| Step | Hyp | Ref
| Expression |
| 1 | | fuco11.f |
. . . 4
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 2 | 1 | funcrcl2 48996 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 3 | | fuco11.k |
. . . 4
⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| 4 | 3 | funcrcl2 48996 |
. . 3
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 5 | 3 | funcrcl3 48997 |
. . 3
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 6 | | fuco11.o |
. . 3
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 7 | | eqidd 2731 |
. . 3
⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 8 | 2, 4, 5, 6, 7 | fuco2 49218 |
. 2
⊢ (𝜑 → 𝑃 = (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))) |
| 9 | | fvexd 6880 |
. . 3
⊢ ((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) → (1st
‘(2nd ‘𝑢)) ∈ V) |
| 10 | | simprl 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) → 𝑢 = 𝑈) |
| 11 | | fuco11.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 13 | 10, 12 | eqtrd 2765 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) → 𝑢 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 14 | 13 | fveq2d 6869 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) → (2nd ‘𝑢) = (2nd
‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) |
| 15 | 14 | fveq2d 6869 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) → (1st
‘(2nd ‘𝑢)) = (1st ‘(2nd
‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉))) |
| 16 | | opex 5432 |
. . . . . . . 8
⊢
〈𝐾, 𝐿〉 ∈ V |
| 17 | | opex 5432 |
. . . . . . . 8
⊢
〈𝐹, 𝐺〉 ∈ V |
| 18 | 16, 17 | op2nd 7986 |
. . . . . . 7
⊢
(2nd ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) = 〈𝐹, 𝐺〉 |
| 19 | 18 | fveq2i 6868 |
. . . . . 6
⊢
(1st ‘(2nd ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) = (1st
‘〈𝐹, 𝐺〉) |
| 20 | | relfunc 17830 |
. . . . . . . . 9
⊢ Rel
(𝐶 Func 𝐷) |
| 21 | 20 | brrelex1i 5702 |
. . . . . . . 8
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐹 ∈ V) |
| 22 | 1, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ V) |
| 23 | 20 | brrelex2i 5703 |
. . . . . . . 8
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐺 ∈ V) |
| 24 | 1, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ V) |
| 25 | | op1stg 7989 |
. . . . . . 7
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) →
(1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 26 | 22, 24, 25 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (1st
‘〈𝐹, 𝐺〉) = 𝐹) |
| 27 | 19, 26 | eqtrid 2777 |
. . . . 5
⊢ (𝜑 → (1st
‘(2nd ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) = 𝐹) |
| 28 | 27 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) → (1st
‘(2nd ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) = 𝐹) |
| 29 | 15, 28 | eqtrd 2765 |
. . 3
⊢ ((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) → (1st
‘(2nd ‘𝑢)) = 𝐹) |
| 30 | | fvexd 6880 |
. . . 4
⊢ (((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st
‘(1st ‘𝑢)) ∈ V) |
| 31 | 10 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → 𝑢 = 𝑈) |
| 32 | 12 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 33 | 31, 32 | eqtrd 2765 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → 𝑢 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 34 | 33 | fveq2d 6869 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st ‘𝑢) = (1st
‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) |
| 35 | 34 | fveq2d 6869 |
. . . . 5
⊢ (((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st
‘(1st ‘𝑢)) = (1st ‘(1st
‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉))) |
| 36 | 16, 17 | op1st 7985 |
. . . . . . . 8
⊢
(1st ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) = 〈𝐾, 𝐿〉 |
| 37 | 36 | fveq2i 6868 |
. . . . . . 7
⊢
(1st ‘(1st ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) = (1st
‘〈𝐾, 𝐿〉) |
| 38 | | relfunc 17830 |
. . . . . . . . . 10
⊢ Rel
(𝐷 Func 𝐸) |
| 39 | 38 | brrelex1i 5702 |
. . . . . . . . 9
⊢ (𝐾(𝐷 Func 𝐸)𝐿 → 𝐾 ∈ V) |
| 40 | 3, 39 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ V) |
| 41 | 38 | brrelex2i 5703 |
. . . . . . . . 9
⊢ (𝐾(𝐷 Func 𝐸)𝐿 → 𝐿 ∈ V) |
| 42 | 3, 41 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ V) |
| 43 | | op1stg 7989 |
. . . . . . . 8
⊢ ((𝐾 ∈ V ∧ 𝐿 ∈ V) →
(1st ‘〈𝐾, 𝐿〉) = 𝐾) |
| 44 | 40, 42, 43 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (1st
‘〈𝐾, 𝐿〉) = 𝐾) |
| 45 | 37, 44 | eqtrid 2777 |
. . . . . 6
⊢ (𝜑 → (1st
‘(1st ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) = 𝐾) |
| 46 | 45 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st
‘(1st ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) = 𝐾) |
| 47 | 35, 46 | eqtrd 2765 |
. . . 4
⊢ (((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st
‘(1st ‘𝑢)) = 𝐾) |
| 48 | | fvexd 6880 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (2nd
‘(1st ‘𝑢)) ∈ V) |
| 49 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → 𝑢 = 𝑈) |
| 50 | 32 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 51 | 49, 50 | eqtrd 2765 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → 𝑢 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 52 | 51 | fveq2d 6869 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (1st ‘𝑢) = (1st
‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) |
| 53 | 52 | fveq2d 6869 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (2nd
‘(1st ‘𝑢)) = (2nd ‘(1st
‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉))) |
| 54 | 36 | fveq2i 6868 |
. . . . . . . 8
⊢
(2nd ‘(1st ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) = (2nd
‘〈𝐾, 𝐿〉) |
| 55 | | op2ndg 7990 |
. . . . . . . . 9
⊢ ((𝐾 ∈ V ∧ 𝐿 ∈ V) →
(2nd ‘〈𝐾, 𝐿〉) = 𝐿) |
| 56 | 40, 42, 55 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (2nd
‘〈𝐾, 𝐿〉) = 𝐿) |
| 57 | 54, 56 | eqtrid 2777 |
. . . . . . 7
⊢ (𝜑 → (2nd
‘(1st ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) = 𝐿) |
| 58 | 57 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (2nd
‘(1st ‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) = 𝐿) |
| 59 | 53, 58 | eqtrd 2765 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (2nd
‘(1st ‘𝑢)) = 𝐿) |
| 60 | | fvexd 6880 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (1st
‘(2nd ‘𝑣)) ∈ V) |
| 61 | | simp-4r 783 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) |
| 62 | 61 | simprd 495 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → 𝑣 = 𝑉) |
| 63 | | fuco21.v |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| 64 | 63 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| 65 | 62, 64 | eqtrd 2765 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → 𝑣 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| 66 | 65 | fveq2d 6869 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (2nd ‘𝑣) = (2nd
‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) |
| 67 | 66 | fveq2d 6869 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (1st
‘(2nd ‘𝑣)) = (1st ‘(2nd
‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉))) |
| 68 | | opex 5432 |
. . . . . . . . . . 11
⊢
〈𝑅, 𝑆〉 ∈ V |
| 69 | | opex 5432 |
. . . . . . . . . . 11
⊢
〈𝑀, 𝑁〉 ∈ V |
| 70 | 68, 69 | op2nd 7986 |
. . . . . . . . . 10
⊢
(2nd ‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) = 〈𝑀, 𝑁〉 |
| 71 | 70 | fveq2i 6868 |
. . . . . . . . 9
⊢
(1st ‘(2nd ‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) = (1st
‘〈𝑀, 𝑁〉) |
| 72 | | fuco21.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
| 73 | 20 | brrelex1i 5702 |
. . . . . . . . . . 11
⊢ (𝑀(𝐶 Func 𝐷)𝑁 → 𝑀 ∈ V) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ V) |
| 75 | 20 | brrelex2i 5703 |
. . . . . . . . . . 11
⊢ (𝑀(𝐶 Func 𝐷)𝑁 → 𝑁 ∈ V) |
| 76 | 72, 75 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ V) |
| 77 | | op1stg 7989 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V) →
(1st ‘〈𝑀, 𝑁〉) = 𝑀) |
| 78 | 74, 76, 77 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘〈𝑀, 𝑁〉) = 𝑀) |
| 79 | 71, 78 | eqtrid 2777 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘(2nd ‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) = 𝑀) |
| 80 | 79 | ad4antr 732 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (1st
‘(2nd ‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) = 𝑀) |
| 81 | 67, 80 | eqtrd 2765 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (1st
‘(2nd ‘𝑣)) = 𝑀) |
| 82 | | fvexd 6880 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st
‘(1st ‘𝑣)) ∈ V) |
| 83 | 62 | adantr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → 𝑣 = 𝑉) |
| 84 | 64 | adantr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| 85 | 83, 84 | eqtrd 2765 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → 𝑣 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| 86 | 85 | fveq2d 6869 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st ‘𝑣) = (1st
‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) |
| 87 | 86 | fveq2d 6869 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st
‘(1st ‘𝑣)) = (1st ‘(1st
‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉))) |
| 88 | 68, 69 | op1st 7985 |
. . . . . . . . . . 11
⊢
(1st ‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) = 〈𝑅, 𝑆〉 |
| 89 | 88 | fveq2i 6868 |
. . . . . . . . . 10
⊢
(1st ‘(1st ‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) = (1st
‘〈𝑅, 𝑆〉) |
| 90 | | fuco21.r |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) |
| 91 | 38 | brrelex1i 5702 |
. . . . . . . . . . . 12
⊢ (𝑅(𝐷 Func 𝐸)𝑆 → 𝑅 ∈ V) |
| 92 | 90, 91 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ V) |
| 93 | 38 | brrelex2i 5703 |
. . . . . . . . . . . 12
⊢ (𝑅(𝐷 Func 𝐸)𝑆 → 𝑆 ∈ V) |
| 94 | 90, 93 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ V) |
| 95 | | op1stg 7989 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) →
(1st ‘〈𝑅, 𝑆〉) = 𝑅) |
| 96 | 92, 94, 95 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘〈𝑅, 𝑆〉) = 𝑅) |
| 97 | 89, 96 | eqtrid 2777 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘(1st ‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) = 𝑅) |
| 98 | 97 | ad5antr 734 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st
‘(1st ‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) = 𝑅) |
| 99 | 87, 98 | eqtrd 2765 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st
‘(1st ‘𝑣)) = 𝑅) |
| 100 | 52 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (1st ‘𝑢) = (1st
‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) |
| 101 | 100, 36 | eqtrdi 2781 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (1st ‘𝑢) = 〈𝐾, 𝐿〉) |
| 102 | 86 | adantr 480 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (1st ‘𝑣) = (1st
‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) |
| 103 | 102, 88 | eqtrdi 2781 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (1st ‘𝑣) = 〈𝑅, 𝑆〉) |
| 104 | 101, 103 | oveq12d 7412 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)) = (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| 105 | 14 | ad5antr 734 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (2nd ‘𝑢) = (2nd
‘〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉)) |
| 106 | 105, 18 | eqtrdi 2781 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (2nd ‘𝑢) = 〈𝐹, 𝐺〉) |
| 107 | 66 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (2nd ‘𝑣) = (2nd
‘〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉)) |
| 108 | 107, 70 | eqtrdi 2781 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (2nd ‘𝑣) = 〈𝑀, 𝑁〉) |
| 109 | 106, 108 | oveq12d 7412 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) = (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| 110 | | simp-4r 783 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑘 = 𝐾) |
| 111 | | simp-5r 785 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑓 = 𝐹) |
| 112 | 111 | fveq1d 6867 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 113 | 110, 112 | fveq12d 6872 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑘‘(𝑓‘𝑥)) = (𝐾‘(𝐹‘𝑥))) |
| 114 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑚 = 𝑀) |
| 115 | 114 | fveq1d 6867 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑚‘𝑥) = (𝑀‘𝑥)) |
| 116 | 110, 115 | fveq12d 6872 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑘‘(𝑚‘𝑥)) = (𝐾‘(𝑀‘𝑥))) |
| 117 | 113, 116 | opeq12d 4853 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉 = 〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉) |
| 118 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
| 119 | 118, 115 | fveq12d 6872 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑟‘(𝑚‘𝑥)) = (𝑅‘(𝑀‘𝑥))) |
| 120 | 117, 119 | oveq12d 7412 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥))) = (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))) |
| 121 | 115 | fveq2d 6869 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑏‘(𝑚‘𝑥)) = (𝑏‘(𝑀‘𝑥))) |
| 122 | | simpllr 775 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑙 = 𝐿) |
| 123 | 122, 112,
115 | oveq123d 7415 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥)𝑙(𝑚‘𝑥)) = ((𝐹‘𝑥)𝐿(𝑀‘𝑥))) |
| 124 | 123 | fveq1d 6867 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)) = (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥))) |
| 125 | 120, 121,
124 | oveq123d 7415 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))) = ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))) |
| 126 | 125 | mpteq2dv 5209 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥))))) |
| 127 | 104, 109,
126 | mpoeq123dv 7471 |
. . . . . . 7
⊢
(((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |
| 128 | 82, 99, 127 | csbied2 3907 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → ⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |
| 129 | 60, 81, 128 | csbied2 3907 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → ⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |
| 130 | 48, 59, 129 | csbied2 3907 |
. . . 4
⊢ ((((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → ⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |
| 131 | 30, 47, 130 | csbied2 3907 |
. . 3
⊢ (((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → ⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |
| 132 | 9, 29, 131 | csbied2 3907 |
. 2
⊢ ((𝜑 ∧ (𝑢 = 𝑈 ∧ 𝑣 = 𝑉)) → ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |
| 133 | 7, 11, 3, 1 | fuco2eld 49208 |
. 2
⊢ (𝜑 → 𝑈 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 134 | 7, 63, 90, 72 | fuco2eld 49208 |
. 2
⊢ (𝜑 → 𝑉 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 135 | | ovex 7427 |
. . . 4
⊢
(〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉) ∈ V |
| 136 | | ovex 7427 |
. . . 4
⊢
(〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ∈ V |
| 137 | 135, 136 | mpoex 8067 |
. . 3
⊢ (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥))))) ∈ V |
| 138 | 137 | a1i 11 |
. 2
⊢ (𝜑 → (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥))))) ∈ V) |
| 139 | 8, 132, 133, 134, 138 | ovmpod 7548 |
1
⊢ (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉), 𝑎 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝑎‘𝑥)))))) |