![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goaleq12d | Structured version Visualization version GIF version |
Description: Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.) |
Ref | Expression |
---|---|
goaleq12d.1 | ⊢ (𝜑 → 𝑀 = 𝑁) |
goaleq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
goaleq12d | ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-goal 35310 | . . 3 ⊢ ∀𝑔𝑀𝐴 = 〈2o, 〈𝑀, 𝐴〉〉 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∀𝑔𝑀𝐴 = 〈2o, 〈𝑀, 𝐴〉〉) |
3 | goaleq12d.1 | . . . . 5 ⊢ (𝜑 → 𝑀 = 𝑁) | |
4 | goaleq12d.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | 3, 4 | opeq12d 4905 | . . . 4 ⊢ (𝜑 → 〈𝑀, 𝐴〉 = 〈𝑁, 𝐵〉) |
6 | 5 | opeq2d 4904 | . . 3 ⊢ (𝜑 → 〈2o, 〈𝑀, 𝐴〉〉 = 〈2o, 〈𝑁, 𝐵〉〉) |
7 | df-goal 35310 | . . . . 5 ⊢ ∀𝑔𝑁𝐵 = 〈2o, 〈𝑁, 𝐵〉〉 | |
8 | 7 | eqcomi 2749 | . . . 4 ⊢ 〈2o, 〈𝑁, 𝐵〉〉 = ∀𝑔𝑁𝐵 |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 〈2o, 〈𝑁, 𝐵〉〉 = ∀𝑔𝑁𝐵) |
10 | 6, 9 | eqtrd 2780 | . 2 ⊢ (𝜑 → 〈2o, 〈𝑀, 𝐴〉〉 = ∀𝑔𝑁𝐵) |
11 | 2, 10 | eqtrd 2780 | 1 ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 〈cop 4654 2oc2o 8516 ∀𝑔cgol 35303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-goal 35310 |
This theorem is referenced by: satfv1 35331 satfdmlem 35336 fmlasuc 35354 fmla1 35355 satffunlem1lem1 35370 satffunlem1lem2 35371 satffunlem2lem1 35372 satffunlem2lem2 35374 satfv1fvfmla1 35391 2goelgoanfmla1 35392 |
Copyright terms: Public domain | W3C validator |