| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gonafv | Structured version Visualization version GIF version | ||
| Description: The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.) |
| Ref | Expression |
|---|---|
| gonafv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7356 | . 2 ⊢ (𝐴⊼𝑔𝐵) = (⊼𝑔‘〈𝐴, 𝐵〉) | |
| 2 | opelvvg 5664 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 3 | opeq2 4828 | . . . 4 ⊢ (𝑥 = 〈𝐴, 𝐵〉 → 〈1o, 𝑥〉 = 〈1o, 〈𝐴, 𝐵〉〉) | |
| 4 | df-gona 35333 | . . . 4 ⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦ 〈1o, 𝑥〉) | |
| 5 | opex 5411 | . . . 4 ⊢ 〈1o, 〈𝐴, 𝐵〉〉 ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6934 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) → (⊼𝑔‘〈𝐴, 𝐵〉) = 〈1o, 〈𝐴, 𝐵〉〉) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⊼𝑔‘〈𝐴, 𝐵〉) = 〈1o, 〈𝐴, 𝐵〉〉) |
| 8 | 1, 7 | eqtrid 2776 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 × cxp 5621 ‘cfv 6486 (class class class)co 7353 1oc1o 8388 ⊼𝑔cgna 35326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-gona 35333 |
| This theorem is referenced by: gonanegoal 35344 fmlaomn0 35382 gonan0 35384 gonarlem 35386 gonar 35387 fmla0disjsuc 35390 fmlasucdisj 35391 satffunlem 35393 satffunlem1lem1 35394 satffunlem2lem1 35396 |
| Copyright terms: Public domain | W3C validator |