|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > hvsubaddi | Structured version Visualization version GIF version | ||
| Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | 
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | 
| hvaddcan.3 | ⊢ 𝐶 ∈ ℋ | 
| Ref | Expression | 
|---|---|
| hvsubaddi | ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvsubvali 31040 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) | 
| 4 | 3 | eqeq1i 2741 | . 2 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶) | 
| 5 | neg1cn 12381 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 6 | 5, 2 | hvmulcli 31034 | . . . . . 6 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ | 
| 7 | 2, 1, 6 | hvadd12i 31077 | . . . . 5 ⊢ (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) | 
| 8 | 2 | hvnegidi 31050 | . . . . . 6 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐵)) = 0ℎ | 
| 9 | 8 | oveq2i 7443 | . . . . 5 ⊢ (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ 0ℎ) | 
| 10 | ax-hvaddid 31024 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
| 11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ (𝐴 +ℎ 0ℎ) = 𝐴 | 
| 12 | 7, 9, 11 | 3eqtri 2768 | . . . 4 ⊢ (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = 𝐴 | 
| 13 | 12 | eqeq1i 2741 | . . 3 ⊢ ((𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐵 +ℎ 𝐶) ↔ 𝐴 = (𝐵 +ℎ 𝐶)) | 
| 14 | 1, 6 | hvaddcli 31038 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ | 
| 15 | hvaddcan.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
| 16 | 2, 14, 15 | hvaddcani 31085 | . . 3 ⊢ ((𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (𝐵 +ℎ 𝐶) ↔ (𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶) | 
| 17 | eqcom 2743 | . . 3 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) ↔ (𝐵 +ℎ 𝐶) = 𝐴) | |
| 18 | 13, 16, 17 | 3bitr3i 301 | . 2 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) | 
| 19 | 4, 18 | bitri 275 | 1 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 (class class class)co 7432 1c1 11157 -cneg 11494 ℋchba 30939 +ℎ cva 30940 ·ℎ csm 30941 0ℎc0v 30944 −ℎ cmv 30945 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-hfvadd 31020 ax-hvcom 31021 ax-hvass 31022 ax-hv0cl 31023 ax-hvaddid 31024 ax-hfvmul 31025 ax-hvmulid 31026 ax-hvdistr2 31029 ax-hvmul0 31030 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 df-sub 11495 df-neg 11496 df-hvsub 30991 | 
| This theorem is referenced by: hvsubadd 31097 omlsilem 31422 | 
| Copyright terms: Public domain | W3C validator |