Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco2eld2 Structured version   Visualization version   GIF version

Theorem fuco2eld2 49429
Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco2eld.w (𝜑𝑊 = (𝑆 × 𝑅))
fuco2eld2.u (𝜑𝑈𝑊)
fuco2eld2.s Rel 𝑆
fuco2eld2.r Rel 𝑅
Assertion
Ref Expression
fuco2eld2 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)

Proof of Theorem fuco2eld2
StepHypRef Expression
1 fuco2eld2.u . . . 4 (𝜑𝑈𝑊)
2 fuco2eld.w . . . 4 (𝜑𝑊 = (𝑆 × 𝑅))
31, 2eleqtrd 2835 . . 3 (𝜑𝑈 ∈ (𝑆 × 𝑅))
4 1st2nd2 7969 . . 3 (𝑈 ∈ (𝑆 × 𝑅) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
53, 4syl 17 . 2 (𝜑𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
6 fuco2eld2.s . . . . . 6 Rel 𝑆
7 df-rel 5628 . . . . . 6 (Rel 𝑆𝑆 ⊆ (V × V))
86, 7mpbi 230 . . . . 5 𝑆 ⊆ (V × V)
9 xp1st 7962 . . . . 5 (𝑈 ∈ (𝑆 × 𝑅) → (1st𝑈) ∈ 𝑆)
108, 9sselid 3929 . . . 4 (𝑈 ∈ (𝑆 × 𝑅) → (1st𝑈) ∈ (V × V))
11 1st2nd2 7969 . . . 4 ((1st𝑈) ∈ (V × V) → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
123, 10, 113syl 18 . . 3 (𝜑 → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
13 fuco2eld2.r . . . . . 6 Rel 𝑅
14 df-rel 5628 . . . . . 6 (Rel 𝑅𝑅 ⊆ (V × V))
1513, 14mpbi 230 . . . . 5 𝑅 ⊆ (V × V)
16 xp2nd 7963 . . . . 5 (𝑈 ∈ (𝑆 × 𝑅) → (2nd𝑈) ∈ 𝑅)
1715, 16sselid 3929 . . . 4 (𝑈 ∈ (𝑆 × 𝑅) → (2nd𝑈) ∈ (V × V))
18 1st2nd2 7969 . . . 4 ((2nd𝑈) ∈ (V × V) → (2nd𝑈) = ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩)
193, 17, 183syl 18 . . 3 (𝜑 → (2nd𝑈) = ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩)
2012, 19opeq12d 4834 . 2 (𝜑 → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
215, 20eqtrd 2768 1 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3438  wss 3899  cop 4583   × cxp 5619  Rel wrel 5626  cfv 6489  1st c1st 7928  2nd c2nd 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fv 6497  df-1st 7930  df-2nd 7931
This theorem is referenced by:  fuco2eld3  49430  fucof21  49462  fucoid2  49464
  Copyright terms: Public domain W3C validator