| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gonafv | Structured version Visualization version GIF version | ||
| Description: The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.) |
| Ref | Expression |
|---|---|
| gonafv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7344 | . 2 ⊢ (𝐴⊼𝑔𝐵) = (⊼𝑔‘〈𝐴, 𝐵〉) | |
| 2 | opelvvg 5652 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 3 | opeq2 4821 | . . . 4 ⊢ (𝑥 = 〈𝐴, 𝐵〉 → 〈1o, 𝑥〉 = 〈1o, 〈𝐴, 𝐵〉〉) | |
| 4 | df-gona 35377 | . . . 4 ⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦ 〈1o, 𝑥〉) | |
| 5 | opex 5399 | . . . 4 ⊢ 〈1o, 〈𝐴, 𝐵〉〉 ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6924 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) → (⊼𝑔‘〈𝐴, 𝐵〉) = 〈1o, 〈𝐴, 𝐵〉〉) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⊼𝑔‘〈𝐴, 𝐵〉) = 〈1o, 〈𝐴, 𝐵〉〉) |
| 8 | 1, 7 | eqtrid 2778 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 × cxp 5609 ‘cfv 6476 (class class class)co 7341 1oc1o 8373 ⊼𝑔cgna 35370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-gona 35377 |
| This theorem is referenced by: gonanegoal 35388 fmlaomn0 35426 gonan0 35428 gonarlem 35430 gonar 35431 fmla0disjsuc 35434 fmlasucdisj 35435 satffunlem 35437 satffunlem1lem1 35438 satffunlem2lem1 35440 |
| Copyright terms: Public domain | W3C validator |