Step | Hyp | Ref
| Expression |
1 | | mgmidsssn0.o |
. 2
⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
2 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
3 | | mgmidsssn0.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
4 | | mgmidsssn0.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
5 | | mgmidsssn0.p |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
6 | | oveq1 7275 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦)) |
7 | 6 | eqeq1d 2741 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → ((𝑧 + 𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦)) |
8 | 7 | ovanraleqv 7292 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
9 | 8 | rspcev 3560 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)) |
10 | 9 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)) |
11 | 3, 4, 5, 10 | ismgmid 18330 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) ↔ 0 = 𝑥)) |
12 | 2, 11 | mpbid 231 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 0 = 𝑥) |
13 | 12 | eqcomd 2745 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 = 0 ) |
14 | | velsn 4582 |
. . . . . 6
⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
15 | 13, 14 | sylibr 233 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 ∈ { 0 }) |
16 | 15 | expr 456 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
17 | 16 | ralrimiva 3109 |
. . 3
⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
18 | | rabss 4009 |
. . 3
⊢ ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 } ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
19 | 17, 18 | sylibr 233 |
. 2
⊢ (𝐺 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 }) |
20 | 1, 19 | eqsstrid 3973 |
1
⊢ (𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 }) |