Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > goaleq12d | Structured version Visualization version GIF version |
Description: Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.) |
Ref | Expression |
---|---|
goaleq12d.1 | ⊢ (𝜑 → 𝑀 = 𝑁) |
goaleq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
goaleq12d | ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-goal 33283 | . . 3 ⊢ ∀𝑔𝑀𝐴 = 〈2o, 〈𝑀, 𝐴〉〉 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∀𝑔𝑀𝐴 = 〈2o, 〈𝑀, 𝐴〉〉) |
3 | goaleq12d.1 | . . . . 5 ⊢ (𝜑 → 𝑀 = 𝑁) | |
4 | goaleq12d.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | 3, 4 | opeq12d 4817 | . . . 4 ⊢ (𝜑 → 〈𝑀, 𝐴〉 = 〈𝑁, 𝐵〉) |
6 | 5 | opeq2d 4816 | . . 3 ⊢ (𝜑 → 〈2o, 〈𝑀, 𝐴〉〉 = 〈2o, 〈𝑁, 𝐵〉〉) |
7 | df-goal 33283 | . . . . 5 ⊢ ∀𝑔𝑁𝐵 = 〈2o, 〈𝑁, 𝐵〉〉 | |
8 | 7 | eqcomi 2748 | . . . 4 ⊢ 〈2o, 〈𝑁, 𝐵〉〉 = ∀𝑔𝑁𝐵 |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 〈2o, 〈𝑁, 𝐵〉〉 = ∀𝑔𝑁𝐵) |
10 | 6, 9 | eqtrd 2779 | . 2 ⊢ (𝜑 → 〈2o, 〈𝑀, 𝐴〉〉 = ∀𝑔𝑁𝐵) |
11 | 2, 10 | eqtrd 2779 | 1 ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 〈cop 4572 2oc2o 8275 ∀𝑔cgol 33276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-goal 33283 |
This theorem is referenced by: satfv1 33304 satfdmlem 33309 fmlasuc 33327 fmla1 33328 satffunlem1lem1 33343 satffunlem1lem2 33344 satffunlem2lem1 33345 satffunlem2lem2 33347 satfv1fvfmla1 33364 2goelgoanfmla1 33365 |
Copyright terms: Public domain | W3C validator |