MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmidsssn0 Structured version   Visualization version   GIF version

Theorem mgmidsssn0 18546
Description: Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
mgmidsssn0.b 𝐵 = (Base‘𝐺)
mgmidsssn0.z 0 = (0g𝐺)
mgmidsssn0.p + = (+g𝐺)
mgmidsssn0.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
Assertion
Ref Expression
mgmidsssn0 (𝐺𝑉𝑂 ⊆ { 0 })
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑉   𝑥, 0 ,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem mgmidsssn0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mgmidsssn0.o . 2 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
2 simpr 484 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
3 mgmidsssn0.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
4 mgmidsssn0.z . . . . . . . . 9 0 = (0g𝐺)
5 mgmidsssn0.p . . . . . . . . 9 + = (+g𝐺)
6 oveq1 7356 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦))
76eqeq1d 2731 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((𝑧 + 𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦))
87ovanraleqv 7373 . . . . . . . . . . 11 (𝑧 = 𝑥 → (∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
98rspcev 3577 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) → ∃𝑧𝐵𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦))
109adantl 481 . . . . . . . . 9 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ∃𝑧𝐵𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦))
113, 4, 5, 10ismgmid 18539 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) ↔ 0 = 𝑥))
122, 11mpbid 232 . . . . . . 7 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 0 = 𝑥)
1312eqcomd 2735 . . . . . 6 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 = 0 )
14 velsn 4593 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
1513, 14sylibr 234 . . . . 5 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 ∈ { 0 })
1615expr 456 . . . 4 ((𝐺𝑉𝑥𝐵) → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
1716ralrimiva 3121 . . 3 (𝐺𝑉 → ∀𝑥𝐵 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
18 rabss 4023 . . 3 ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 } ↔ ∀𝑥𝐵 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
1917, 18sylibr 234 . 2 (𝐺𝑉 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 })
201, 19eqsstrid 3974 1 (𝐺𝑉𝑂 ⊆ { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  wss 3903  {csn 4577  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-riota 7306  df-ov 7352  df-0g 17345
This theorem is referenced by:  gsumress  18556  gsumval2  18560  gsumvallem2  18708
  Copyright terms: Public domain W3C validator