Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvntaylp0 | Structured version Visualization version GIF version |
Description: The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
dvntaylp0.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvntaylp0.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
dvntaylp0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
dvntaylp0.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
dvntaylp0.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
dvntaylp0.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
Ref | Expression |
---|---|
dvntaylp0 | ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvntaylp0.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) | |
2 | elfz3nn0 13279 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
4 | 3 | nn0cnd 12225 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
5 | elfznn0 13278 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0) | |
6 | 1, 5 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
7 | 6 | nn0cnd 12225 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
8 | 4, 7 | npcand 11266 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
9 | 8 | oveq1d 7270 | . . . . . . 7 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵)) |
10 | dvntaylp0.t | . . . . . . 7 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
11 | 9, 10 | eqtr4di 2797 | . . . . . 6 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = 𝑇) |
12 | 11 | oveq2d 7271 | . . . . 5 ⊢ (𝜑 → (ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇)) |
13 | 12 | fveq1d 6758 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((ℂ D𝑛 𝑇)‘𝑀)) |
14 | dvntaylp0.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
15 | dvntaylp0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
16 | dvntaylp0.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
17 | fznn0sub 13217 | . . . . . 6 ⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | |
18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
19 | dvntaylp0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
20 | 8 | fveq2d 6760 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
21 | 20 | dmeqd 5803 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
22 | 19, 21 | eleqtrrd 2842 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀))) |
23 | 14, 15, 16, 6, 18, 22 | dvntaylp 25435 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
24 | 13, 23 | eqtr3d 2780 | . . 3 ⊢ (𝜑 → ((ℂ D𝑛 𝑇)‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
25 | 24 | fveq1d 6758 | . 2 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵)) |
26 | cnex 10883 | . . . . . . 7 ⊢ ℂ ∈ V | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℂ ∈ V) |
28 | elpm2r 8591 | . . . . . 6 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
29 | 27, 14, 15, 16, 28 | syl22anc 835 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
30 | dvnf 24996 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) | |
31 | 14, 29, 6, 30 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) |
32 | dvnbss 24997 | . . . . . . 7 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) | |
33 | 14, 29, 6, 32 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) |
34 | 15, 33 | fssdmd 6603 | . . . . 5 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝐴) |
35 | 34, 16 | sstrd 3927 | . . . 4 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆) |
36 | 18 | orcd 869 | . . . 4 ⊢ (𝜑 → ((𝑁 − 𝑀) ∈ ℕ0 ∨ (𝑁 − 𝑀) = +∞)) |
37 | dvnadd 24998 | . . . . . . . . 9 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) | |
38 | 14, 29, 6, 18, 37 | syl22anc 835 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) |
39 | 7, 4 | pncan3d 11265 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 + (𝑁 − 𝑀)) = 𝑁) |
40 | 39 | fveq2d 6760 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
41 | 38, 40 | eqtrd 2778 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
42 | 41 | dmeqd 5803 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
43 | 19, 42 | eleqtrrd 2842 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀))) |
44 | 14, 31, 35, 18, 43 | taylplem1 25427 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,](𝑁 − 𝑀)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) |
45 | eqid 2738 | . . . 4 ⊢ ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) | |
46 | 14, 31, 35, 36, 44, 45 | tayl0 25426 | . . 3 ⊢ (𝜑 → (𝐵 ∈ dom ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) ∧ (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))) |
47 | 46 | simprd 495 | . 2 ⊢ (𝜑 → (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
48 | 25, 47 | eqtrd 2778 | 1 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {cpr 4560 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 ℂcc 10800 ℝcr 10801 0cc0 10802 + caddc 10805 +∞cpnf 10937 − cmin 11135 ℕ0cn0 12163 ...cfz 13168 D𝑛 cdvn 24933 Tayl ctayl 25417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-fac 13916 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-dvn 24937 df-tayl 25419 |
This theorem is referenced by: taylthlem1 25437 taylthlem2 25438 |
Copyright terms: Public domain | W3C validator |