MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovassg Structured version   Visualization version   GIF version

Theorem caovassg 7362
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) (Revised by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovassg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
Assertion
Ref Expression
caovassg ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovassg
StepHypRef Expression
1 caovassg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
21ralrimivvva 3104 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
3 oveq1 7177 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
43oveq1d 7185 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦)𝐹𝑧) = ((𝐴𝐹𝑦)𝐹𝑧))
5 oveq1 7177 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹(𝑦𝐹𝑧)) = (𝐴𝐹(𝑦𝐹𝑧)))
64, 5eqeq12d 2754 . . 3 (𝑥 = 𝐴 → (((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ↔ ((𝐴𝐹𝑦)𝐹𝑧) = (𝐴𝐹(𝑦𝐹𝑧))))
7 oveq2 7178 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
87oveq1d 7185 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦)𝐹𝑧) = ((𝐴𝐹𝐵)𝐹𝑧))
9 oveq1 7177 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐹𝑧) = (𝐵𝐹𝑧))
109oveq2d 7186 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹(𝑦𝐹𝑧)) = (𝐴𝐹(𝐵𝐹𝑧)))
118, 10eqeq12d 2754 . . 3 (𝑦 = 𝐵 → (((𝐴𝐹𝑦)𝐹𝑧) = (𝐴𝐹(𝑦𝐹𝑧)) ↔ ((𝐴𝐹𝐵)𝐹𝑧) = (𝐴𝐹(𝐵𝐹𝑧))))
12 oveq2 7178 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐹𝐵)𝐹𝑧) = ((𝐴𝐹𝐵)𝐹𝐶))
13 oveq2 7178 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐹𝑧) = (𝐵𝐹𝐶))
1413oveq2d 7186 . . . 4 (𝑧 = 𝐶 → (𝐴𝐹(𝐵𝐹𝑧)) = (𝐴𝐹(𝐵𝐹𝐶)))
1512, 14eqeq12d 2754 . . 3 (𝑧 = 𝐶 → (((𝐴𝐹𝐵)𝐹𝑧) = (𝐴𝐹(𝐵𝐹𝑧)) ↔ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))))
166, 11, 15rspc3v 3539 . 2 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))))
172, 16mpan9 510 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  (class class class)co 7170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-v 3400  df-un 3848  df-in 3850  df-ss 3860  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-iota 6297  df-fv 6347  df-ov 7173
This theorem is referenced by:  caovassd  7363  caovass  7364  seqsplit  13495  seqcaopr  13499  seqf1olem2  13502  grprinvlem  17999  grprinvd  18000  grpridd  18001
  Copyright terms: Public domain W3C validator