| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmsxpsval2 | Structured version Visualization version GIF version | ||
| Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmsxps.p | ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) |
| tmsxps.1 | ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
| tmsxps.2 | ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
| tmsxpsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| tmsxpsval.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| tmsxpsval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| tmsxpsval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| tmsxpsval2 | ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | . . 3 ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
| 2 | tmsxps.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | |
| 3 | tmsxps.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | |
| 4 | tmsxpsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 5 | tmsxpsval.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 6 | tmsxpsval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 7 | tmsxpsval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | tmsxpsval 24433 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < )) |
| 9 | xrltso 13108 | . . 3 ⊢ < Or ℝ* | |
| 10 | xmetcl 24226 | . . . 4 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑀𝐶) ∈ ℝ*) | |
| 11 | 2, 4, 6, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴𝑀𝐶) ∈ ℝ*) |
| 12 | xmetcl 24226 | . . . 4 ⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌) → (𝐵𝑁𝐷) ∈ ℝ*) | |
| 13 | 3, 5, 7, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵𝑁𝐷) ∈ ℝ*) |
| 14 | suppr 9430 | . . 3 ⊢ (( < Or ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ* ∧ (𝐵𝑁𝐷) ∈ ℝ*) → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) | |
| 15 | 9, 11, 13, 14 | mp3an2i 1468 | . 2 ⊢ (𝜑 → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) |
| 16 | xrltnle 11248 | . . . . 5 ⊢ (((𝐵𝑁𝐷) ∈ ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ*) → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷))) | |
| 17 | 13, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷))) |
| 18 | 17 | ifbid 4515 | . . 3 ⊢ (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) |
| 19 | ifnot 4544 | . . 3 ⊢ if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶)) | |
| 20 | 18, 19 | eqtrdi 2781 | . 2 ⊢ (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
| 21 | 8, 15, 20 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ifcif 4491 {cpr 4594 〈cop 4598 class class class wbr 5110 Or wor 5548 ‘cfv 6514 (class class class)co 7390 supcsup 9398 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 distcds 17236 ×s cxps 17476 ∞Metcxmet 21256 toMetSpctms 24214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-prds 17417 df-xrs 17472 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-xms 24215 df-tms 24217 |
| This theorem is referenced by: txmetcnp 24442 |
| Copyright terms: Public domain | W3C validator |