| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvntaylp0 | Structured version Visualization version GIF version | ||
| Description: The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| dvntaylp0.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvntaylp0.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvntaylp0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| dvntaylp0.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
| dvntaylp0.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
| dvntaylp0.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
| Ref | Expression |
|---|---|
| dvntaylp0 | ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvntaylp0.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) | |
| 2 | elfz3nn0 13521 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 4 | 3 | nn0cnd 12444 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 5 | elfznn0 13520 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0) | |
| 6 | 1, 5 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 7 | 6 | nn0cnd 12444 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 8 | 4, 7 | npcand 11476 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
| 9 | 8 | oveq1d 7361 | . . . . . . 7 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵)) |
| 10 | dvntaylp0.t | . . . . . . 7 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
| 11 | 9, 10 | eqtr4di 2784 | . . . . . 6 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = 𝑇) |
| 12 | 11 | oveq2d 7362 | . . . . 5 ⊢ (𝜑 → (ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇)) |
| 13 | 12 | fveq1d 6824 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((ℂ D𝑛 𝑇)‘𝑀)) |
| 14 | dvntaylp0.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 15 | dvntaylp0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 16 | dvntaylp0.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 17 | fznn0sub 13456 | . . . . . 6 ⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | |
| 18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
| 19 | dvntaylp0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
| 20 | 8 | fveq2d 6826 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 21 | 20 | dmeqd 5844 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 22 | 19, 21 | eleqtrrd 2834 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀))) |
| 23 | 14, 15, 16, 6, 18, 22 | dvntaylp 26306 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
| 24 | 13, 23 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → ((ℂ D𝑛 𝑇)‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
| 25 | 24 | fveq1d 6824 | . 2 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵)) |
| 26 | cnex 11087 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℂ ∈ V) |
| 28 | elpm2r 8769 | . . . . . 6 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
| 29 | 27, 14, 15, 16, 28 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 30 | dvnf 25856 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) | |
| 31 | 14, 29, 6, 30 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) |
| 32 | dvnbss 25857 | . . . . . . 7 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) | |
| 33 | 14, 29, 6, 32 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) |
| 34 | 15, 33 | fssdmd 6669 | . . . . 5 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝐴) |
| 35 | 34, 16 | sstrd 3940 | . . . 4 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆) |
| 36 | 18 | orcd 873 | . . . 4 ⊢ (𝜑 → ((𝑁 − 𝑀) ∈ ℕ0 ∨ (𝑁 − 𝑀) = +∞)) |
| 37 | dvnadd 25858 | . . . . . . . . 9 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) | |
| 38 | 14, 29, 6, 18, 37 | syl22anc 838 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) |
| 39 | 7, 4 | pncan3d 11475 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 + (𝑁 − 𝑀)) = 𝑁) |
| 40 | 39 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 41 | 38, 40 | eqtrd 2766 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 42 | 41 | dmeqd 5844 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 43 | 19, 42 | eleqtrrd 2834 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀))) |
| 44 | 14, 31, 35, 18, 43 | taylplem1 26297 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,](𝑁 − 𝑀)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) |
| 45 | eqid 2731 | . . . 4 ⊢ ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) | |
| 46 | 14, 31, 35, 36, 44, 45 | tayl0 26296 | . . 3 ⊢ (𝜑 → (𝐵 ∈ dom ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) ∧ (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))) |
| 47 | 46 | simprd 495 | . 2 ⊢ (𝜑 → (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
| 48 | 25, 47 | eqtrd 2766 | 1 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 {cpr 4575 dom cdm 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑pm cpm 8751 ℂcc 11004 ℝcr 11005 0cc0 11006 + caddc 11009 +∞cpnf 11143 − cmin 11344 ℕ0cn0 12381 ...cfz 13407 D𝑛 cdvn 25792 Tayl ctayl 26287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-ur 20100 df-ring 20153 df-cring 20154 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-tsms 24042 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-dvn 25796 df-tayl 26289 |
| This theorem is referenced by: taylthlem1 26308 taylthlem2 26309 taylthlem2OLD 26310 |
| Copyright terms: Public domain | W3C validator |