Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goaleq12d Structured version   Visualization version   GIF version

Theorem goaleq12d 34833
Description: Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.)
Hypotheses
Ref Expression
goaleq12d.1 (𝜑𝑀 = 𝑁)
goaleq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
goaleq12d (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵)

Proof of Theorem goaleq12d
StepHypRef Expression
1 df-goal 34824 . . 3 𝑔𝑀𝐴 = ⟨2o, ⟨𝑀, 𝐴⟩⟩
21a1i 11 . 2 (𝜑 → ∀𝑔𝑀𝐴 = ⟨2o, ⟨𝑀, 𝐴⟩⟩)
3 goaleq12d.1 . . . . 5 (𝜑𝑀 = 𝑁)
4 goaleq12d.2 . . . . 5 (𝜑𝐴 = 𝐵)
53, 4opeq12d 4874 . . . 4 (𝜑 → ⟨𝑀, 𝐴⟩ = ⟨𝑁, 𝐵⟩)
65opeq2d 4873 . . 3 (𝜑 → ⟨2o, ⟨𝑀, 𝐴⟩⟩ = ⟨2o, ⟨𝑁, 𝐵⟩⟩)
7 df-goal 34824 . . . . 5 𝑔𝑁𝐵 = ⟨2o, ⟨𝑁, 𝐵⟩⟩
87eqcomi 2733 . . . 4 ⟨2o, ⟨𝑁, 𝐵⟩⟩ = ∀𝑔𝑁𝐵
98a1i 11 . . 3 (𝜑 → ⟨2o, ⟨𝑁, 𝐵⟩⟩ = ∀𝑔𝑁𝐵)
106, 9eqtrd 2764 . 2 (𝜑 → ⟨2o, ⟨𝑀, 𝐴⟩⟩ = ∀𝑔𝑁𝐵)
112, 10eqtrd 2764 1 (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  cop 4627  2oc2o 8456  𝑔cgol 34817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-goal 34824
This theorem is referenced by:  satfv1  34845  satfdmlem  34850  fmlasuc  34868  fmla1  34869  satffunlem1lem1  34884  satffunlem1lem2  34885  satffunlem2lem1  34886  satffunlem2lem2  34888  satfv1fvfmla1  34905  2goelgoanfmla1  34906
  Copyright terms: Public domain W3C validator