Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubaddi | Structured version Visualization version GIF version |
Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvnegdi.1 | ⊢ 𝐴 ∈ ℋ |
hvnegdi.2 | ⊢ 𝐵 ∈ ℋ |
hvaddcan.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvsubaddi | ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2 | hvsubvali 29101 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
4 | 3 | eqeq1i 2742 | . 2 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶) |
5 | neg1cn 11944 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
6 | 5, 2 | hvmulcli 29095 | . . . . . 6 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
7 | 2, 1, 6 | hvadd12i 29138 | . . . . 5 ⊢ (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) |
8 | 2 | hvnegidi 29111 | . . . . . 6 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐵)) = 0ℎ |
9 | 8 | oveq2i 7224 | . . . . 5 ⊢ (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ 0ℎ) |
10 | ax-hvaddid 29085 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ (𝐴 +ℎ 0ℎ) = 𝐴 |
12 | 7, 9, 11 | 3eqtri 2769 | . . . 4 ⊢ (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = 𝐴 |
13 | 12 | eqeq1i 2742 | . . 3 ⊢ ((𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐵 +ℎ 𝐶) ↔ 𝐴 = (𝐵 +ℎ 𝐶)) |
14 | 1, 6 | hvaddcli 29099 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
15 | hvaddcan.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
16 | 2, 14, 15 | hvaddcani 29146 | . . 3 ⊢ ((𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐵 +ℎ 𝐶) ↔ (𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶) |
17 | eqcom 2744 | . . 3 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) ↔ (𝐵 +ℎ 𝐶) = 𝐴) | |
18 | 13, 16, 17 | 3bitr3i 304 | . 2 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
19 | 4, 18 | bitri 278 | 1 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2110 (class class class)co 7213 1c1 10730 -cneg 11063 ℋchba 29000 +ℎ cva 29001 ·ℎ csm 29002 0ℎc0v 29005 −ℎ cmv 29006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-hfvadd 29081 ax-hvcom 29082 ax-hvass 29083 ax-hv0cl 29084 ax-hvaddid 29085 ax-hfvmul 29086 ax-hvmulid 29087 ax-hvdistr2 29090 ax-hvmul0 29091 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 df-neg 11065 df-hvsub 29052 |
This theorem is referenced by: hvsubadd 29158 omlsilem 29483 |
Copyright terms: Public domain | W3C validator |