MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylply Structured version   Visualization version   GIF version

Theorem taylply 26329
Description: The Taylor polynomial is a polynomial of degree (at most) 𝑁. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylply (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁))

Proof of Theorem taylply
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 taylpfval.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . 2 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . 2 (𝜑𝐴𝑆)
4 taylpfval.n . 2 (𝜑𝑁 ∈ ℕ0)
5 taylpfval.b . 2 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
6 taylpfval.t . 2 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
7 cnring 21353 . . 3 fld ∈ Ring
8 cnfldbas 21319 . . . 4 ℂ = (Base‘ℂfld)
98subrgid 20533 . . 3 (ℂfld ∈ Ring → ℂ ∈ (SubRing‘ℂfld))
107, 9mp1i 13 . 2 (𝜑 → ℂ ∈ (SubRing‘ℂfld))
11 cnex 11210 . . . . . . . 8 ℂ ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
13 elpm2r 8859 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1412, 1, 2, 3, 13syl22anc 838 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
15 dvnbss 25882 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
161, 14, 4, 15syl3anc 1373 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
172, 16fssdmd 6724 . . . 4 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ 𝐴)
18 recnprss 25857 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
191, 18syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
203, 19sstrd 3969 . . . 4 (𝜑𝐴 ⊆ ℂ)
2117, 20sstrd 3969 . . 3 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ ℂ)
2221, 5sseldd 3959 . 2 (𝜑𝐵 ∈ ℂ)
231adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
2414adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
25 elfznn0 13637 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
2625adantl 481 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
27 dvnf 25881 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
2823, 24, 26, 27syl3anc 1373 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
29 simpr 484 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
30 dvn2bss 25884 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3123, 24, 29, 30syl3anc 1373 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
325adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
3331, 32sseldd 3959 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3428, 33ffvelcdmd 7075 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
3526faccld 14302 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
3635nncnd 12256 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ)
3735nnne0d 12290 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0)
3834, 36, 37divcld 12017 . 2 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
391, 2, 3, 4, 5, 6, 10, 22, 38taylply2 26327 1 (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  {cpr 4603   class class class wbr 5119  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  pm cpm 8841  cc 11127  cr 11128  0cc0 11129  cle 11270  0cn0 12501  ...cfz 13524  !cfa 14291  Ringcrg 20193  SubRingcsubrg 20529  fldccnfld 21315   D𝑛 cdvn 25817  Polycply 26141  degcdgr 26144   Tayl ctayl 26312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cnp 23166  df-haus 23253  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tsms 24065  df-xms 24259  df-ms 24260  df-0p 25623  df-limc 25819  df-dv 25820  df-dvn 25821  df-ply 26145  df-idp 26146  df-coe 26147  df-dgr 26148  df-tayl 26314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator