| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gonafv | Structured version Visualization version GIF version | ||
| Description: The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.) |
| Ref | Expression |
|---|---|
| gonafv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7358 | . 2 ⊢ (𝐴⊼𝑔𝐵) = (⊼𝑔‘〈𝐴, 𝐵〉) | |
| 2 | opelvvg 5662 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 3 | opeq2 4827 | . . . 4 ⊢ (𝑥 = 〈𝐴, 𝐵〉 → 〈1o, 𝑥〉 = 〈1o, 〈𝐴, 𝐵〉〉) | |
| 4 | df-gona 35457 | . . . 4 ⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦ 〈1o, 𝑥〉) | |
| 5 | opex 5409 | . . . 4 ⊢ 〈1o, 〈𝐴, 𝐵〉〉 ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6938 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) → (⊼𝑔‘〈𝐴, 𝐵〉) = 〈1o, 〈𝐴, 𝐵〉〉) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⊼𝑔‘〈𝐴, 𝐵〉) = 〈1o, 〈𝐴, 𝐵〉〉) |
| 8 | 1, 7 | eqtrid 2780 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4583 × cxp 5619 ‘cfv 6489 (class class class)co 7355 1oc1o 8387 ⊼𝑔cgna 35450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-gona 35457 |
| This theorem is referenced by: gonanegoal 35468 fmlaomn0 35506 gonan0 35508 gonarlem 35510 gonar 35511 fmla0disjsuc 35514 fmlasucdisj 35515 satffunlem 35517 satffunlem1lem1 35518 satffunlem2lem1 35520 |
| Copyright terms: Public domain | W3C validator |