![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvntaylp0 | Structured version Visualization version GIF version |
Description: The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
dvntaylp0.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvntaylp0.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
dvntaylp0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
dvntaylp0.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
dvntaylp0.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
dvntaylp0.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
Ref | Expression |
---|---|
dvntaylp0 | ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvntaylp0.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) | |
2 | elfz3nn0 13678 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
4 | 3 | nn0cnd 12615 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
5 | elfznn0 13677 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0) | |
6 | 1, 5 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
7 | 6 | nn0cnd 12615 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
8 | 4, 7 | npcand 11651 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
9 | 8 | oveq1d 7463 | . . . . . . 7 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵)) |
10 | dvntaylp0.t | . . . . . . 7 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
11 | 9, 10 | eqtr4di 2798 | . . . . . 6 ⊢ (𝜑 → (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = 𝑇) |
12 | 11 | oveq2d 7464 | . . . . 5 ⊢ (𝜑 → (ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇)) |
13 | 12 | fveq1d 6922 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((ℂ D𝑛 𝑇)‘𝑀)) |
14 | dvntaylp0.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
15 | dvntaylp0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
16 | dvntaylp0.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
17 | fznn0sub 13616 | . . . . . 6 ⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | |
18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
19 | dvntaylp0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
20 | 8 | fveq2d 6924 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
21 | 20 | dmeqd 5930 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
22 | 19, 21 | eleqtrrd 2847 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘((𝑁 − 𝑀) + 𝑀))) |
23 | 14, 15, 16, 6, 18, 22 | dvntaylp 26431 | . . . 4 ⊢ (𝜑 → ((ℂ D𝑛 (((𝑁 − 𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
24 | 13, 23 | eqtr3d 2782 | . . 3 ⊢ (𝜑 → ((ℂ D𝑛 𝑇)‘𝑀) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) |
25 | 24 | fveq1d 6922 | . 2 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵)) |
26 | cnex 11265 | . . . . . . 7 ⊢ ℂ ∈ V | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℂ ∈ V) |
28 | elpm2r 8903 | . . . . . 6 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
29 | 27, 14, 15, 16, 28 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
30 | dvnf 25983 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) | |
31 | 14, 29, 6, 30 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ) |
32 | dvnbss 25984 | . . . . . . 7 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) | |
33 | 14, 29, 6, 32 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹) |
34 | 15, 33 | fssdmd 6765 | . . . . 5 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝐴) |
35 | 34, 16 | sstrd 4019 | . . . 4 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆) |
36 | 18 | orcd 872 | . . . 4 ⊢ (𝜑 → ((𝑁 − 𝑀) ∈ ℕ0 ∨ (𝑁 − 𝑀) = +∞)) |
37 | dvnadd 25985 | . . . . . . . . 9 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) | |
38 | 14, 29, 6, 18, 37 | syl22anc 838 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀)))) |
39 | 7, 4 | pncan3d 11650 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 + (𝑁 − 𝑀)) = 𝑁) |
40 | 39 | fveq2d 6924 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁 − 𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
41 | 38, 40 | eqtrd 2780 | . . . . . . 7 ⊢ (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
42 | 41 | dmeqd 5930 | . . . . . 6 ⊢ (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
43 | 19, 42 | eleqtrrd 2847 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁 − 𝑀))) |
44 | 14, 31, 35, 18, 43 | taylplem1 26422 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,](𝑁 − 𝑀)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) |
45 | eqid 2740 | . . . 4 ⊢ ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) | |
46 | 14, 31, 35, 36, 44, 45 | tayl0 26421 | . . 3 ⊢ (𝜑 → (𝐵 ∈ dom ((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) ∧ (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))) |
47 | 46 | simprd 495 | . 2 ⊢ (𝜑 → (((𝑁 − 𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
48 | 25, 47 | eqtrd 2780 | 1 ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {cpr 4650 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑pm cpm 8885 ℂcc 11182 ℝcr 11183 0cc0 11184 + caddc 11187 +∞cpnf 11321 − cmin 11520 ℕ0cn0 12553 ...cfz 13567 D𝑛 cdvn 25919 Tayl ctayl 26412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-fac 14323 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tsms 24156 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-dvn 25923 df-tayl 26414 |
This theorem is referenced by: taylthlem1 26433 taylthlem2 26434 taylthlem2OLD 26435 |
Copyright terms: Public domain | W3C validator |