![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gonafv | Structured version Visualization version GIF version |
Description: The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.) |
Ref | Expression |
---|---|
gonafv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = ⟨1o, ⟨𝐴, 𝐵⟩⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7415 | . 2 ⊢ (𝐴⊼𝑔𝐵) = (⊼𝑔‘⟨𝐴, 𝐵⟩) | |
2 | opelvvg 5717 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V)) | |
3 | opeq2 4874 | . . . 4 ⊢ (𝑥 = ⟨𝐴, 𝐵⟩ → ⟨1o, 𝑥⟩ = ⟨1o, ⟨𝐴, 𝐵⟩⟩) | |
4 | df-gona 34796 | . . . 4 ⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩) | |
5 | opex 5464 | . . . 4 ⊢ ⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ V | |
6 | 3, 4, 5 | fvmpt 6998 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (V × V) → (⊼𝑔‘⟨𝐴, 𝐵⟩) = ⟨1o, ⟨𝐴, 𝐵⟩⟩) |
7 | 2, 6 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⊼𝑔‘⟨𝐴, 𝐵⟩) = ⟨1o, ⟨𝐴, 𝐵⟩⟩) |
8 | 1, 7 | eqtrid 2783 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = ⟨1o, ⟨𝐴, 𝐵⟩⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⟨cop 4634 × cxp 5674 ‘cfv 6543 (class class class)co 7412 1oc1o 8465 ⊼𝑔cgna 34789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-gona 34796 |
This theorem is referenced by: gonanegoal 34807 fmlaomn0 34845 gonan0 34847 gonarlem 34849 gonar 34850 fmla0disjsuc 34853 fmlasucdisj 34854 satffunlem 34856 satffunlem1lem1 34857 satffunlem2lem1 34859 |
Copyright terms: Public domain | W3C validator |