Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > taylply | Structured version Visualization version GIF version |
Description: The Taylor polynomial is a polynomial of degree (at most) 𝑁. (Contributed by Mario Carneiro, 31-Dec-2016.) |
Ref | Expression |
---|---|
taylpfval.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
taylpfval.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
taylpfval.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
taylpfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
taylpfval.b | ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
taylpfval.t | ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) |
Ref | Expression |
---|---|
taylply | ⊢ (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylpfval.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | taylpfval.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
3 | taylpfval.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
4 | taylpfval.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | taylpfval.b | . 2 ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) | |
6 | taylpfval.t | . 2 ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) | |
7 | cnring 20609 | . . 3 ⊢ ℂfld ∈ Ring | |
8 | cnfldbas 20590 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
9 | 8 | subrgid 20015 | . . 3 ⊢ (ℂfld ∈ Ring → ℂ ∈ (SubRing‘ℂfld)) |
10 | 7, 9 | mp1i 13 | . 2 ⊢ (𝜑 → ℂ ∈ (SubRing‘ℂfld)) |
11 | cnex 10941 | . . . . . . . 8 ⊢ ℂ ∈ V | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℂ ∈ V) |
13 | elpm2r 8622 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
14 | 12, 1, 2, 3, 13 | syl22anc 836 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
15 | dvnbss 25081 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹) | |
16 | 1, 14, 4, 15 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹) |
17 | 2, 16 | fssdmd 6613 | . . . 4 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ 𝐴) |
18 | recnprss 25057 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
19 | 1, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
20 | 3, 19 | sstrd 3932 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
21 | 17, 20 | sstrd 3932 | . . 3 ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ ℂ) |
22 | 21, 5 | sseldd 3923 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
23 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ}) |
24 | 14 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
25 | elfznn0 13338 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
26 | 25 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
27 | dvnf 25080 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) | |
28 | 23, 24, 26, 27 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ) |
29 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁)) | |
30 | dvn2bss 25083 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | |
31 | 23, 24, 29, 30 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
32 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) |
33 | 31, 32 | sseldd 3923 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) |
34 | 28, 33 | ffvelrnd 6956 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ) |
35 | 26 | faccld 13987 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
36 | 35 | nncnd 11978 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℂ) |
37 | 35 | nnne0d 12012 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0) |
38 | 34, 36, 37 | divcld 11740 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ) |
39 | 1, 2, 3, 4, 5, 6, 10, 22, 38 | taylply2 25516 | 1 ⊢ (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3431 ⊆ wss 3888 {cpr 4565 class class class wbr 5075 dom cdm 5586 ⟶wf 6424 ‘cfv 6428 (class class class)co 7269 ↑pm cpm 8605 ℂcc 10858 ℝcr 10859 0cc0 10860 ≤ cle 10999 ℕ0cn0 12222 ...cfz 13228 !cfa 13976 Ringcrg 19772 SubRingcsubrg 20009 ℂfldccnfld 20586 D𝑛 cdvn 25017 Polycply 25334 degcdgr 25337 Tayl ctayl 25501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-inf2 9388 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 ax-pre-sup 10938 ax-addf 10939 ax-mulf 10940 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-se 5542 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-isom 6437 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7705 df-1st 7822 df-2nd 7823 df-supp 7967 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8487 df-map 8606 df-pm 8607 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-fsupp 9118 df-fi 9159 df-sup 9190 df-inf 9191 df-oi 9258 df-card 9686 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-div 11622 df-nn 11963 df-2 12025 df-3 12026 df-4 12027 df-5 12028 df-6 12029 df-7 12030 df-8 12031 df-9 12032 df-n0 12223 df-z 12309 df-dec 12427 df-uz 12572 df-q 12678 df-rp 12720 df-xneg 12837 df-xadd 12838 df-xmul 12839 df-icc 13075 df-fz 13229 df-fzo 13372 df-fl 13501 df-seq 13711 df-exp 13772 df-fac 13977 df-hash 14034 df-cj 14799 df-re 14800 df-im 14801 df-sqrt 14935 df-abs 14936 df-clim 15186 df-rlim 15187 df-sum 15387 df-struct 16837 df-sets 16854 df-slot 16872 df-ndx 16884 df-base 16902 df-ress 16931 df-plusg 16964 df-mulr 16965 df-starv 16966 df-tset 16970 df-ple 16971 df-ds 16973 df-unif 16974 df-rest 17122 df-topn 17123 df-0g 17141 df-gsum 17142 df-topgen 17143 df-mgm 18315 df-sgrp 18364 df-mnd 18375 df-grp 18569 df-minusg 18570 df-subg 18741 df-cntz 18912 df-cmn 19377 df-abl 19378 df-mgp 19710 df-ur 19727 df-ring 19774 df-cring 19775 df-subrg 20011 df-psmet 20578 df-xmet 20579 df-met 20580 df-bl 20581 df-mopn 20582 df-fbas 20583 df-fg 20584 df-cnfld 20587 df-top 22032 df-topon 22049 df-topsp 22071 df-bases 22085 df-cld 22159 df-ntr 22160 df-cls 22161 df-nei 22238 df-lp 22276 df-perf 22277 df-cnp 22368 df-haus 22455 df-fil 22986 df-fm 23078 df-flim 23079 df-flf 23080 df-tsms 23267 df-xms 23462 df-ms 23463 df-0p 24823 df-limc 25019 df-dv 25020 df-dvn 25021 df-ply 25338 df-idp 25339 df-coe 25340 df-dgr 25341 df-tayl 25503 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |