MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylply Structured version   Visualization version   GIF version

Theorem taylply 24884
Description: The Taylor polynomial is a polynomial of degree (at most) 𝑁. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylply (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁))

Proof of Theorem taylply
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 taylpfval.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . 2 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . 2 (𝜑𝐴𝑆)
4 taylpfval.n . 2 (𝜑𝑁 ∈ ℕ0)
5 taylpfval.b . 2 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
6 taylpfval.t . 2 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
7 cnring 20495 . . 3 fld ∈ Ring
8 cnfldbas 20477 . . . 4 ℂ = (Base‘ℂfld)
98subrgid 19466 . . 3 (ℂfld ∈ Ring → ℂ ∈ (SubRing‘ℂfld))
107, 9mp1i 13 . 2 (𝜑 → ℂ ∈ (SubRing‘ℂfld))
11 cnex 10606 . . . . . . . 8 ℂ ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
13 elpm2r 8413 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1412, 1, 2, 3, 13syl22anc 834 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
15 dvnbss 24452 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
161, 14, 4, 15syl3anc 1363 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)
172, 16fssdmd 6522 . . . 4 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ 𝐴)
18 recnprss 24429 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
191, 18syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
203, 19sstrd 3974 . . . 4 (𝜑𝐴 ⊆ ℂ)
2117, 20sstrd 3974 . . 3 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ ℂ)
2221, 5sseldd 3965 . 2 (𝜑𝐵 ∈ ℂ)
231adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
2414adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
25 elfznn0 12988 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
2625adantl 482 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
27 dvnf 24451 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
2823, 24, 26, 27syl3anc 1363 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
29 simpr 485 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
30 dvn2bss 24454 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3123, 24, 29, 30syl3anc 1363 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
325adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
3331, 32sseldd 3965 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3428, 33ffvelrnd 6844 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
3526faccld 13632 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
3635nncnd 11642 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ)
3735nnne0d 11675 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0)
3834, 36, 37divcld 11404 . 2 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
391, 2, 3, 4, 5, 6, 10, 22, 38taylply2 24883 1 (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  wss 3933  {cpr 4559   class class class wbr 5057  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7145  pm cpm 8396  cc 10523  cr 10524  0cc0 10525  cle 10664  0cn0 11885  ...cfz 12880  !cfa 13621  Ringcrg 19226  SubRingcsubrg 19460  fldccnfld 20473   D𝑛 cdvn 24389  Polycply 24701  degcdgr 24704   Tayl ctayl 24868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-fac 13622  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-subg 18214  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-subrg 19462  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cnp 21764  df-haus 21851  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-tsms 22662  df-xms 22857  df-ms 22858  df-0p 24198  df-limc 24391  df-dv 24392  df-dvn 24393  df-ply 24705  df-idp 24706  df-coe 24707  df-dgr 24708  df-tayl 24870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator