MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp0 Structured version   Visualization version   GIF version

Theorem dvntaylp0 25436
Description: The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp0.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvntaylp0.f (𝜑𝐹:𝐴⟶ℂ)
dvntaylp0.a (𝜑𝐴𝑆)
dvntaylp0.m (𝜑𝑀 ∈ (0...𝑁))
dvntaylp0.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
dvntaylp0.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
dvntaylp0 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))

Proof of Theorem dvntaylp0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvntaylp0.m . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑁))
2 elfz3nn0 13279 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
43nn0cnd 12225 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
5 elfznn0 13278 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
61, 5syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
76nn0cnd 12225 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
84, 7npcand 11266 . . . . . . . 8 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
98oveq1d 7270 . . . . . . 7 (𝜑 → (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
10 dvntaylp0.t . . . . . . 7 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
119, 10eqtr4di 2797 . . . . . 6 (𝜑 → (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = 𝑇)
1211oveq2d 7271 . . . . 5 (𝜑 → (ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇))
1312fveq1d 6758 . . . 4 (𝜑 → ((ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((ℂ D𝑛 𝑇)‘𝑀))
14 dvntaylp0.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
15 dvntaylp0.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
16 dvntaylp0.a . . . . 5 (𝜑𝐴𝑆)
17 fznn0sub 13217 . . . . . 6 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ ℕ0)
181, 17syl 17 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℕ0)
19 dvntaylp0.b . . . . . 6 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
208fveq2d 6760 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
2120dmeqd 5803 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
2219, 21eleqtrrd 2842 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)))
2314, 15, 16, 6, 18, 22dvntaylp 25435 . . . 4 (𝜑 → ((ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
2413, 23eqtr3d 2780 . . 3 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑀) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
2524fveq1d 6758 . 2 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵))
26 cnex 10883 . . . . . . 7 ℂ ∈ V
2726a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
28 elpm2r 8591 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2927, 14, 15, 16, 28syl22anc 835 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
30 dvnf 24996 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
3114, 29, 6, 30syl3anc 1369 . . . 4 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
32 dvnbss 24997 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
3314, 29, 6, 32syl3anc 1369 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
3415, 33fssdmd 6603 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝐴)
3534, 16sstrd 3927 . . . 4 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆)
3618orcd 869 . . . 4 (𝜑 → ((𝑁𝑀) ∈ ℕ0 ∨ (𝑁𝑀) = +∞))
37 dvnadd 24998 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
3814, 29, 6, 18, 37syl22anc 835 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
397, 4pncan3d 11265 . . . . . . . . 9 (𝜑 → (𝑀 + (𝑁𝑀)) = 𝑁)
4039fveq2d 6760 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁))
4138, 40eqtrd 2778 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
4241dmeqd 5803 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
4319, 42eleqtrrd 2842 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)))
4414, 31, 35, 18, 43taylplem1 25427 . . . 4 ((𝜑𝑘 ∈ ((0[,](𝑁𝑀)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘))
45 eqid 2738 . . . 4 ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)
4614, 31, 35, 36, 44, 45tayl0 25426 . . 3 (𝜑 → (𝐵 ∈ dom ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) ∧ (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)))
4746simprd 495 . 2 (𝜑 → (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))
4825, 47eqtrd 2778 1 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {cpr 4560  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937  cmin 11135  0cn0 12163  ...cfz 13168   D𝑛 cdvn 24933   Tayl ctayl 25417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-dvn 24937  df-tayl 25419
This theorem is referenced by:  taylthlem1  25437  taylthlem2  25438
  Copyright terms: Public domain W3C validator