| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvntaylp0 | Structured version Visualization version GIF version | ||
| Description: The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| dvntaylp0.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvntaylp0.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvntaylp0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| dvntaylp0.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
| dvntaylp0.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
| dvntaylp0.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
| Ref | Expression |
|---|---|
| dvntaylp0 | ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvntaylp0.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) | |
| 2 | elfz3nn0 13524 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 4 | 3 | nn0cnd 12447 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 5 | elfznn0 13523 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0) | |
| 6 | 1, 5 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 7 | 6 | nn0cnd 12447 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 8 | 4, 7 | npcand 11479 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
| 9 | 8 | oveq1d 7364 | . . . . . . 7 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵)) |
| 10 | dvntaylp0.t | . . . . . . 7 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
| 11 | 9, 10 | eqtr4di 2782 | . . . . . 6 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = 𝑇) |
| 12 | 11 | oveq2d 7365 | . . . . 5 ⊢ (𝜑 → (ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇)) |
| 13 | 12 | fveq1d 6824 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((ℂ D𝑛 𝑇)‘𝑀)) |
| 14 | dvntaylp0.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 15 | dvntaylp0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 16 | dvntaylp0.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 17 | fznn0sub 13459 | . . . . . 6 ⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | |
| 18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
| 19 | dvntaylp0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
| 20 | 8 | fveq2d 6826 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 21 | 20 | dmeqd 5848 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 22 | 19, 21 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀))) |
| 23 | 14, 15, 16, 6, 18, 22 | dvntaylp 26277 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
| 24 | 13, 23 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → ((ℂ D𝑛 𝑇)‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
| 25 | 24 | fveq1d 6824 | . 2 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵)) |
| 26 | cnex 11090 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℂ ∈ V) |
| 28 | elpm2r 8772 | . . . . . 6 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
| 29 | 27, 14, 15, 16, 28 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 30 | dvnf 25827 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) | |
| 31 | 14, 29, 6, 30 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) |
| 32 | dvnbss 25828 | . . . . . . 7 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) | |
| 33 | 14, 29, 6, 32 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) |
| 34 | 15, 33 | fssdmd 6670 | . . . . 5 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝐴) |
| 35 | 34, 16 | sstrd 3946 | . . . 4 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆) |
| 36 | 18 | orcd 873 | . . . 4 ⊢ (𝜑 → ((𝑁 − 𝑀) ∈ ℕ0 ∨ (𝑁 − 𝑀) = +∞)) |
| 37 | dvnadd 25829 | . . . . . . . . 9 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) | |
| 38 | 14, 29, 6, 18, 37 | syl22anc 838 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) |
| 39 | 7, 4 | pncan3d 11478 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 + (𝑁 − 𝑀)) = 𝑁) |
| 40 | 39 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 41 | 38, 40 | eqtrd 2764 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 42 | 41 | dmeqd 5848 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
| 43 | 19, 42 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀))) |
| 44 | 14, 31, 35, 18, 43 | taylplem1 26268 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,](𝑁 − 𝑀)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) |
| 45 | eqid 2729 | . . . 4 ⊢ ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) | |
| 46 | 14, 31, 35, 36, 44, 45 | tayl0 26267 | . . 3 ⊢ (𝜑 → (𝐵 ∈ dom ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) ∧ (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))) |
| 47 | 46 | simprd 495 | . 2 ⊢ (𝜑 → (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
| 48 | 25, 47 | eqtrd 2764 | 1 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 {cpr 4579 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑pm cpm 8754 ℂcc 11007 ℝcr 11008 0cc0 11009 + caddc 11012 +∞cpnf 11146 − cmin 11347 ℕ0cn0 12384 ...cfz 13410 D𝑛 cdvn 25763 Tayl ctayl 26258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-tsms 24012 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 df-dvn 25767 df-tayl 26260 |
| This theorem is referenced by: taylthlem1 26279 taylthlem2 26280 taylthlem2OLD 26281 |
| Copyright terms: Public domain | W3C validator |