MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvalem Structured version   Visualization version   GIF version

Theorem grpinvalem 18711
Description: Lemma for grpinva 18712. (Contributed by NM, 9-Aug-2013.)
Hypotheses
Ref Expression
grpinva.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
grpinva.o (𝜑𝑂𝐵)
grpinva.i ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
grpinva.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
grpinva.r ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
grpinvalem.x ((𝜑𝜓) → 𝑋𝐵)
grpinvalem.e ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)
Assertion
Ref Expression
grpinvalem ((𝜑𝜓) → 𝑋 = 𝑂)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑂,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑦,𝑋,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧)   𝑋(𝑥)

Proof of Theorem grpinvalem
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinva.r . . . . 5 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
21ralrimiva 3152 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
3 oveq2 7456 . . . . . . 7 (𝑥 = 𝑧 → (𝑦 + 𝑥) = (𝑦 + 𝑧))
43eqeq1d 2742 . . . . . 6 (𝑥 = 𝑧 → ((𝑦 + 𝑥) = 𝑂 ↔ (𝑦 + 𝑧) = 𝑂))
54rexbidv 3185 . . . . 5 (𝑥 = 𝑧 → (∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∃𝑦𝐵 (𝑦 + 𝑧) = 𝑂))
65cbvralvw 3243 . . . 4 (∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂)
72, 6sylib 218 . . 3 (𝜑 → ∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂)
8 grpinvalem.x . . 3 ((𝜑𝜓) → 𝑋𝐵)
9 oveq2 7456 . . . . . 6 (𝑧 = 𝑋 → (𝑦 + 𝑧) = (𝑦 + 𝑋))
109eqeq1d 2742 . . . . 5 (𝑧 = 𝑋 → ((𝑦 + 𝑧) = 𝑂 ↔ (𝑦 + 𝑋) = 𝑂))
1110rexbidv 3185 . . . 4 (𝑧 = 𝑋 → (∃𝑦𝐵 (𝑦 + 𝑧) = 𝑂 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂))
1211rspccva 3634 . . 3 ((∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
137, 8, 12syl2an2r 684 . 2 ((𝜑𝜓) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
14 grpinvalem.e . . . . 5 ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)
1514oveq2d 7464 . . . 4 ((𝜑𝜓) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋))
1615adantr 480 . . 3 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋))
17 simprr 772 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + 𝑋) = 𝑂)
1817oveq1d 7463 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑂 + 𝑋))
19 grpinva.a . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2019caovassg 7648 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
2120ad4ant14 751 . . . . 5 ((((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
22 simprl 770 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑦𝐵)
238adantr 480 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋𝐵)
2421, 22, 23, 23caovassd 7649 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑦 + (𝑋 + 𝑋)))
25 oveq2 7456 . . . . . . 7 (𝑦 = 𝑋 → (𝑂 + 𝑦) = (𝑂 + 𝑋))
26 id 22 . . . . . . 7 (𝑦 = 𝑋𝑦 = 𝑋)
2725, 26eqeq12d 2756 . . . . . 6 (𝑦 = 𝑋 → ((𝑂 + 𝑦) = 𝑦 ↔ (𝑂 + 𝑋) = 𝑋))
28 grpinva.i . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
2928ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥)
30 oveq2 7456 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑂 + 𝑥) = (𝑂 + 𝑦))
31 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
3230, 31eqeq12d 2756 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑂 + 𝑥) = 𝑥 ↔ (𝑂 + 𝑦) = 𝑦))
3332cbvralvw 3243 . . . . . . . 8 (∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥 ↔ ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3429, 33sylib 218 . . . . . . 7 (𝜑 → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3534adantr 480 . . . . . 6 ((𝜑𝜓) → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3627, 35, 8rspcdva 3636 . . . . 5 ((𝜑𝜓) → (𝑂 + 𝑋) = 𝑋)
3736adantr 480 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑂 + 𝑋) = 𝑋)
3818, 24, 373eqtr3d 2788 . . 3 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = 𝑋)
3916, 38, 173eqtr3d 2788 . 2 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋 = 𝑂)
4013, 39rexlimddv 3167 1 ((𝜑𝜓) → 𝑋 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  grpinva  18712
  Copyright terms: Public domain W3C validator