Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonafv Structured version   Visualization version   GIF version

Theorem gonafv 33312
Description: The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.)
Assertion
Ref Expression
gonafv ((𝐴𝑉𝐵𝑊) → (𝐴𝑔𝐵) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)

Proof of Theorem gonafv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7278 . 2 (𝐴𝑔𝐵) = (⊼𝑔‘⟨𝐴, 𝐵⟩)
2 opelvvg 5629 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
3 opeq2 4805 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → ⟨1o, 𝑥⟩ = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
4 df-gona 33303 . . . 4 𝑔 = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
5 opex 5379 . . . 4 ⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ V
63, 4, 5fvmpt 6875 . . 3 (⟨𝐴, 𝐵⟩ ∈ (V × V) → (⊼𝑔‘⟨𝐴, 𝐵⟩) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
72, 6syl 17 . 2 ((𝐴𝑉𝐵𝑊) → (⊼𝑔‘⟨𝐴, 𝐵⟩) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
81, 7eqtrid 2790 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑔𝐵) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567   × cxp 5587  cfv 6433  (class class class)co 7275  1oc1o 8290  𝑔cgna 33296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-gona 33303
This theorem is referenced by:  gonanegoal  33314  fmlaomn0  33352  gonan0  33354  gonarlem  33356  gonar  33357  fmla0disjsuc  33360  fmlasucdisj  33361  satffunlem  33363  satffunlem1lem1  33364  satffunlem2lem1  33366
  Copyright terms: Public domain W3C validator