![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > taylply | Structured version Visualization version GIF version |
Description: The Taylor polynomial is a polynomial of degree (at most) π. (Contributed by Mario Carneiro, 31-Dec-2016.) |
Ref | Expression |
---|---|
taylpfval.s | β’ (π β π β {β, β}) |
taylpfval.f | β’ (π β πΉ:π΄βΆβ) |
taylpfval.a | β’ (π β π΄ β π) |
taylpfval.n | β’ (π β π β β0) |
taylpfval.b | β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) |
taylpfval.t | β’ π = (π(π Tayl πΉ)π΅) |
Ref | Expression |
---|---|
taylply | β’ (π β (π β (Polyββ) β§ (degβπ) β€ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylpfval.s | . 2 β’ (π β π β {β, β}) | |
2 | taylpfval.f | . 2 β’ (π β πΉ:π΄βΆβ) | |
3 | taylpfval.a | . 2 β’ (π β π΄ β π) | |
4 | taylpfval.n | . 2 β’ (π β π β β0) | |
5 | taylpfval.b | . 2 β’ (π β π΅ β dom ((π Dπ πΉ)βπ)) | |
6 | taylpfval.t | . 2 β’ π = (π(π Tayl πΉ)π΅) | |
7 | cnring 20959 | . . 3 β’ βfld β Ring | |
8 | cnfldbas 20940 | . . . 4 β’ β = (Baseββfld) | |
9 | 8 | subrgid 20357 | . . 3 β’ (βfld β Ring β β β (SubRingββfld)) |
10 | 7, 9 | mp1i 13 | . 2 β’ (π β β β (SubRingββfld)) |
11 | cnex 11187 | . . . . . . . 8 β’ β β V | |
12 | 11 | a1i 11 | . . . . . . 7 β’ (π β β β V) |
13 | elpm2r 8835 | . . . . . . 7 β’ (((β β V β§ π β {β, β}) β§ (πΉ:π΄βΆβ β§ π΄ β π)) β πΉ β (β βpm π)) | |
14 | 12, 1, 2, 3, 13 | syl22anc 837 | . . . . . 6 β’ (π β πΉ β (β βpm π)) |
15 | dvnbss 25436 | . . . . . 6 β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β dom ((π Dπ πΉ)βπ) β dom πΉ) | |
16 | 1, 14, 4, 15 | syl3anc 1371 | . . . . 5 β’ (π β dom ((π Dπ πΉ)βπ) β dom πΉ) |
17 | 2, 16 | fssdmd 6733 | . . . 4 β’ (π β dom ((π Dπ πΉ)βπ) β π΄) |
18 | recnprss 25412 | . . . . . 6 β’ (π β {β, β} β π β β) | |
19 | 1, 18 | syl 17 | . . . . 5 β’ (π β π β β) |
20 | 3, 19 | sstrd 3991 | . . . 4 β’ (π β π΄ β β) |
21 | 17, 20 | sstrd 3991 | . . 3 β’ (π β dom ((π Dπ πΉ)βπ) β β) |
22 | 21, 5 | sseldd 3982 | . 2 β’ (π β π΅ β β) |
23 | 1 | adantr 481 | . . . . 5 β’ ((π β§ π β (0...π)) β π β {β, β}) |
24 | 14 | adantr 481 | . . . . 5 β’ ((π β§ π β (0...π)) β πΉ β (β βpm π)) |
25 | elfznn0 13590 | . . . . . 6 β’ (π β (0...π) β π β β0) | |
26 | 25 | adantl 482 | . . . . 5 β’ ((π β§ π β (0...π)) β π β β0) |
27 | dvnf 25435 | . . . . 5 β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β ((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ) | |
28 | 23, 24, 26, 27 | syl3anc 1371 | . . . 4 β’ ((π β§ π β (0...π)) β ((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ) |
29 | simpr 485 | . . . . . 6 β’ ((π β§ π β (0...π)) β π β (0...π)) | |
30 | dvn2bss 25438 | . . . . . 6 β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β (0...π)) β dom ((π Dπ πΉ)βπ) β dom ((π Dπ πΉ)βπ)) | |
31 | 23, 24, 29, 30 | syl3anc 1371 | . . . . 5 β’ ((π β§ π β (0...π)) β dom ((π Dπ πΉ)βπ) β dom ((π Dπ πΉ)βπ)) |
32 | 5 | adantr 481 | . . . . 5 β’ ((π β§ π β (0...π)) β π΅ β dom ((π Dπ πΉ)βπ)) |
33 | 31, 32 | sseldd 3982 | . . . 4 β’ ((π β§ π β (0...π)) β π΅ β dom ((π Dπ πΉ)βπ)) |
34 | 28, 33 | ffvelcdmd 7084 | . . 3 β’ ((π β§ π β (0...π)) β (((π Dπ πΉ)βπ)βπ΅) β β) |
35 | 26 | faccld 14240 | . . . 4 β’ ((π β§ π β (0...π)) β (!βπ) β β) |
36 | 35 | nncnd 12224 | . . 3 β’ ((π β§ π β (0...π)) β (!βπ) β β) |
37 | 35 | nnne0d 12258 | . . 3 β’ ((π β§ π β (0...π)) β (!βπ) β 0) |
38 | 34, 36, 37 | divcld 11986 | . 2 β’ ((π β§ π β (0...π)) β ((((π Dπ πΉ)βπ)βπ΅) / (!βπ)) β β) |
39 | 1, 2, 3, 4, 5, 6, 10, 22, 38 | taylply2 25871 | 1 β’ (π β (π β (Polyββ) β§ (degβπ) β€ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3947 {cpr 4629 class class class wbr 5147 dom cdm 5675 βΆwf 6536 βcfv 6540 (class class class)co 7405 βpm cpm 8817 βcc 11104 βcr 11105 0cc0 11106 β€ cle 11245 β0cn0 12468 ...cfz 13480 !cfa 14229 Ringcrg 20049 SubRingcsubrg 20351 βfldccnfld 20936 Dπ cdvn 25372 Polycply 25689 degcdgr 25692 Tayl ctayl 25856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-fac 14230 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-sum 15629 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-subg 18997 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-subrg 20353 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cnp 22723 df-haus 22810 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-tsms 23622 df-xms 23817 df-ms 23818 df-0p 25178 df-limc 25374 df-dv 25375 df-dvn 25376 df-ply 25693 df-idp 25694 df-coe 25695 df-dgr 25696 df-tayl 25858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |