βπ΅) Β· π) / (!βπ)) = (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· π)) |
161 | 138, 141,
31 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((π Dπ πΉ)βπ)βπ΅) β β) |
162 | 147 | faccld 14240 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (!β(π β 1)) β β) |
163 | 162 | nncnd 12224 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (!β(π β 1)) β β) |
164 | 162 | nnne0d 12258 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (!β(π β 1)) β 0) |
165 | 161, 163,
143, 164, 134 | divcan5rd 12013 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((((π Dπ πΉ)βπ)βπ΅) Β· π) / ((!β(π β 1)) Β· π)) = ((((π Dπ πΉ)βπ)βπ΅) / (!β(π β 1)))) |
166 | 9 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β π β {β, β}) |
167 | 15 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β πΉ β (β βpm π)) |
168 | 109 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β 1 β
β0) |
169 | | dvnadd 25437 |
. . . . . . . . . . . . . . 15
β’ (((π β {β, β} β§
πΉ β (β
βpm π))
β§ (1 β β0 β§ (π β 1) β β0))
β ((π
Dπ ((π
Dπ πΉ)β1))β(π β 1)) = ((π Dπ πΉ)β(1 + (π β 1)))) |
170 | 166, 167,
168, 147, 169 | syl22anc 837 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((π Dπ ((π Dπ πΉ)β1))β(π β 1)) = ((π Dπ πΉ)β(1 + (π β 1)))) |
171 | 114 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((π Dπ πΉ)β1) = (π D πΉ)) |
172 | 171 | oveq2d 7421 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (π Dπ ((π Dπ πΉ)β1)) = (π Dπ (π D πΉ))) |
173 | 172 | fveq1d 6890 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((π Dπ ((π Dπ πΉ)β1))β(π β 1)) = ((π Dπ (π D πΉ))β(π β 1))) |
174 | 152, 143 | pncan3d 11570 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (1 + (π β 1)) = π) |
175 | 174 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((π Dπ πΉ)β(1 + (π β 1))) = ((π Dπ πΉ)βπ)) |
176 | 170, 173,
175 | 3eqtr3rd 2781 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((π Dπ πΉ)βπ) = ((π Dπ (π D πΉ))β(π β 1))) |
177 | 176 | fveq1d 6890 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((π Dπ πΉ)βπ)βπ΅) = (((π Dπ (π D πΉ))β(π β 1))βπ΅)) |
178 | 177 | oveq1d 7420 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((((π Dπ πΉ)βπ)βπ΅) / (!β(π β 1))) = ((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1)))) |
179 | 165, 178 | eqtrd 2772 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((((π Dπ πΉ)βπ)βπ΅) Β· π) / ((!β(π β 1)) Β· π)) = ((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1)))) |
180 | 157, 160,
179 | 3eqtr3d 2780 |
. . . . . . . . 9
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· π) = ((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1)))) |
181 | 180 | oveq1d 7420 |
. . . . . . . 8
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β ((((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· π) Β· ((π₯ β π΅)β(π β 1))) = (((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1))) Β· ((π₯ β π΅)β(π β 1)))) |
182 | 137, 149,
181 | 3eqtr2d 2778 |
. . . . . . 7
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) = (((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1))) Β· ((π₯ β π΅)β(π β 1)))) |
183 | 182 | sumeq2dv 15645 |
. . . . . 6
β’ ((π β§ π₯ β β) β Ξ£π β (1...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) = Ξ£π β (1...(π + 1))(((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1))) Β· ((π₯ β π΅)β(π β 1)))) |
184 | | 0p1e1 12330 |
. . . . . . . 8
β’ (0 + 1) =
1 |
185 | 184 | oveq1i 7415 |
. . . . . . 7
β’ ((0 +
1)...(π + 1)) = (1...(π + 1)) |
186 | 185 | sumeq1i 15640 |
. . . . . 6
β’
Ξ£π β ((0
+ 1)...(π + 1))(((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1))) Β· ((π₯ β π΅)β(π β 1))) = Ξ£π β (1...(π + 1))(((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1))) Β· ((π₯ β π΅)β(π β 1))) |
187 | 183, 186 | eqtr4di 2790 |
. . . . 5
β’ ((π β§ π₯ β β) β Ξ£π β (1...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) = Ξ£π β ((0 + 1)...(π + 1))(((((π Dπ (π D πΉ))β(π β 1))βπ΅) / (!β(π β 1))) Β· ((π₯ β π΅)β(π β 1)))) |
188 | 139 | a1i 11 |
. . . . . 6
β’ ((π β§ π₯ β β) β (1...(π + 1)) β (0...(π + 1))) |
189 | 69 | an32s 650 |
. . . . . . . 8
β’ (((π β§ π₯ β β) β§ π β (0...(π + 1))) β if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) β
β) |
190 | 140, 189 | sylan2 593 |
. . . . . . 7
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) β
β) |
191 | 142, 190 | mulcld 11230 |
. . . . . 6
β’ (((π β§ π₯ β β) β§ π β (1...(π + 1))) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) β
β) |
192 | | eldif 3957 |
. . . . . . . . . 10
β’ (π β ((0...(π + 1)) β (1...(π + 1))) β (π β (0...(π + 1)) β§ Β¬ π β (1...(π + 1)))) |
193 | 59 | biimpri 227 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β0
β§ π β 0) β
π β
β) |
194 | 16, 193 | sylan 580 |
. . . . . . . . . . . . . . . 16
β’ ((π β (0...(π + 1)) β§ π β 0) β π β β) |
195 | | nnuz 12861 |
. . . . . . . . . . . . . . . 16
β’ β =
(β€β₯β1) |
196 | 194, 195 | eleqtrdi 2843 |
. . . . . . . . . . . . . . 15
β’ ((π β (0...(π + 1)) β§ π β 0) β π β
(β€β₯β1)) |
197 | | elfzuz3 13494 |
. . . . . . . . . . . . . . . 16
β’ (π β (0...(π + 1)) β (π + 1) β
(β€β₯βπ)) |
198 | 197 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β (0...(π + 1)) β§ π β 0) β (π + 1) β
(β€β₯βπ)) |
199 | | elfzuzb 13491 |
. . . . . . . . . . . . . . 15
β’ (π β (1...(π + 1)) β (π β (β€β₯β1)
β§ (π + 1) β
(β€β₯βπ))) |
200 | 196, 198,
199 | sylanbrc 583 |
. . . . . . . . . . . . . 14
β’ ((π β (0...(π + 1)) β§ π β 0) β π β (1...(π + 1))) |
201 | 200 | ex 413 |
. . . . . . . . . . . . 13
β’ (π β (0...(π + 1)) β (π β 0 β π β (1...(π + 1)))) |
202 | 201 | adantl 482 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β) β§ π β (0...(π + 1))) β (π β 0 β π β (1...(π + 1)))) |
203 | 202 | necon1bd 2958 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β) β§ π β (0...(π + 1))) β (Β¬ π β (1...(π + 1)) β π = 0)) |
204 | 203 | impr 455 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β) β§ (π β (0...(π + 1)) β§ Β¬ π β (1...(π + 1)))) β π = 0) |
205 | 192, 204 | sylan2b 594 |
. . . . . . . . 9
β’ (((π β§ π₯ β β) β§ π β ((0...(π + 1)) β (1...(π + 1)))) β π = 0) |
206 | 205 | iftrued 4535 |
. . . . . . . 8
β’ (((π β§ π₯ β β) β§ π β ((0...(π + 1)) β (1...(π + 1)))) β if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))) = 0) |
207 | 206 | oveq2d 7421 |
. . . . . . 7
β’ (((π β§ π₯ β β) β§ π β ((0...(π + 1)) β (1...(π + 1)))) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) = (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· 0)) |
208 | | eldifi 4125 |
. . . . . . . . 9
β’ (π β ((0...(π + 1)) β (1...(π + 1))) β π β (0...(π + 1))) |
209 | 36 | adantlr 713 |
. . . . . . . . 9
β’ (((π β§ π₯ β β) β§ π β (0...(π + 1))) β ((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) β β) |
210 | 208, 209 | sylan2 593 |
. . . . . . . 8
β’ (((π β§ π₯ β β) β§ π β ((0...(π + 1)) β (1...(π + 1)))) β ((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) β β) |
211 | 210 | mul01d 11409 |
. . . . . . 7
β’ (((π β§ π₯ β β) β§ π β ((0...(π + 1)) β (1...(π + 1)))) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· 0) = 0) |
212 | 207, 211 | eqtrd 2772 |
. . . . . 6
β’ (((π β§ π₯ β β) β§ π β ((0...(π + 1)) β (1...(π + 1)))) β (((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) = 0) |
213 | | fzfid 13934 |
. . . . . 6
β’ ((π β§ π₯ β β) β (0...(π + 1)) β
Fin) |
214 | 188, 191,
212, 213 | fsumss 15667 |
. . . . 5
β’ ((π β§ π₯ β β) β Ξ£π β (1...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) = Ξ£π β (0...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))))) |
215 | 131, 187,
214 | 3eqtr2rd 2779 |
. . . 4
β’ ((π β§ π₯ β β) β Ξ£π β (0...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1))))) = Ξ£π β (0...π)(((((π Dπ (π D πΉ))βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ))) |
216 | 215 | mpteq2dva 5247 |
. . 3
β’ (π β (π₯ β β β¦ Ξ£π β (0...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· if(π = 0, 0, (π Β· ((π₯ β π΅)β(π β 1)))))) = (π₯ β β β¦ Ξ£π β (0...π)(((((π Dπ (π D πΉ))βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))) |
217 | 100, 216 | eqtrd 2772 |
. 2
β’ (π β (β D (π₯ β β β¦
Ξ£π β (0...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))) = (π₯ β β β¦ Ξ£π β (0...π)(((((π Dπ (π D πΉ))βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))) |
218 | | eqid 2732 |
. . . 4
β’ ((π + 1)(π Tayl πΉ)π΅) = ((π + 1)(π Tayl πΉ)π΅) |
219 | 9, 12, 13, 22, 28, 218 | taylpfval 25868 |
. . 3
β’ (π β ((π + 1)(π Tayl πΉ)π΅) = (π₯ β β β¦ Ξ£π β (0...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))) |
220 | 219 | oveq2d 7421 |
. 2
β’ (π β (β D ((π + 1)(π Tayl πΉ)π΅)) = (β D (π₯ β β β¦ Ξ£π β (0...(π + 1))(((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ))))) |
221 | | eqid 2732 |
. . 3
β’ (π(π Tayl (π D πΉ))π΅) = (π(π Tayl (π D πΉ))π΅) |
222 | 9, 106, 108, 20, 123, 221 | taylpfval 25868 |
. 2
β’ (π β (π(π Tayl (π D πΉ))π΅) = (π₯ β β β¦ Ξ£π β (0...π)(((((π Dπ (π D πΉ))βπ)βπ΅) / (!βπ)) Β· ((π₯ β π΅)βπ)))) |
223 | 217, 220,
222 | 3eqtr4d 2782 |
1
β’ (π β (β D ((π + 1)(π Tayl πΉ)π΅)) = (π(π Tayl (π D πΉ))π΅)) |