| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubaddi | Structured version Visualization version GIF version | ||
| Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvnegdi.1 | ⊢ 𝐴 ∈ ℋ |
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ |
| hvaddcan.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvsubaddi | ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvsubvali 30935 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 4 | 3 | eqeq1i 2739 | . 2 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶) |
| 5 | neg1cn 12347 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 6 | 5, 2 | hvmulcli 30929 | . . . . . 6 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 7 | 2, 1, 6 | hvadd12i 30972 | . . . . 5 ⊢ (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) |
| 8 | 2 | hvnegidi 30945 | . . . . . 6 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐵)) = 0ℎ |
| 9 | 8 | oveq2i 7411 | . . . . 5 ⊢ (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ 0ℎ) |
| 10 | ax-hvaddid 30919 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
| 11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ (𝐴 +ℎ 0ℎ) = 𝐴 |
| 12 | 7, 9, 11 | 3eqtri 2761 | . . . 4 ⊢ (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = 𝐴 |
| 13 | 12 | eqeq1i 2739 | . . 3 ⊢ ((𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐵 +ℎ 𝐶) ↔ 𝐴 = (𝐵 +ℎ 𝐶)) |
| 14 | 1, 6 | hvaddcli 30933 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
| 15 | hvaddcan.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
| 16 | 2, 14, 15 | hvaddcani 30980 | . . 3 ⊢ ((𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐵 +ℎ 𝐶) ↔ (𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶) |
| 17 | eqcom 2741 | . . 3 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) ↔ (𝐵 +ℎ 𝐶) = 𝐴) | |
| 18 | 13, 16, 17 | 3bitr3i 301 | . 2 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
| 19 | 4, 18 | bitri 275 | 1 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 (class class class)co 7400 1c1 11123 -cneg 11460 ℋchba 30834 +ℎ cva 30835 ·ℎ csm 30836 0ℎc0v 30839 −ℎ cmv 30840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-hfvadd 30915 ax-hvcom 30916 ax-hvass 30917 ax-hv0cl 30918 ax-hvaddid 30919 ax-hfvmul 30920 ax-hvmulid 30921 ax-hvdistr2 30924 ax-hvmul0 30925 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-ltxr 11267 df-sub 11461 df-neg 11462 df-hvsub 30886 |
| This theorem is referenced by: hvsubadd 30992 omlsilem 31317 |
| Copyright terms: Public domain | W3C validator |