Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonafv Structured version   Visualization version   GIF version

Theorem gonafv 35342
Description: The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.)
Assertion
Ref Expression
gonafv ((𝐴𝑉𝐵𝑊) → (𝐴𝑔𝐵) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)

Proof of Theorem gonafv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7356 . 2 (𝐴𝑔𝐵) = (⊼𝑔‘⟨𝐴, 𝐵⟩)
2 opelvvg 5664 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
3 opeq2 4828 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → ⟨1o, 𝑥⟩ = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
4 df-gona 35333 . . . 4 𝑔 = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
5 opex 5411 . . . 4 ⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ V
63, 4, 5fvmpt 6934 . . 3 (⟨𝐴, 𝐵⟩ ∈ (V × V) → (⊼𝑔‘⟨𝐴, 𝐵⟩) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
72, 6syl 17 . 2 ((𝐴𝑉𝐵𝑊) → (⊼𝑔‘⟨𝐴, 𝐵⟩) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
81, 7eqtrid 2776 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑔𝐵) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585   × cxp 5621  cfv 6486  (class class class)co 7353  1oc1o 8388  𝑔cgna 35326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-gona 35333
This theorem is referenced by:  gonanegoal  35344  fmlaomn0  35382  gonan0  35384  gonarlem  35386  gonar  35387  fmla0disjsuc  35390  fmlasucdisj  35391  satffunlem  35393  satffunlem1lem1  35394  satffunlem2lem1  35396
  Copyright terms: Public domain W3C validator