Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco2eld2 Structured version   Visualization version   GIF version

Theorem fuco2eld2 49303
Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco2eld.w (𝜑𝑊 = (𝑆 × 𝑅))
fuco2eld2.u (𝜑𝑈𝑊)
fuco2eld2.s Rel 𝑆
fuco2eld2.r Rel 𝑅
Assertion
Ref Expression
fuco2eld2 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)

Proof of Theorem fuco2eld2
StepHypRef Expression
1 fuco2eld2.u . . . 4 (𝜑𝑈𝑊)
2 fuco2eld.w . . . 4 (𝜑𝑊 = (𝑆 × 𝑅))
31, 2eleqtrd 2830 . . 3 (𝜑𝑈 ∈ (𝑆 × 𝑅))
4 1st2nd2 8007 . . 3 (𝑈 ∈ (𝑆 × 𝑅) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
53, 4syl 17 . 2 (𝜑𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
6 fuco2eld2.s . . . . . 6 Rel 𝑆
7 df-rel 5645 . . . . . 6 (Rel 𝑆𝑆 ⊆ (V × V))
86, 7mpbi 230 . . . . 5 𝑆 ⊆ (V × V)
9 xp1st 8000 . . . . 5 (𝑈 ∈ (𝑆 × 𝑅) → (1st𝑈) ∈ 𝑆)
108, 9sselid 3944 . . . 4 (𝑈 ∈ (𝑆 × 𝑅) → (1st𝑈) ∈ (V × V))
11 1st2nd2 8007 . . . 4 ((1st𝑈) ∈ (V × V) → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
123, 10, 113syl 18 . . 3 (𝜑 → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
13 fuco2eld2.r . . . . . 6 Rel 𝑅
14 df-rel 5645 . . . . . 6 (Rel 𝑅𝑅 ⊆ (V × V))
1513, 14mpbi 230 . . . . 5 𝑅 ⊆ (V × V)
16 xp2nd 8001 . . . . 5 (𝑈 ∈ (𝑆 × 𝑅) → (2nd𝑈) ∈ 𝑅)
1715, 16sselid 3944 . . . 4 (𝑈 ∈ (𝑆 × 𝑅) → (2nd𝑈) ∈ (V × V))
18 1st2nd2 8007 . . . 4 ((2nd𝑈) ∈ (V × V) → (2nd𝑈) = ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩)
193, 17, 183syl 18 . . 3 (𝜑 → (2nd𝑈) = ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩)
2012, 19opeq12d 4845 . 2 (𝜑 → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
215, 20eqtrd 2764 1 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  cop 4595   × cxp 5636  Rel wrel 5643  cfv 6511  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by:  fuco2eld3  49304  fucof21  49336  fucoid2  49338
  Copyright terms: Public domain W3C validator