Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goaleq12d Structured version   Visualization version   GIF version

Theorem goaleq12d 35338
Description: Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.)
Hypotheses
Ref Expression
goaleq12d.1 (𝜑𝑀 = 𝑁)
goaleq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
goaleq12d (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵)

Proof of Theorem goaleq12d
StepHypRef Expression
1 df-goal 35329 . . 3 𝑔𝑀𝐴 = ⟨2o, ⟨𝑀, 𝐴⟩⟩
21a1i 11 . 2 (𝜑 → ∀𝑔𝑀𝐴 = ⟨2o, ⟨𝑀, 𝐴⟩⟩)
3 goaleq12d.1 . . . . 5 (𝜑𝑀 = 𝑁)
4 goaleq12d.2 . . . . 5 (𝜑𝐴 = 𝐵)
53, 4opeq12d 4845 . . . 4 (𝜑 → ⟨𝑀, 𝐴⟩ = ⟨𝑁, 𝐵⟩)
65opeq2d 4844 . . 3 (𝜑 → ⟨2o, ⟨𝑀, 𝐴⟩⟩ = ⟨2o, ⟨𝑁, 𝐵⟩⟩)
7 df-goal 35329 . . . . 5 𝑔𝑁𝐵 = ⟨2o, ⟨𝑁, 𝐵⟩⟩
87eqcomi 2738 . . . 4 ⟨2o, ⟨𝑁, 𝐵⟩⟩ = ∀𝑔𝑁𝐵
98a1i 11 . . 3 (𝜑 → ⟨2o, ⟨𝑁, 𝐵⟩⟩ = ∀𝑔𝑁𝐵)
106, 9eqtrd 2764 . 2 (𝜑 → ⟨2o, ⟨𝑀, 𝐴⟩⟩ = ∀𝑔𝑁𝐵)
112, 10eqtrd 2764 1 (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cop 4595  2oc2o 8428  𝑔cgol 35322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-goal 35329
This theorem is referenced by:  satfv1  35350  satfdmlem  35355  fmlasuc  35373  fmla1  35374  satffunlem1lem1  35389  satffunlem1lem2  35390  satffunlem2lem1  35391  satffunlem2lem2  35393  satfv1fvfmla1  35410  2goelgoanfmla1  35411
  Copyright terms: Public domain W3C validator