MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp0 Structured version   Visualization version   GIF version

Theorem dvntaylp0 25081
Description: The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp0.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvntaylp0.f (𝜑𝐹:𝐴⟶ℂ)
dvntaylp0.a (𝜑𝐴𝑆)
dvntaylp0.m (𝜑𝑀 ∈ (0...𝑁))
dvntaylp0.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
dvntaylp0.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
dvntaylp0 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))

Proof of Theorem dvntaylp0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvntaylp0.m . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑁))
2 elfz3nn0 13064 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
43nn0cnd 12010 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
5 elfznn0 13063 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
61, 5syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
76nn0cnd 12010 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
84, 7npcand 11053 . . . . . . . 8 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
98oveq1d 7172 . . . . . . 7 (𝜑 → (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
10 dvntaylp0.t . . . . . . 7 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
119, 10eqtr4di 2812 . . . . . 6 (𝜑 → (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = 𝑇)
1211oveq2d 7173 . . . . 5 (𝜑 → (ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇))
1312fveq1d 6666 . . . 4 (𝜑 → ((ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((ℂ D𝑛 𝑇)‘𝑀))
14 dvntaylp0.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
15 dvntaylp0.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
16 dvntaylp0.a . . . . 5 (𝜑𝐴𝑆)
17 fznn0sub 13002 . . . . . 6 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ ℕ0)
181, 17syl 17 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℕ0)
19 dvntaylp0.b . . . . . 6 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
208fveq2d 6668 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
2120dmeqd 5752 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
2219, 21eleqtrrd 2856 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)))
2314, 15, 16, 6, 18, 22dvntaylp 25080 . . . 4 (𝜑 → ((ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
2413, 23eqtr3d 2796 . . 3 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑀) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
2524fveq1d 6666 . 2 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵))
26 cnex 10670 . . . . . . 7 ℂ ∈ V
2726a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
28 elpm2r 8441 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2927, 14, 15, 16, 28syl22anc 837 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
30 dvnf 24641 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
3114, 29, 6, 30syl3anc 1369 . . . 4 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
32 dvnbss 24642 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
3314, 29, 6, 32syl3anc 1369 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
3415, 33fssdmd 6520 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝐴)
3534, 16sstrd 3905 . . . 4 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆)
3618orcd 870 . . . 4 (𝜑 → ((𝑁𝑀) ∈ ℕ0 ∨ (𝑁𝑀) = +∞))
37 dvnadd 24643 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
3814, 29, 6, 18, 37syl22anc 837 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
397, 4pncan3d 11052 . . . . . . . . 9 (𝜑 → (𝑀 + (𝑁𝑀)) = 𝑁)
4039fveq2d 6668 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁))
4138, 40eqtrd 2794 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
4241dmeqd 5752 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
4319, 42eleqtrrd 2856 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)))
4414, 31, 35, 18, 43taylplem1 25072 . . . 4 ((𝜑𝑘 ∈ ((0[,](𝑁𝑀)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘))
45 eqid 2759 . . . 4 ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)
4614, 31, 35, 36, 44, 45tayl0 25071 . . 3 (𝜑 → (𝐵 ∈ dom ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) ∧ (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)))
4746simprd 499 . 2 (𝜑 → (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))
4825, 47eqtrd 2794 1 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  Vcvv 3410  wss 3861  {cpr 4528  dom cdm 5529  wf 6337  cfv 6341  (class class class)co 7157  pm cpm 8424  cc 10587  cr 10588  0cc0 10589   + caddc 10592  +∞cpnf 10724  cmin 10922  0cn0 11948  ...cfz 12953   D𝑛 cdvn 24578   Tayl ctayl 25062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667  ax-addf 10668  ax-mulf 10669
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-iin 4890  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-om 7587  df-1st 7700  df-2nd 7701  df-supp 7843  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-er 8306  df-map 8425  df-pm 8426  df-ixp 8494  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-fsupp 8881  df-fi 8922  df-sup 8953  df-inf 8954  df-oi 9021  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-4 11753  df-5 11754  df-6 11755  df-7 11756  df-8 11757  df-9 11758  df-n0 11949  df-xnn0 12021  df-z 12035  df-dec 12152  df-uz 12297  df-q 12403  df-rp 12445  df-xneg 12562  df-xadd 12563  df-xmul 12564  df-icc 12800  df-fz 12954  df-fzo 13097  df-seq 13433  df-exp 13494  df-fac 13698  df-hash 13755  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-clim 14907  df-sum 15105  df-struct 16558  df-ndx 16559  df-slot 16560  df-base 16562  df-sets 16563  df-ress 16564  df-plusg 16651  df-mulr 16652  df-starv 16653  df-sca 16654  df-vsca 16655  df-ip 16656  df-tset 16657  df-ple 16658  df-ds 16660  df-unif 16661  df-hom 16662  df-cco 16663  df-rest 16769  df-topn 16770  df-0g 16788  df-gsum 16789  df-topgen 16790  df-pt 16791  df-prds 16794  df-xrs 16848  df-qtop 16853  df-imas 16854  df-xps 16856  df-mre 16930  df-mrc 16931  df-acs 16933  df-mgm 17933  df-sgrp 17982  df-mnd 17993  df-submnd 18038  df-grp 18187  df-minusg 18188  df-mulg 18307  df-cntz 18529  df-cmn 18990  df-abl 18991  df-mgp 19323  df-ur 19335  df-ring 19382  df-cring 19383  df-psmet 20173  df-xmet 20174  df-met 20175  df-bl 20176  df-mopn 20177  df-fbas 20178  df-fg 20179  df-cnfld 20182  df-top 21609  df-topon 21626  df-topsp 21648  df-bases 21661  df-cld 21734  df-ntr 21735  df-cls 21736  df-nei 21813  df-lp 21851  df-perf 21852  df-cn 21942  df-cnp 21943  df-haus 22030  df-tx 22277  df-hmeo 22470  df-fil 22561  df-fm 22653  df-flim 22654  df-flf 22655  df-tsms 22842  df-xms 23037  df-ms 23038  df-tms 23039  df-cncf 23594  df-limc 24580  df-dv 24581  df-dvn 24582  df-tayl 25064
This theorem is referenced by:  taylthlem1  25082  taylthlem2  25083
  Copyright terms: Public domain W3C validator