Step | Hyp | Ref
| Expression |
1 | | peano1 7735 |
. . . 4
⊢ ∅
∈ ω |
2 | | satfdmfmla 33362 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ ω) → dom
((𝑀 Sat 𝐸)‘∅) =
(Fmla‘∅)) |
3 | 1, 2 | mp3an3 1449 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → dom ((𝑀 Sat 𝐸)‘∅) =
(Fmla‘∅)) |
4 | | ovex 7308 |
. . . . . . . . . 10
⊢ (𝑀 ↑m ω)
∈ V |
5 | 4 | difexi 5252 |
. . . . . . . . 9
⊢ ((𝑀 ↑m ω)
∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) ∈ V |
6 | 5 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) → ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) ∈ V) |
7 | 6 | ralrimiva 3103 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → ∀𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) ∈ V) |
8 | 4 | rabex 5256 |
. . . . . . . . 9
⊢ {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ∈ V |
9 | 8 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑖 ∈ ω) → {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ∈ V) |
10 | 9 | ralrimiva 3103 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → ∀𝑖 ∈ ω {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ∈ V) |
11 | 7, 10 | jca 512 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → (∀𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) ∈ V ∧ ∀𝑖 ∈ ω {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ∈ V)) |
12 | 11 | ralrimiva 3103 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ∀𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∀𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) ∈ V ∧ ∀𝑖 ∈ ω {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ∈ V)) |
13 | | dmopab2rex 5826 |
. . . . 5
⊢
(∀𝑢 ∈
((𝑀 Sat 𝐸)‘∅)(∀𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) ∈ V ∧ ∀𝑖 ∈ ω {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ∈ V) → dom
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} = {𝑥 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))}) |
14 | 12, 13 | syl 17 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} = {𝑥 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))}) |
15 | | satfrel 33329 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ ω) → Rel
((𝑀 Sat 𝐸)‘∅)) |
16 | 1, 15 | mp3an3 1449 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘∅)) |
17 | | 1stdm 7881 |
. . . . . . . . . . . 12
⊢ ((Rel
((𝑀 Sat 𝐸)‘∅) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → (1st
‘𝑢) ∈ dom
((𝑀 Sat 𝐸)‘∅)) |
18 | 16, 17 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → (1st
‘𝑢) ∈ dom
((𝑀 Sat 𝐸)‘∅)) |
19 | 2 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ ω) →
(Fmla‘∅) = dom ((𝑀 Sat 𝐸)‘∅)) |
20 | 1, 19 | mp3an3 1449 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (Fmla‘∅) = dom ((𝑀 Sat 𝐸)‘∅)) |
21 | 20 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) →
(Fmla‘∅) = dom ((𝑀 Sat 𝐸)‘∅)) |
22 | 18, 21 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → (1st
‘𝑢) ∈
(Fmla‘∅)) |
23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))) → (1st ‘𝑢) ∈
(Fmla‘∅)) |
24 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (1st ‘𝑢) → (𝑓⊼𝑔𝑔) = ((1st ‘𝑢)⊼𝑔𝑔)) |
25 | 24 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑓 = (1st ‘𝑢) → (𝑥 = (𝑓⊼𝑔𝑔) ↔ 𝑥 = ((1st ‘𝑢)⊼𝑔𝑔))) |
26 | 25 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝑓 = (1st ‘𝑢) → (∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ↔ ∃𝑔 ∈ (Fmla‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔𝑔))) |
27 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (1st ‘𝑢) → 𝑖 = 𝑖) |
28 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (1st ‘𝑢) → 𝑓 = (1st ‘𝑢)) |
29 | 27, 28 | goaleq12d 33313 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (1st ‘𝑢) →
∀𝑔𝑖𝑓 = ∀𝑔𝑖(1st ‘𝑢)) |
30 | 29 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑓 = (1st ‘𝑢) → (𝑥 = ∀𝑔𝑖𝑓 ↔ 𝑥 = ∀𝑔𝑖(1st ‘𝑢))) |
31 | 30 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝑓 = (1st ‘𝑢) → (∃𝑖 ∈ ω 𝑥 =
∀𝑔𝑖𝑓 ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢))) |
32 | 26, 31 | orbi12d 916 |
. . . . . . . . . 10
⊢ (𝑓 = (1st ‘𝑢) → ((∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓) ↔ (∃𝑔 ∈ (Fmla‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))) |
33 | 32 | adantl 482 |
. . . . . . . . 9
⊢
(((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))) ∧ 𝑓 = (1st ‘𝑢)) → ((∃𝑔 ∈ (Fmla‘∅)𝑥 = (𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓) ↔ (∃𝑔 ∈ (Fmla‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))) |
34 | | 1stdm 7881 |
. . . . . . . . . . . . . . . . 17
⊢ ((Rel
((𝑀 Sat 𝐸)‘∅) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) → (1st
‘𝑣) ∈ dom
((𝑀 Sat 𝐸)‘∅)) |
35 | 16, 34 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) → (1st
‘𝑣) ∈ dom
((𝑀 Sat 𝐸)‘∅)) |
36 | 20 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) →
(Fmla‘∅) = dom ((𝑀 Sat 𝐸)‘∅)) |
37 | 35, 36 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) → (1st
‘𝑣) ∈
(Fmla‘∅)) |
38 | 37 | ad4ant13 748 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))) →
(1st ‘𝑣)
∈ (Fmla‘∅)) |
39 | | oveq2 7283 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (1st ‘𝑣) → ((1st
‘𝑢)⊼𝑔𝑔) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣))) |
40 | 39 | eqeq2d 2749 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (1st ‘𝑣) → (𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ↔ 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
41 | 40 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
((((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))) ∧ 𝑔 = (1st ‘𝑣)) → (𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ↔ 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
42 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))) → 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))) |
43 | 38, 41, 42 | rspcedvd 3563 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))) →
∃𝑔 ∈
(Fmla‘∅)𝑥 =
((1st ‘𝑢)⊼𝑔𝑔)) |
44 | 43 | ex 413 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑔 ∈
(Fmla‘∅)𝑥 =
((1st ‘𝑢)⊼𝑔𝑔))) |
45 | 44 | rexlimdva 3213 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑔 ∈
(Fmla‘∅)𝑥 =
((1st ‘𝑢)⊼𝑔𝑔))) |
46 | 45 | orim1d 963 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → (∃𝑔 ∈ (Fmla‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))) |
47 | 46 | imp 407 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))) → (∃𝑔 ∈ (Fmla‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢))) |
48 | 23, 33, 47 | rspcedvd 3563 |
. . . . . . . 8
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))) → ∃𝑓 ∈ (Fmla‘∅)(∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓)) |
49 | 48 | ex 413 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑓 ∈ (Fmla‘∅)(∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓))) |
50 | 49 | rexlimdva 3213 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑓 ∈ (Fmla‘∅)(∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓))) |
51 | | releldm2 7884 |
. . . . . . . . . 10
⊢ (Rel
((𝑀 Sat 𝐸)‘∅) → (𝑓 ∈ dom ((𝑀 Sat 𝐸)‘∅) ↔ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑢) = 𝑓)) |
52 | 16, 51 | syl 17 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑓 ∈ dom ((𝑀 Sat 𝐸)‘∅) ↔ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑢) = 𝑓)) |
53 | 3 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑓 ∈ dom ((𝑀 Sat 𝐸)‘∅) ↔ 𝑓 ∈
(Fmla‘∅))) |
54 | 52, 53 | bitr3d 280 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑢) = 𝑓 ↔ 𝑓 ∈
(Fmla‘∅))) |
55 | | r19.41v 3276 |
. . . . . . . . . 10
⊢
(∃𝑢 ∈
((𝑀 Sat 𝐸)‘∅)((1st
‘𝑢) = 𝑓 ∧ (∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓)) ↔ (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑢) = 𝑓 ∧ (∃𝑔 ∈ (Fmla‘∅)𝑥 = (𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓))) |
56 | | oveq1 7282 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑢) = 𝑓 → ((1st ‘𝑢)⊼𝑔𝑔) = (𝑓⊼𝑔𝑔)) |
57 | 56 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑢) = 𝑓 → (𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ↔ 𝑥 = (𝑓⊼𝑔𝑔))) |
58 | 57 | rexbidv 3226 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑢) = 𝑓 → (∃𝑔 ∈ (Fmla‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ↔ ∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔))) |
59 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑢) = 𝑓 → 𝑖 = 𝑖) |
60 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑢) = 𝑓 → (1st ‘𝑢) = 𝑓) |
61 | 59, 60 | goaleq12d 33313 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑢) = 𝑓 → ∀𝑔𝑖(1st ‘𝑢) =
∀𝑔𝑖𝑓) |
62 | 61 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑢) = 𝑓 → (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ↔ 𝑥 = ∀𝑔𝑖𝑓)) |
63 | 62 | rexbidv 3226 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑢) = 𝑓 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢) ↔ ∃𝑖 ∈ ω 𝑥 =
∀𝑔𝑖𝑓)) |
64 | 58, 63 | orbi12d 916 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑢) = 𝑓 → ((∃𝑔 ∈ (Fmla‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)) ↔ (∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓))) |
65 | 64 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ (1st
‘𝑢) = 𝑓) → ((∃𝑔 ∈
(Fmla‘∅)𝑥 =
((1st ‘𝑢)⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)) ↔ (∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓))) |
66 | 3 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (Fmla‘∅) = dom ((𝑀 Sat 𝐸)‘∅)) |
67 | 66 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑔 ∈ (Fmla‘∅) ↔ 𝑔 ∈ dom ((𝑀 Sat 𝐸)‘∅))) |
68 | | releldm2 7884 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Rel
((𝑀 Sat 𝐸)‘∅) → (𝑔 ∈ dom ((𝑀 Sat 𝐸)‘∅) ↔ ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑣) = 𝑔)) |
69 | 16, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑔 ∈ dom ((𝑀 Sat 𝐸)‘∅) ↔ ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑣) = 𝑔)) |
70 | 67, 69 | bitrd 278 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑔 ∈ (Fmla‘∅) ↔
∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑣) = 𝑔)) |
71 | | r19.41v 3276 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑣 ∈
((𝑀 Sat 𝐸)‘∅)((1st
‘𝑣) = 𝑔 ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔𝑔)) ↔ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑣) = 𝑔 ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔𝑔))) |
72 | 39 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1st ‘𝑣) = 𝑔 → ((1st ‘𝑢)⊼𝑔𝑔) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣))) |
73 | 72 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘𝑣) = 𝑔 → (𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) ↔ 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
74 | 73 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((1st ‘𝑣) = 𝑔 ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔𝑔)) → 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))) |
75 | 74 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (((1st ‘𝑣) = 𝑔 ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔𝑔)) → 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
76 | 75 | reximdv 3202 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)((1st
‘𝑣) = 𝑔 ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔𝑔)) → ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
77 | 71, 76 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑣) = 𝑔 ∧ 𝑥 = ((1st ‘𝑢)⊼𝑔𝑔)) → ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
78 | 77 | expd 416 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑣) = 𝑔 → (𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) → ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))))) |
79 | 70, 78 | sylbid 239 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑔 ∈ (Fmla‘∅) → (𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) → ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))))) |
80 | 79 | rexlimdv 3212 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑔 ∈ (Fmla‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔𝑔) → ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
81 | 80 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → (∃𝑔 ∈
(Fmla‘∅)𝑥 =
((1st ‘𝑢)⊼𝑔𝑔) → ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
82 | 81 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ (1st
‘𝑢) = 𝑓) → (∃𝑔 ∈
(Fmla‘∅)𝑥 =
((1st ‘𝑢)⊼𝑔𝑔) → ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
83 | 82 | orim1d 963 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ (1st
‘𝑢) = 𝑓) → ((∃𝑔 ∈
(Fmla‘∅)𝑥 =
((1st ‘𝑢)⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
84 | 65, 83 | sylbird 259 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) ∧ (1st
‘𝑢) = 𝑓) → ((∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
85 | 84 | expimpd 454 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)) → (((1st
‘𝑢) = 𝑓 ∧ (∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓)) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
86 | 85 | reximdva 3203 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)((1st
‘𝑢) = 𝑓 ∧ (∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓)) → ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
87 | 55, 86 | syl5bir 242 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑢) = 𝑓 ∧ (∃𝑔 ∈ (Fmla‘∅)𝑥 = (𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓)) → ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
88 | 87 | expd 416 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(1st ‘𝑢) = 𝑓 → ((∃𝑔 ∈ (Fmla‘∅)𝑥 = (𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓) → ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))))) |
89 | 54, 88 | sylbird 259 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑓 ∈ (Fmla‘∅) →
((∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓) → ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))))) |
90 | 89 | rexlimdv 3212 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑓 ∈ (Fmla‘∅)(∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓) → ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
91 | 50, 90 | impbid 211 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) ↔ ∃𝑓 ∈ (Fmla‘∅)(∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓))) |
92 | 91 | abbidv 2807 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → {𝑥 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))} = {𝑥 ∣ ∃𝑓 ∈ (Fmla‘∅)(∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓)}) |
93 | 14, 92 | eqtrd 2778 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} = {𝑥 ∣ ∃𝑓 ∈ (Fmla‘∅)(∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓)}) |
94 | 3, 93 | ineq12d 4147 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (dom ((𝑀 Sat 𝐸)‘∅) ∩ dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = ((Fmla‘∅)
∩ {𝑥 ∣
∃𝑓 ∈
(Fmla‘∅)(∃𝑔 ∈ (Fmla‘∅)𝑥 = (𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓)})) |
95 | | fmla0disjsuc 33360 |
. 2
⊢
((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑓 ∈ (Fmla‘∅)(∃𝑔 ∈
(Fmla‘∅)𝑥 =
(𝑓⊼𝑔𝑔) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑓)}) = ∅ |
96 | 94, 95 | eqtrdi 2794 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (dom ((𝑀 Sat 𝐸)‘∅) ∩ dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣
∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) =
∅) |