![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubaddi | Structured version Visualization version GIF version |
Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvnegdi.1 | ⊢ 𝐴 ∈ ℋ |
hvnegdi.2 | ⊢ 𝐵 ∈ ℋ |
hvaddcan.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvsubaddi | ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2 | hvsubvali 30251 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
4 | 3 | eqeq1i 2738 | . 2 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶) |
5 | neg1cn 12322 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
6 | 5, 2 | hvmulcli 30245 | . . . . . 6 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
7 | 2, 1, 6 | hvadd12i 30288 | . . . . 5 ⊢ (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) |
8 | 2 | hvnegidi 30261 | . . . . . 6 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐵)) = 0ℎ |
9 | 8 | oveq2i 7415 | . . . . 5 ⊢ (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ 0ℎ) |
10 | ax-hvaddid 30235 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ (𝐴 +ℎ 0ℎ) = 𝐴 |
12 | 7, 9, 11 | 3eqtri 2765 | . . . 4 ⊢ (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = 𝐴 |
13 | 12 | eqeq1i 2738 | . . 3 ⊢ ((𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐵 +ℎ 𝐶) ↔ 𝐴 = (𝐵 +ℎ 𝐶)) |
14 | 1, 6 | hvaddcli 30249 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
15 | hvaddcan.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
16 | 2, 14, 15 | hvaddcani 30296 | . . 3 ⊢ ((𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐵 +ℎ 𝐶) ↔ (𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶) |
17 | eqcom 2740 | . . 3 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) ↔ (𝐵 +ℎ 𝐶) = 𝐴) | |
18 | 13, 16, 17 | 3bitr3i 301 | . 2 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
19 | 4, 18 | bitri 275 | 1 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 (class class class)co 7404 1c1 11107 -cneg 11441 ℋchba 30150 +ℎ cva 30151 ·ℎ csm 30152 0ℎc0v 30155 −ℎ cmv 30156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-hfvadd 30231 ax-hvcom 30232 ax-hvass 30233 ax-hv0cl 30234 ax-hvaddid 30235 ax-hfvmul 30236 ax-hvmulid 30237 ax-hvdistr2 30240 ax-hvmul0 30241 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-hvsub 30202 |
This theorem is referenced by: hvsubadd 30308 omlsilem 30633 |
Copyright terms: Public domain | W3C validator |