| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvadd4i | Structured version Visualization version GIF version | ||
| Description: Hilbert vector space addition law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvass.1 | ⊢ 𝐴 ∈ ℋ |
| hvass.2 | ⊢ 𝐵 ∈ ℋ |
| hvass.3 | ⊢ 𝐶 ∈ ℋ |
| hvadd4.4 | ⊢ 𝐷 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvadd4i | ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvass.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hvass.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
| 4 | hvadd4.4 | . 2 ⊢ 𝐷 ∈ ℋ | |
| 5 | hvadd4 31015 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | mp4an 693 | 1 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℋchba 30898 +ℎ cva 30899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: hvsubsub4i 31038 hvsubcan2i 31043 pjaddii 31654 |
| Copyright terms: Public domain | W3C validator |