Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2goelgoanfmla1 Structured version   Visualization version   GIF version

Theorem 2goelgoanfmla1 32671
Description: Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023.)
Hypothesis
Ref Expression
satfv1fvfmla1.x 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
Assertion
Ref Expression
2goelgoanfmla1 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))

Proof of Theorem 2goelgoanfmla1
Dummy variables 𝑖 𝑗 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐼 ∈ ω)
2 simplr 767 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐽 ∈ ω)
3 simprl 769 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐾 ∈ ω)
4 simprr 771 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐿 ∈ ω)
5 oveq2 7164 . . . . . . . . . . 11 (𝑛 = 𝐿 → (𝐾𝑔𝑛) = (𝐾𝑔𝐿))
65oveq2d 7172 . . . . . . . . . 10 (𝑛 = 𝐿 → ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
76eqeq2d 2832 . . . . . . . . 9 (𝑛 = 𝐿 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
87adantl 484 . . . . . . . 8 ((((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑛 = 𝐿) → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
9 satfv1fvfmla1.x . . . . . . . . 9 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
109a1i 11 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
114, 8, 10rspcedvd 3626 . . . . . . 7 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)))
1211orcd 869 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽)))
13 oveq1 7163 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑔𝑗) = (𝐼𝑔𝑗))
1413oveq1d 7171 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)))
1514eqeq2d 2832 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
1615rexbidv 3297 . . . . . . . 8 (𝑖 = 𝐼 → (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
17 eqidd 2822 . . . . . . . . . 10 (𝑖 = 𝐼𝑘 = 𝑘)
1817, 13goaleq12d 32598 . . . . . . . . 9 (𝑖 = 𝐼 → ∀𝑔𝑘(𝑖𝑔𝑗) = ∀𝑔𝑘(𝐼𝑔𝑗))
1918eqeq2d 2832 . . . . . . . 8 (𝑖 = 𝐼 → (𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗)))
2016, 19orbi12d 915 . . . . . . 7 (𝑖 = 𝐼 → ((∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗))))
21 oveq2 7164 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑔𝑗) = (𝐼𝑔𝐽))
2221oveq1d 7171 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)))
2322eqeq2d 2832 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛))))
2423rexbidv 3297 . . . . . . . 8 (𝑗 = 𝐽 → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛))))
25 eqidd 2822 . . . . . . . . . 10 (𝑗 = 𝐽𝑘 = 𝑘)
2625, 21goaleq12d 32598 . . . . . . . . 9 (𝑗 = 𝐽 → ∀𝑔𝑘(𝐼𝑔𝑗) = ∀𝑔𝑘(𝐼𝑔𝐽))
2726eqeq2d 2832 . . . . . . . 8 (𝑗 = 𝐽 → (𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽)))
2824, 27orbi12d 915 . . . . . . 7 (𝑗 = 𝐽 → ((∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽))))
29 oveq1 7163 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘𝑔𝑛) = (𝐾𝑔𝑛))
3029oveq2d 7172 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)))
3130eqeq2d 2832 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛))))
3231rexbidv 3297 . . . . . . . 8 (𝑘 = 𝐾 → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛))))
33 id 22 . . . . . . . . . 10 (𝑘 = 𝐾𝑘 = 𝐾)
34 eqidd 2822 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝐼𝑔𝐽) = (𝐼𝑔𝐽))
3533, 34goaleq12d 32598 . . . . . . . . 9 (𝑘 = 𝐾 → ∀𝑔𝑘(𝐼𝑔𝐽) = ∀𝑔𝐾(𝐼𝑔𝐽))
3635eqeq2d 2832 . . . . . . . 8 (𝑘 = 𝐾 → (𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽) ↔ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽)))
3732, 36orbi12d 915 . . . . . . 7 (𝑘 = 𝐾 → ((∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽))))
3820, 28, 37rspc3ev 3637 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐾 ∈ ω) ∧ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
391, 2, 3, 12, 38syl31anc 1369 . . . . 5 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
409ovexi 7190 . . . . . 6 𝑋 ∈ V
41 eqeq1 2825 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
4241rexbidv 3297 . . . . . . . . 9 (𝑥 = 𝑋 → (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
43 eqeq1 2825 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
4442, 43orbi12d 915 . . . . . . . 8 (𝑥 = 𝑋 → ((∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4544rexbidv 3297 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
46452rexbidv 3300 . . . . . 6 (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4740, 46elab 3667 . . . . 5 (𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
4839, 47sylibr 236 . . . 4 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
4948olcd 870 . . 3 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑋 ∈ ({∅} × (ω × ω)) ∨ 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
50 elun 4125 . . 3 (𝑋 ∈ (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}) ↔ (𝑋 ∈ ({∅} × (ω × ω)) ∨ 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
5149, 50sylibr 236 . 2 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
52 fmla1 32634 . 2 (Fmla‘1o) = (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
5351, 52eleqtrrdi 2924 1 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  cun 3934  c0 4291  {csn 4567   × cxp 5553  cfv 6355  (class class class)co 7156  ωcom 7580  1oc1o 8095  𝑔cgoe 32580  𝑔cgna 32581  𝑔cgol 32582  Fmlacfmla 32584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-map 8408  df-goel 32587  df-goal 32589  df-sat 32590  df-fmla 32592
This theorem is referenced by:  satefvfmla1  32672
  Copyright terms: Public domain W3C validator