![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goaleq12d | Structured version Visualization version GIF version |
Description: Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.) |
Ref | Expression |
---|---|
goaleq12d.1 | ⊢ (𝜑 → 𝑀 = 𝑁) |
goaleq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
goaleq12d | ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-goal 34333 | . . 3 ⊢ ∀𝑔𝑀𝐴 = ⟨2o, ⟨𝑀, 𝐴⟩⟩ | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ⟨2o, ⟨𝑀, 𝐴⟩⟩) |
3 | goaleq12d.1 | . . . . 5 ⊢ (𝜑 → 𝑀 = 𝑁) | |
4 | goaleq12d.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | 3, 4 | opeq12d 4882 | . . . 4 ⊢ (𝜑 → ⟨𝑀, 𝐴⟩ = ⟨𝑁, 𝐵⟩) |
6 | 5 | opeq2d 4881 | . . 3 ⊢ (𝜑 → ⟨2o, ⟨𝑀, 𝐴⟩⟩ = ⟨2o, ⟨𝑁, 𝐵⟩⟩) |
7 | df-goal 34333 | . . . . 5 ⊢ ∀𝑔𝑁𝐵 = ⟨2o, ⟨𝑁, 𝐵⟩⟩ | |
8 | 7 | eqcomi 2742 | . . . 4 ⊢ ⟨2o, ⟨𝑁, 𝐵⟩⟩ = ∀𝑔𝑁𝐵 |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ⟨2o, ⟨𝑁, 𝐵⟩⟩ = ∀𝑔𝑁𝐵) |
10 | 6, 9 | eqtrd 2773 | . 2 ⊢ (𝜑 → ⟨2o, ⟨𝑀, 𝐴⟩⟩ = ∀𝑔𝑁𝐵) |
11 | 2, 10 | eqtrd 2773 | 1 ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⟨cop 4635 2oc2o 8460 ∀𝑔cgol 34326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-goal 34333 |
This theorem is referenced by: satfv1 34354 satfdmlem 34359 fmlasuc 34377 fmla1 34378 satffunlem1lem1 34393 satffunlem1lem2 34394 satffunlem2lem1 34395 satffunlem2lem2 34397 satfv1fvfmla1 34414 2goelgoanfmla1 34415 |
Copyright terms: Public domain | W3C validator |