HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubaddi Structured version   Visualization version   GIF version

Theorem hvsubaddi 30995
Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
hvaddcan.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvsubaddi ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)

Proof of Theorem hvsubaddi
StepHypRef Expression
1 hvnegdi.1 . . . 4 𝐴 ∈ ℋ
2 hvnegdi.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 30949 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
43eqeq1i 2734 . 2 ((𝐴 𝐵) = 𝐶 ↔ (𝐴 + (-1 · 𝐵)) = 𝐶)
5 neg1cn 12171 . . . . . . 7 -1 ∈ ℂ
65, 2hvmulcli 30943 . . . . . 6 (-1 · 𝐵) ∈ ℋ
72, 1, 6hvadd12i 30986 . . . . 5 (𝐵 + (𝐴 + (-1 · 𝐵))) = (𝐴 + (𝐵 + (-1 · 𝐵)))
82hvnegidi 30959 . . . . . 6 (𝐵 + (-1 · 𝐵)) = 0
98oveq2i 7398 . . . . 5 (𝐴 + (𝐵 + (-1 · 𝐵))) = (𝐴 + 0)
10 ax-hvaddid 30933 . . . . . 6 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
111, 10ax-mp 5 . . . . 5 (𝐴 + 0) = 𝐴
127, 9, 113eqtri 2756 . . . 4 (𝐵 + (𝐴 + (-1 · 𝐵))) = 𝐴
1312eqeq1i 2734 . . 3 ((𝐵 + (𝐴 + (-1 · 𝐵))) = (𝐵 + 𝐶) ↔ 𝐴 = (𝐵 + 𝐶))
141, 6hvaddcli 30947 . . . 4 (𝐴 + (-1 · 𝐵)) ∈ ℋ
15 hvaddcan.3 . . . 4 𝐶 ∈ ℋ
162, 14, 15hvaddcani 30994 . . 3 ((𝐵 + (𝐴 + (-1 · 𝐵))) = (𝐵 + 𝐶) ↔ (𝐴 + (-1 · 𝐵)) = 𝐶)
17 eqcom 2736 . . 3 (𝐴 = (𝐵 + 𝐶) ↔ (𝐵 + 𝐶) = 𝐴)
1813, 16, 173bitr3i 301 . 2 ((𝐴 + (-1 · 𝐵)) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)
194, 18bitri 275 1 ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  (class class class)co 7387  1c1 11069  -cneg 11406  chba 30848   + cva 30849   · csm 30850  0c0v 30853   cmv 30854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvdistr2 30938  ax-hvmul0 30939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408  df-hvsub 30900
This theorem is referenced by:  hvsubadd  31006  omlsilem  31331
  Copyright terms: Public domain W3C validator