Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco21 Structured version   Visualization version   GIF version

Theorem fuco21 48905
Description: The morphism part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco21.m (𝜑𝑀(𝐶 Func 𝐷)𝑁)
fuco21.r (𝜑𝑅(𝐷 Func 𝐸)𝑆)
fuco21.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
Assertion
Ref Expression
fuco21 (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
Distinct variable groups:   𝐶,𝑎,𝑏,𝑥   𝐷,𝑎,𝑏,𝑥   𝐸,𝑎,𝑏,𝑥   𝐹,𝑎,𝑏,𝑥   𝐺,𝑎,𝑏   𝐾,𝑎,𝑏,𝑥   𝐿,𝑎,𝑏,𝑥   𝑀,𝑎,𝑏,𝑥   𝑁,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥   𝑆,𝑎,𝑏   𝑈,𝑎,𝑏,𝑥   𝑉,𝑎,𝑏,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝐺(𝑥)   𝑁(𝑥)   𝑂(𝑥,𝑎,𝑏)

Proof of Theorem fuco21
Dummy variables 𝑓 𝑘 𝑙 𝑚 𝑟 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuco11.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
21funcrcl2 48837 . . 3 (𝜑𝐶 ∈ Cat)
3 fuco11.k . . . 4 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
43funcrcl2 48837 . . 3 (𝜑𝐷 ∈ Cat)
53funcrcl3 48838 . . 3 (𝜑𝐸 ∈ Cat)
6 fuco11.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 eqidd 2738 . . 3 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
82, 4, 5, 6, 7fuco2 48892 . 2 (𝜑𝑃 = (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))))
9 fvexd 6929 . . 3 ((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) → (1st ‘(2nd𝑢)) ∈ V)
10 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) → 𝑢 = 𝑈)
11 fuco11.u . . . . . . . 8 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
1310, 12eqtrd 2777 . . . . . 6 ((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) → 𝑢 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
1413fveq2d 6918 . . . . 5 ((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) → (2nd𝑢) = (2nd ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
1514fveq2d 6918 . . . 4 ((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) → (1st ‘(2nd𝑢)) = (1st ‘(2nd ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)))
16 opex 5478 . . . . . . . 8 𝐾, 𝐿⟩ ∈ V
17 opex 5478 . . . . . . . 8 𝐹, 𝐺⟩ ∈ V
1816, 17op2nd 8031 . . . . . . 7 (2nd ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩) = ⟨𝐹, 𝐺
1918fveq2i 6917 . . . . . 6 (1st ‘(2nd ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)) = (1st ‘⟨𝐹, 𝐺⟩)
20 relfunc 17922 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
2120brrelex1i 5749 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺𝐹 ∈ V)
221, 21syl 17 . . . . . . 7 (𝜑𝐹 ∈ V)
2320brrelex2i 5750 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺𝐺 ∈ V)
241, 23syl 17 . . . . . . 7 (𝜑𝐺 ∈ V)
25 op1stg 8034 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2622, 24, 25syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2719, 26eqtrid 2789 . . . . 5 (𝜑 → (1st ‘(2nd ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)) = 𝐹)
2827adantr 480 . . . 4 ((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) → (1st ‘(2nd ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)) = 𝐹)
2915, 28eqtrd 2777 . . 3 ((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) → (1st ‘(2nd𝑢)) = 𝐹)
30 fvexd 6929 . . . 4 (((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st ‘(1st𝑢)) ∈ V)
3110adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → 𝑢 = 𝑈)
3212adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
3331, 32eqtrd 2777 . . . . . . 7 (((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → 𝑢 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
3433fveq2d 6918 . . . . . 6 (((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st𝑢) = (1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
3534fveq2d 6918 . . . . 5 (((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st ‘(1st𝑢)) = (1st ‘(1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)))
3616, 17op1st 8030 . . . . . . . 8 (1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩) = ⟨𝐾, 𝐿
3736fveq2i 6917 . . . . . . 7 (1st ‘(1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)) = (1st ‘⟨𝐾, 𝐿⟩)
38 relfunc 17922 . . . . . . . . . 10 Rel (𝐷 Func 𝐸)
3938brrelex1i 5749 . . . . . . . . 9 (𝐾(𝐷 Func 𝐸)𝐿𝐾 ∈ V)
403, 39syl 17 . . . . . . . 8 (𝜑𝐾 ∈ V)
4138brrelex2i 5750 . . . . . . . . 9 (𝐾(𝐷 Func 𝐸)𝐿𝐿 ∈ V)
423, 41syl 17 . . . . . . . 8 (𝜑𝐿 ∈ V)
43 op1stg 8034 . . . . . . . 8 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
4440, 42, 43syl2anc 584 . . . . . . 7 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
4537, 44eqtrid 2789 . . . . . 6 (𝜑 → (1st ‘(1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)) = 𝐾)
4645ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st ‘(1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)) = 𝐾)
4735, 46eqtrd 2777 . . . 4 (((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st ‘(1st𝑢)) = 𝐾)
48 fvexd 6929 . . . . 5 ((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (2nd ‘(1st𝑢)) ∈ V)
4931adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → 𝑢 = 𝑈)
5032adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5149, 50eqtrd 2777 . . . . . . . 8 ((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → 𝑢 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5251fveq2d 6918 . . . . . . 7 ((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (1st𝑢) = (1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
5352fveq2d 6918 . . . . . 6 ((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (2nd ‘(1st𝑢)) = (2nd ‘(1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)))
5436fveq2i 6917 . . . . . . . 8 (2nd ‘(1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)) = (2nd ‘⟨𝐾, 𝐿⟩)
55 op2ndg 8035 . . . . . . . . 9 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5640, 42, 55syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5754, 56eqtrid 2789 . . . . . . 7 (𝜑 → (2nd ‘(1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)) = 𝐿)
5857ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (2nd ‘(1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)) = 𝐿)
5953, 58eqtrd 2777 . . . . 5 ((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (2nd ‘(1st𝑢)) = 𝐿)
60 fvexd 6929 . . . . . 6 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (1st ‘(2nd𝑣)) ∈ V)
61 simp-4r 784 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (𝑢 = 𝑈𝑣 = 𝑉))
6261simprd 495 . . . . . . . . . 10 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → 𝑣 = 𝑉)
63 fuco21.v . . . . . . . . . . 11 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
6463ad4antr 732 . . . . . . . . . 10 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
6562, 64eqtrd 2777 . . . . . . . . 9 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → 𝑣 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
6665fveq2d 6918 . . . . . . . 8 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (2nd𝑣) = (2nd ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩))
6766fveq2d 6918 . . . . . . 7 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (1st ‘(2nd𝑣)) = (1st ‘(2nd ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)))
68 opex 5478 . . . . . . . . . . 11 𝑅, 𝑆⟩ ∈ V
69 opex 5478 . . . . . . . . . . 11 𝑀, 𝑁⟩ ∈ V
7068, 69op2nd 8031 . . . . . . . . . 10 (2nd ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩) = ⟨𝑀, 𝑁
7170fveq2i 6917 . . . . . . . . 9 (1st ‘(2nd ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)) = (1st ‘⟨𝑀, 𝑁⟩)
72 fuco21.m . . . . . . . . . . 11 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
7320brrelex1i 5749 . . . . . . . . . . 11 (𝑀(𝐶 Func 𝐷)𝑁𝑀 ∈ V)
7472, 73syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ V)
7520brrelex2i 5750 . . . . . . . . . . 11 (𝑀(𝐶 Func 𝐷)𝑁𝑁 ∈ V)
7672, 75syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ V)
77 op1stg 8034 . . . . . . . . . 10 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
7874, 76, 77syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
7971, 78eqtrid 2789 . . . . . . . 8 (𝜑 → (1st ‘(2nd ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)) = 𝑀)
8079ad4antr 732 . . . . . . 7 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (1st ‘(2nd ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)) = 𝑀)
8167, 80eqtrd 2777 . . . . . 6 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (1st ‘(2nd𝑣)) = 𝑀)
82 fvexd 6929 . . . . . . 7 ((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st ‘(1st𝑣)) ∈ V)
8362adantr 480 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → 𝑣 = 𝑉)
8464adantr 480 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
8583, 84eqtrd 2777 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → 𝑣 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
8685fveq2d 6918 . . . . . . . . 9 ((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st𝑣) = (1st ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩))
8786fveq2d 6918 . . . . . . . 8 ((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st ‘(1st𝑣)) = (1st ‘(1st ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)))
8868, 69op1st 8030 . . . . . . . . . . 11 (1st ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩) = ⟨𝑅, 𝑆
8988fveq2i 6917 . . . . . . . . . 10 (1st ‘(1st ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)) = (1st ‘⟨𝑅, 𝑆⟩)
90 fuco21.r . . . . . . . . . . . 12 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
9138brrelex1i 5749 . . . . . . . . . . . 12 (𝑅(𝐷 Func 𝐸)𝑆𝑅 ∈ V)
9290, 91syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ V)
9338brrelex2i 5750 . . . . . . . . . . . 12 (𝑅(𝐷 Func 𝐸)𝑆𝑆 ∈ V)
9490, 93syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ V)
95 op1stg 8034 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
9692, 94, 95syl2anc 584 . . . . . . . . . 10 (𝜑 → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
9789, 96eqtrid 2789 . . . . . . . . 9 (𝜑 → (1st ‘(1st ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)) = 𝑅)
9897ad5antr 734 . . . . . . . 8 ((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st ‘(1st ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)) = 𝑅)
9987, 98eqtrd 2777 . . . . . . 7 ((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st ‘(1st𝑣)) = 𝑅)
10052ad3antrrr 730 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (1st𝑢) = (1st ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
101100, 36eqtrdi 2793 . . . . . . . . 9 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (1st𝑢) = ⟨𝐾, 𝐿⟩)
10286adantr 480 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (1st𝑣) = (1st ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩))
103102, 88eqtrdi 2793 . . . . . . . . 9 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (1st𝑣) = ⟨𝑅, 𝑆⟩)
104101, 103oveq12d 7456 . . . . . . . 8 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)) = (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
10514ad5antr 734 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (2nd𝑢) = (2nd ‘⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩))
106105, 18eqtrdi 2793 . . . . . . . . 9 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (2nd𝑢) = ⟨𝐹, 𝐺⟩)
10766ad2antrr 726 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (2nd𝑣) = (2nd ‘⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩))
108107, 70eqtrdi 2793 . . . . . . . . 9 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (2nd𝑣) = ⟨𝑀, 𝑁⟩)
109106, 108oveq12d 7456 . . . . . . . 8 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) = (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
110 simp-4r 784 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑘 = 𝐾)
111 simp-5r 786 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑓 = 𝐹)
112111fveq1d 6916 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑓𝑥) = (𝐹𝑥))
113110, 112fveq12d 6921 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑘‘(𝑓𝑥)) = (𝐾‘(𝐹𝑥)))
114 simplr 769 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑚 = 𝑀)
115114fveq1d 6916 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑚𝑥) = (𝑀𝑥))
116110, 115fveq12d 6921 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑘‘(𝑚𝑥)) = (𝐾‘(𝑀𝑥)))
117113, 116opeq12d 4889 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → ⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩ = ⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩)
118 simpr 484 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
119118, 115fveq12d 6921 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑟‘(𝑚𝑥)) = (𝑅‘(𝑀𝑥)))
120117, 119oveq12d 7456 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥))) = (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))))
121115fveq2d 6918 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑏‘(𝑚𝑥)) = (𝑏‘(𝑀𝑥)))
122 simpllr 776 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → 𝑙 = 𝐿)
123122, 112, 115oveq123d 7459 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → ((𝑓𝑥)𝑙(𝑚𝑥)) = ((𝐹𝑥)𝐿(𝑀𝑥)))
124123fveq1d 6916 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)) = (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥)))
125120, 121, 124oveq123d 7459 . . . . . . . . 9 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))) = ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))
126125mpteq2dv 5253 . . . . . . . 8 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥)))))
127104, 109, 126mpoeq123dv 7515 . . . . . . 7 (((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) ∧ 𝑟 = 𝑅) → (𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
12882, 99, 127csbied2 3951 . . . . . 6 ((((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) ∧ 𝑚 = 𝑀) → (1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
12960, 81, 128csbied2 3951 . . . . 5 (((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) ∧ 𝑙 = 𝐿) → (1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
13048, 59, 129csbied2 3951 . . . 4 ((((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑘 = 𝐾) → (2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
13130, 47, 130csbied2 3951 . . 3 (((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) ∧ 𝑓 = 𝐹) → (1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
1329, 29, 131csbied2 3951 . 2 ((𝜑 ∧ (𝑢 = 𝑈𝑣 = 𝑉)) → (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
1337, 11, 3, 1fuco2eld 48882 . 2 (𝜑𝑈 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
1347, 63, 90, 72fuco2eld 48882 . 2 (𝜑𝑉 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
135 ovex 7471 . . . 4 (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩) ∈ V
136 ovex 7471 . . . 4 (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ∈ V
137135, 136mpoex 8112 . . 3 (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))) ∈ V
138137a1i 11 . 2 (𝜑 → (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))) ∈ V)
1398, 132, 133, 134, 138ovmpod 7592 1 (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩), 𝑎 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝑎𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  csb 3911  cop 4640   class class class wbr 5151  cmpt 5234   × cxp 5691  cfv 6569  (class class class)co 7438  cmpo 7440  1st c1st 8020  2nd c2nd 8021  Basecbs 17254  compcco 17319  Catccat 17718   Func cfunc 17914   Nat cnat 18005  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-func 17918  df-cofu 17920  df-fuco 48886
This theorem is referenced by:  fuco22  48906  fucof21  48914
  Copyright terms: Public domain W3C validator