Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goaleq12d Structured version   Visualization version   GIF version

Theorem goaleq12d 35345
Description: Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.)
Hypotheses
Ref Expression
goaleq12d.1 (𝜑𝑀 = 𝑁)
goaleq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
goaleq12d (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵)

Proof of Theorem goaleq12d
StepHypRef Expression
1 df-goal 35336 . . 3 𝑔𝑀𝐴 = ⟨2o, ⟨𝑀, 𝐴⟩⟩
21a1i 11 . 2 (𝜑 → ∀𝑔𝑀𝐴 = ⟨2o, ⟨𝑀, 𝐴⟩⟩)
3 goaleq12d.1 . . . . 5 (𝜑𝑀 = 𝑁)
4 goaleq12d.2 . . . . 5 (𝜑𝐴 = 𝐵)
53, 4opeq12d 4848 . . . 4 (𝜑 → ⟨𝑀, 𝐴⟩ = ⟨𝑁, 𝐵⟩)
65opeq2d 4847 . . 3 (𝜑 → ⟨2o, ⟨𝑀, 𝐴⟩⟩ = ⟨2o, ⟨𝑁, 𝐵⟩⟩)
7 df-goal 35336 . . . . 5 𝑔𝑁𝐵 = ⟨2o, ⟨𝑁, 𝐵⟩⟩
87eqcomi 2739 . . . 4 ⟨2o, ⟨𝑁, 𝐵⟩⟩ = ∀𝑔𝑁𝐵
98a1i 11 . . 3 (𝜑 → ⟨2o, ⟨𝑁, 𝐵⟩⟩ = ∀𝑔𝑁𝐵)
106, 9eqtrd 2765 . 2 (𝜑 → ⟨2o, ⟨𝑀, 𝐴⟩⟩ = ∀𝑔𝑁𝐵)
112, 10eqtrd 2765 1 (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cop 4598  2oc2o 8431  𝑔cgol 35329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-goal 35336
This theorem is referenced by:  satfv1  35357  satfdmlem  35362  fmlasuc  35380  fmla1  35381  satffunlem1lem1  35396  satffunlem1lem2  35397  satffunlem2lem1  35398  satffunlem2lem2  35400  satfv1fvfmla1  35417  2goelgoanfmla1  35418
  Copyright terms: Public domain W3C validator