MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp0 Structured version   Visualization version   GIF version

Theorem dvntaylp0 26256
Description: The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp0.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvntaylp0.f (𝜑𝐹:𝐴⟶ℂ)
dvntaylp0.a (𝜑𝐴𝑆)
dvntaylp0.m (𝜑𝑀 ∈ (0...𝑁))
dvntaylp0.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
dvntaylp0.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
dvntaylp0 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))

Proof of Theorem dvntaylp0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvntaylp0.m . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑁))
2 elfz3nn0 13558 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
43nn0cnd 12481 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
5 elfznn0 13557 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
61, 5syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
76nn0cnd 12481 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
84, 7npcand 11513 . . . . . . . 8 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
98oveq1d 7384 . . . . . . 7 (𝜑 → (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
10 dvntaylp0.t . . . . . . 7 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
119, 10eqtr4di 2782 . . . . . 6 (𝜑 → (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = 𝑇)
1211oveq2d 7385 . . . . 5 (𝜑 → (ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇))
1312fveq1d 6842 . . . 4 (𝜑 → ((ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((ℂ D𝑛 𝑇)‘𝑀))
14 dvntaylp0.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
15 dvntaylp0.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
16 dvntaylp0.a . . . . 5 (𝜑𝐴𝑆)
17 fznn0sub 13493 . . . . . 6 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ ℕ0)
181, 17syl 17 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℕ0)
19 dvntaylp0.b . . . . . 6 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
208fveq2d 6844 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
2120dmeqd 5859 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
2219, 21eleqtrrd 2831 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)))
2314, 15, 16, 6, 18, 22dvntaylp 26255 . . . 4 (𝜑 → ((ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
2413, 23eqtr3d 2766 . . 3 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑀) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
2524fveq1d 6842 . 2 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵))
26 cnex 11125 . . . . . . 7 ℂ ∈ V
2726a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
28 elpm2r 8795 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2927, 14, 15, 16, 28syl22anc 838 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
30 dvnf 25805 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
3114, 29, 6, 30syl3anc 1373 . . . 4 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
32 dvnbss 25806 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
3314, 29, 6, 32syl3anc 1373 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
3415, 33fssdmd 6688 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝐴)
3534, 16sstrd 3954 . . . 4 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆)
3618orcd 873 . . . 4 (𝜑 → ((𝑁𝑀) ∈ ℕ0 ∨ (𝑁𝑀) = +∞))
37 dvnadd 25807 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
3814, 29, 6, 18, 37syl22anc 838 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
397, 4pncan3d 11512 . . . . . . . . 9 (𝜑 → (𝑀 + (𝑁𝑀)) = 𝑁)
4039fveq2d 6844 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁))
4138, 40eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
4241dmeqd 5859 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
4319, 42eleqtrrd 2831 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)))
4414, 31, 35, 18, 43taylplem1 26246 . . . 4 ((𝜑𝑘 ∈ ((0[,](𝑁𝑀)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘))
45 eqid 2729 . . . 4 ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)
4614, 31, 35, 36, 44, 45tayl0 26245 . . 3 (𝜑 → (𝐵 ∈ dom ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) ∧ (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)))
4746simprd 495 . 2 (𝜑 → (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))
4825, 47eqtrd 2764 1 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  {cpr 4587  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  pm cpm 8777  cc 11042  cr 11043  0cc0 11044   + caddc 11047  +∞cpnf 11181  cmin 11381  0cn0 12418  ...cfz 13444   D𝑛 cdvn 25741   Tayl ctayl 26236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-fac 14215  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-ur 20067  df-ring 20120  df-cring 20121  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-tsms 23990  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-dvn 25745  df-tayl 26238
This theorem is referenced by:  taylthlem1  26257  taylthlem2  26258  taylthlem2OLD  26259
  Copyright terms: Public domain W3C validator