Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco2eld2 Structured version   Visualization version   GIF version

Theorem fuco2eld2 49325
Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco2eld.w (𝜑𝑊 = (𝑆 × 𝑅))
fuco2eld2.u (𝜑𝑈𝑊)
fuco2eld2.s Rel 𝑆
fuco2eld2.r Rel 𝑅
Assertion
Ref Expression
fuco2eld2 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)

Proof of Theorem fuco2eld2
StepHypRef Expression
1 fuco2eld2.u . . . 4 (𝜑𝑈𝑊)
2 fuco2eld.w . . . 4 (𝜑𝑊 = (𝑆 × 𝑅))
31, 2eleqtrd 2831 . . 3 (𝜑𝑈 ∈ (𝑆 × 𝑅))
4 1st2nd2 7955 . . 3 (𝑈 ∈ (𝑆 × 𝑅) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
53, 4syl 17 . 2 (𝜑𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
6 fuco2eld2.s . . . . . 6 Rel 𝑆
7 df-rel 5621 . . . . . 6 (Rel 𝑆𝑆 ⊆ (V × V))
86, 7mpbi 230 . . . . 5 𝑆 ⊆ (V × V)
9 xp1st 7948 . . . . 5 (𝑈 ∈ (𝑆 × 𝑅) → (1st𝑈) ∈ 𝑆)
108, 9sselid 3930 . . . 4 (𝑈 ∈ (𝑆 × 𝑅) → (1st𝑈) ∈ (V × V))
11 1st2nd2 7955 . . . 4 ((1st𝑈) ∈ (V × V) → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
123, 10, 113syl 18 . . 3 (𝜑 → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
13 fuco2eld2.r . . . . . 6 Rel 𝑅
14 df-rel 5621 . . . . . 6 (Rel 𝑅𝑅 ⊆ (V × V))
1513, 14mpbi 230 . . . . 5 𝑅 ⊆ (V × V)
16 xp2nd 7949 . . . . 5 (𝑈 ∈ (𝑆 × 𝑅) → (2nd𝑈) ∈ 𝑅)
1715, 16sselid 3930 . . . 4 (𝑈 ∈ (𝑆 × 𝑅) → (2nd𝑈) ∈ (V × V))
18 1st2nd2 7955 . . . 4 ((2nd𝑈) ∈ (V × V) → (2nd𝑈) = ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩)
193, 17, 183syl 18 . . 3 (𝜑 → (2nd𝑈) = ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩)
2012, 19opeq12d 4831 . 2 (𝜑 → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
215, 20eqtrd 2765 1 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  Vcvv 3434  wss 3900  cop 4580   × cxp 5612  Rel wrel 5619  cfv 6477  1st c1st 7914  2nd c2nd 7915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fv 6485  df-1st 7916  df-2nd 7917
This theorem is referenced by:  fuco2eld3  49326  fucof21  49358  fucoid2  49360
  Copyright terms: Public domain W3C validator