| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmsxpsval2 | Structured version Visualization version GIF version | ||
| Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmsxps.p | ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) |
| tmsxps.1 | ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
| tmsxps.2 | ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
| tmsxpsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| tmsxpsval.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| tmsxpsval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| tmsxpsval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| tmsxpsval2 | ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | . . 3 ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
| 2 | tmsxps.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | |
| 3 | tmsxps.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | |
| 4 | tmsxpsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 5 | tmsxpsval.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 6 | tmsxpsval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 7 | tmsxpsval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | tmsxpsval 24442 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < )) |
| 9 | xrltso 13061 | . . 3 ⊢ < Or ℝ* | |
| 10 | xmetcl 24235 | . . . 4 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑀𝐶) ∈ ℝ*) | |
| 11 | 2, 4, 6, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴𝑀𝐶) ∈ ℝ*) |
| 12 | xmetcl 24235 | . . . 4 ⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌) → (𝐵𝑁𝐷) ∈ ℝ*) | |
| 13 | 3, 5, 7, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐵𝑁𝐷) ∈ ℝ*) |
| 14 | suppr 9381 | . . 3 ⊢ (( < Or ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ* ∧ (𝐵𝑁𝐷) ∈ ℝ*) → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) | |
| 15 | 9, 11, 13, 14 | mp3an2i 1468 | . 2 ⊢ (𝜑 → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) |
| 16 | xrltnle 11201 | . . . . 5 ⊢ (((𝐵𝑁𝐷) ∈ ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ*) → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷))) | |
| 17 | 13, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷))) |
| 18 | 17 | ifbid 4502 | . . 3 ⊢ (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) |
| 19 | ifnot 4531 | . . 3 ⊢ if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶)) | |
| 20 | 18, 19 | eqtrdi 2780 | . 2 ⊢ (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
| 21 | 8, 15, 20 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ifcif 4478 {cpr 4581 〈cop 4585 class class class wbr 5095 Or wor 5530 ‘cfv 6486 (class class class)co 7353 supcsup 9349 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 distcds 17188 ×s cxps 17428 ∞Metcxmet 21264 toMetSpctms 24223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-prds 17369 df-xrs 17424 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-xms 24224 df-tms 24226 |
| This theorem is referenced by: txmetcnp 24451 |
| Copyright terms: Public domain | W3C validator |