Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2goelgoanfmla1 Structured version   Visualization version   GIF version

Theorem 2goelgoanfmla1 35418
Description: Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023.)
Hypothesis
Ref Expression
satfv1fvfmla1.x 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
Assertion
Ref Expression
2goelgoanfmla1 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))

Proof of Theorem 2goelgoanfmla1
Dummy variables 𝑖 𝑗 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐼 ∈ ω)
2 simplr 768 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐽 ∈ ω)
3 simprl 770 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐾 ∈ ω)
4 simprr 772 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐿 ∈ ω)
5 oveq2 7398 . . . . . . . . . . 11 (𝑛 = 𝐿 → (𝐾𝑔𝑛) = (𝐾𝑔𝐿))
65oveq2d 7406 . . . . . . . . . 10 (𝑛 = 𝐿 → ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
76eqeq2d 2741 . . . . . . . . 9 (𝑛 = 𝐿 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
87adantl 481 . . . . . . . 8 ((((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑛 = 𝐿) → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
9 satfv1fvfmla1.x . . . . . . . . 9 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
109a1i 11 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
114, 8, 10rspcedvd 3593 . . . . . . 7 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)))
1211orcd 873 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽)))
13 oveq1 7397 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑔𝑗) = (𝐼𝑔𝑗))
1413oveq1d 7405 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)))
1514eqeq2d 2741 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
1615rexbidv 3158 . . . . . . . 8 (𝑖 = 𝐼 → (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
17 eqidd 2731 . . . . . . . . . 10 (𝑖 = 𝐼𝑘 = 𝑘)
1817, 13goaleq12d 35345 . . . . . . . . 9 (𝑖 = 𝐼 → ∀𝑔𝑘(𝑖𝑔𝑗) = ∀𝑔𝑘(𝐼𝑔𝑗))
1918eqeq2d 2741 . . . . . . . 8 (𝑖 = 𝐼 → (𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗)))
2016, 19orbi12d 918 . . . . . . 7 (𝑖 = 𝐼 → ((∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗))))
21 oveq2 7398 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑔𝑗) = (𝐼𝑔𝐽))
2221oveq1d 7405 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)))
2322eqeq2d 2741 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛))))
2423rexbidv 3158 . . . . . . . 8 (𝑗 = 𝐽 → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛))))
25 eqidd 2731 . . . . . . . . . 10 (𝑗 = 𝐽𝑘 = 𝑘)
2625, 21goaleq12d 35345 . . . . . . . . 9 (𝑗 = 𝐽 → ∀𝑔𝑘(𝐼𝑔𝑗) = ∀𝑔𝑘(𝐼𝑔𝐽))
2726eqeq2d 2741 . . . . . . . 8 (𝑗 = 𝐽 → (𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽)))
2824, 27orbi12d 918 . . . . . . 7 (𝑗 = 𝐽 → ((∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽))))
29 oveq1 7397 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘𝑔𝑛) = (𝐾𝑔𝑛))
3029oveq2d 7406 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)))
3130eqeq2d 2741 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛))))
3231rexbidv 3158 . . . . . . . 8 (𝑘 = 𝐾 → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛))))
33 id 22 . . . . . . . . . 10 (𝑘 = 𝐾𝑘 = 𝐾)
34 eqidd 2731 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝐼𝑔𝐽) = (𝐼𝑔𝐽))
3533, 34goaleq12d 35345 . . . . . . . . 9 (𝑘 = 𝐾 → ∀𝑔𝑘(𝐼𝑔𝐽) = ∀𝑔𝐾(𝐼𝑔𝐽))
3635eqeq2d 2741 . . . . . . . 8 (𝑘 = 𝐾 → (𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽) ↔ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽)))
3732, 36orbi12d 918 . . . . . . 7 (𝑘 = 𝐾 → ((∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽))))
3820, 28, 37rspc3ev 3608 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐾 ∈ ω) ∧ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
391, 2, 3, 12, 38syl31anc 1375 . . . . 5 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
409ovexi 7424 . . . . . 6 𝑋 ∈ V
41 eqeq1 2734 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
4241rexbidv 3158 . . . . . . . . 9 (𝑥 = 𝑋 → (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
43 eqeq1 2734 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
4442, 43orbi12d 918 . . . . . . . 8 (𝑥 = 𝑋 → ((∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4544rexbidv 3158 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
46452rexbidv 3203 . . . . . 6 (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4740, 46elab 3649 . . . . 5 (𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
4839, 47sylibr 234 . . . 4 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
4948olcd 874 . . 3 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑋 ∈ ({∅} × (ω × ω)) ∨ 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
50 elun 4119 . . 3 (𝑋 ∈ (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}) ↔ (𝑋 ∈ ({∅} × (ω × ω)) ∨ 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
5149, 50sylibr 234 . 2 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
52 fmla1 35381 . 2 (Fmla‘1o) = (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
5351, 52eleqtrrdi 2840 1 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  cun 3915  c0 4299  {csn 4592   × cxp 5639  cfv 6514  (class class class)co 7390  ωcom 7845  1oc1o 8430  𝑔cgoe 35327  𝑔cgna 35328  𝑔cgol 35329  Fmlacfmla 35331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-map 8804  df-goel 35334  df-goal 35336  df-sat 35337  df-fmla 35339
This theorem is referenced by:  satefvfmla1  35419
  Copyright terms: Public domain W3C validator