Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2goelgoanfmla1 Structured version   Visualization version   GIF version

Theorem 2goelgoanfmla1 33286
Description: Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023.)
Hypothesis
Ref Expression
satfv1fvfmla1.x 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
Assertion
Ref Expression
2goelgoanfmla1 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))

Proof of Theorem 2goelgoanfmla1
Dummy variables 𝑖 𝑗 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 763 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐼 ∈ ω)
2 simplr 765 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐽 ∈ ω)
3 simprl 767 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐾 ∈ ω)
4 simprr 769 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐿 ∈ ω)
5 oveq2 7263 . . . . . . . . . . 11 (𝑛 = 𝐿 → (𝐾𝑔𝑛) = (𝐾𝑔𝐿))
65oveq2d 7271 . . . . . . . . . 10 (𝑛 = 𝐿 → ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
76eqeq2d 2749 . . . . . . . . 9 (𝑛 = 𝐿 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
87adantl 481 . . . . . . . 8 ((((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑛 = 𝐿) → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
9 satfv1fvfmla1.x . . . . . . . . 9 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
109a1i 11 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
114, 8, 10rspcedvd 3555 . . . . . . 7 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)))
1211orcd 869 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽)))
13 oveq1 7262 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑔𝑗) = (𝐼𝑔𝑗))
1413oveq1d 7270 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)))
1514eqeq2d 2749 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
1615rexbidv 3225 . . . . . . . 8 (𝑖 = 𝐼 → (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
17 eqidd 2739 . . . . . . . . . 10 (𝑖 = 𝐼𝑘 = 𝑘)
1817, 13goaleq12d 33213 . . . . . . . . 9 (𝑖 = 𝐼 → ∀𝑔𝑘(𝑖𝑔𝑗) = ∀𝑔𝑘(𝐼𝑔𝑗))
1918eqeq2d 2749 . . . . . . . 8 (𝑖 = 𝐼 → (𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗)))
2016, 19orbi12d 915 . . . . . . 7 (𝑖 = 𝐼 → ((∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗))))
21 oveq2 7263 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑔𝑗) = (𝐼𝑔𝐽))
2221oveq1d 7270 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)))
2322eqeq2d 2749 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛))))
2423rexbidv 3225 . . . . . . . 8 (𝑗 = 𝐽 → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛))))
25 eqidd 2739 . . . . . . . . . 10 (𝑗 = 𝐽𝑘 = 𝑘)
2625, 21goaleq12d 33213 . . . . . . . . 9 (𝑗 = 𝐽 → ∀𝑔𝑘(𝐼𝑔𝑗) = ∀𝑔𝑘(𝐼𝑔𝐽))
2726eqeq2d 2749 . . . . . . . 8 (𝑗 = 𝐽 → (𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽)))
2824, 27orbi12d 915 . . . . . . 7 (𝑗 = 𝐽 → ((∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽))))
29 oveq1 7262 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘𝑔𝑛) = (𝐾𝑔𝑛))
3029oveq2d 7271 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)))
3130eqeq2d 2749 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛))))
3231rexbidv 3225 . . . . . . . 8 (𝑘 = 𝐾 → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛))))
33 id 22 . . . . . . . . . 10 (𝑘 = 𝐾𝑘 = 𝐾)
34 eqidd 2739 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝐼𝑔𝐽) = (𝐼𝑔𝐽))
3533, 34goaleq12d 33213 . . . . . . . . 9 (𝑘 = 𝐾 → ∀𝑔𝑘(𝐼𝑔𝐽) = ∀𝑔𝐾(𝐼𝑔𝐽))
3635eqeq2d 2749 . . . . . . . 8 (𝑘 = 𝐾 → (𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽) ↔ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽)))
3732, 36orbi12d 915 . . . . . . 7 (𝑘 = 𝐾 → ((∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽))))
3820, 28, 37rspc3ev 3566 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐾 ∈ ω) ∧ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
391, 2, 3, 12, 38syl31anc 1371 . . . . 5 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
409ovexi 7289 . . . . . 6 𝑋 ∈ V
41 eqeq1 2742 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
4241rexbidv 3225 . . . . . . . . 9 (𝑥 = 𝑋 → (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
43 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
4442, 43orbi12d 915 . . . . . . . 8 (𝑥 = 𝑋 → ((∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4544rexbidv 3225 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
46452rexbidv 3228 . . . . . 6 (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4740, 46elab 3602 . . . . 5 (𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
4839, 47sylibr 233 . . . 4 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
4948olcd 870 . . 3 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑋 ∈ ({∅} × (ω × ω)) ∨ 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
50 elun 4079 . . 3 (𝑋 ∈ (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}) ↔ (𝑋 ∈ ({∅} × (ω × ω)) ∨ 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
5149, 50sylibr 233 . 2 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
52 fmla1 33249 . 2 (Fmla‘1o) = (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
5351, 52eleqtrrdi 2850 1 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  cun 3881  c0 4253  {csn 4558   × cxp 5578  cfv 6418  (class class class)co 7255  ωcom 7687  1oc1o 8260  𝑔cgoe 33195  𝑔cgna 33196  𝑔cgol 33197  Fmlacfmla 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-map 8575  df-goel 33202  df-goal 33204  df-sat 33205  df-fmla 33207
This theorem is referenced by:  satefvfmla1  33287
  Copyright terms: Public domain W3C validator