| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmsxpsval2 | Structured version Visualization version GIF version | ||
| Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmsxps.p | ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) |
| tmsxps.1 | ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
| tmsxps.2 | ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
| tmsxpsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| tmsxpsval.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| tmsxpsval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| tmsxpsval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| tmsxpsval2 | ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | . . 3 ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
| 2 | tmsxps.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | |
| 3 | tmsxps.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | |
| 4 | tmsxpsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 5 | tmsxpsval.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 6 | tmsxpsval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 7 | tmsxpsval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | tmsxpsval 24432 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < )) |
| 9 | xrltso 13107 | . . 3 ⊢ < Or ℝ* | |
| 10 | xmetcl 24225 | . . . 4 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑀𝐶) ∈ ℝ*) | |
| 11 | 2, 4, 6, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴𝑀𝐶) ∈ ℝ*) |
| 12 | xmetcl 24225 | . . . 4 ⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌) → (𝐵𝑁𝐷) ∈ ℝ*) | |
| 13 | 3, 5, 7, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵𝑁𝐷) ∈ ℝ*) |
| 14 | suppr 9429 | . . 3 ⊢ (( < Or ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ* ∧ (𝐵𝑁𝐷) ∈ ℝ*) → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) | |
| 15 | 9, 11, 13, 14 | mp3an2i 1468 | . 2 ⊢ (𝜑 → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) |
| 16 | xrltnle 11247 | . . . . 5 ⊢ (((𝐵𝑁𝐷) ∈ ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ*) → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷))) | |
| 17 | 13, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷))) |
| 18 | 17 | ifbid 4514 | . . 3 ⊢ (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) |
| 19 | ifnot 4543 | . . 3 ⊢ if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶)) | |
| 20 | 18, 19 | eqtrdi 2781 | . 2 ⊢ (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
| 21 | 8, 15, 20 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ifcif 4490 {cpr 4593 〈cop 4597 class class class wbr 5109 Or wor 5547 ‘cfv 6513 (class class class)co 7389 supcsup 9397 ℝ*cxr 11213 < clt 11214 ≤ cle 11215 distcds 17235 ×s cxps 17475 ∞Metcxmet 21255 toMetSpctms 24213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-icc 13319 df-fz 13475 df-fzo 13622 df-seq 13973 df-hash 14302 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-prds 17416 df-xrs 17471 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-bl 21265 df-mopn 21266 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-xms 24214 df-tms 24216 |
| This theorem is referenced by: txmetcnp 24441 |
| Copyright terms: Public domain | W3C validator |