![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gonafv | Structured version Visualization version GIF version |
Description: The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.) |
Ref | Expression |
---|---|
gonafv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7417 | . 2 ⊢ (𝐴⊼𝑔𝐵) = (⊼𝑔‘〈𝐴, 𝐵〉) | |
2 | opelvvg 5713 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
3 | opeq2 4870 | . . . 4 ⊢ (𝑥 = 〈𝐴, 𝐵〉 → 〈1o, 𝑥〉 = 〈1o, 〈𝐴, 𝐵〉〉) | |
4 | df-gona 34874 | . . . 4 ⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦ 〈1o, 𝑥〉) | |
5 | opex 5460 | . . . 4 ⊢ 〈1o, 〈𝐴, 𝐵〉〉 ∈ V | |
6 | 3, 4, 5 | fvmpt 6999 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) → (⊼𝑔‘〈𝐴, 𝐵〉) = 〈1o, 〈𝐴, 𝐵〉〉) |
7 | 2, 6 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⊼𝑔‘〈𝐴, 𝐵〉) = 〈1o, 〈𝐴, 𝐵〉〉) |
8 | 1, 7 | eqtrid 2779 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 〈cop 4630 × cxp 5670 ‘cfv 6542 (class class class)co 7414 1oc1o 8471 ⊼𝑔cgna 34867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-gona 34874 |
This theorem is referenced by: gonanegoal 34885 fmlaomn0 34923 gonan0 34925 gonarlem 34927 gonar 34928 fmla0disjsuc 34931 fmlasucdisj 34932 satffunlem 34934 satffunlem1lem1 34935 satffunlem2lem1 34937 |
Copyright terms: Public domain | W3C validator |