![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmsxpsval2 | Structured version Visualization version GIF version |
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tmsxps.p | ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) |
tmsxps.1 | ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
tmsxps.2 | ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
tmsxpsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
tmsxpsval.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
tmsxpsval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
tmsxpsval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
Ref | Expression |
---|---|
tmsxpsval2 | ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmsxps.p | . . 3 ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
2 | tmsxps.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | |
3 | tmsxps.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | |
4 | tmsxpsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
5 | tmsxpsval.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
6 | tmsxpsval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
7 | tmsxpsval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tmsxpsval 24576 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < )) |
9 | xrltso 13189 | . . 3 ⊢ < Or ℝ* | |
10 | xmetcl 24366 | . . . 4 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑀𝐶) ∈ ℝ*) | |
11 | 2, 4, 6, 10 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐴𝑀𝐶) ∈ ℝ*) |
12 | xmetcl 24366 | . . . 4 ⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌) → (𝐵𝑁𝐷) ∈ ℝ*) | |
13 | 3, 5, 7, 12 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐵𝑁𝐷) ∈ ℝ*) |
14 | suppr 9518 | . . 3 ⊢ (( < Or ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ* ∧ (𝐵𝑁𝐷) ∈ ℝ*) → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) | |
15 | 9, 11, 13, 14 | mp3an2i 1467 | . 2 ⊢ (𝜑 → sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ) = if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) |
16 | xrltnle 11335 | . . . . 5 ⊢ (((𝐵𝑁𝐷) ∈ ℝ* ∧ (𝐴𝑀𝐶) ∈ ℝ*) → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷))) | |
17 | 13, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐵𝑁𝐷) < (𝐴𝑀𝐶) ↔ ¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷))) |
18 | 17 | ifbid 4557 | . . 3 ⊢ (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷))) |
19 | ifnot 4586 | . . 3 ⊢ if(¬ (𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶)) | |
20 | 18, 19 | eqtrdi 2793 | . 2 ⊢ (𝜑 → if((𝐵𝑁𝐷) < (𝐴𝑀𝐶), (𝐴𝑀𝐶), (𝐵𝑁𝐷)) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
21 | 8, 15, 20 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = if((𝐴𝑀𝐶) ≤ (𝐵𝑁𝐷), (𝐵𝑁𝐷), (𝐴𝑀𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2108 ifcif 4534 {cpr 4636 〈cop 4640 class class class wbr 5151 Or wor 5600 ‘cfv 6569 (class class class)co 7438 supcsup 9487 ℝ*cxr 11301 < clt 11302 ≤ cle 11303 distcds 17316 ×s cxps 17562 ∞Metcxmet 21376 toMetSpctms 24354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-sup 9489 df-inf 9490 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-q 12998 df-rp 13042 df-xneg 13161 df-xadd 13162 df-xmul 13163 df-icc 13400 df-fz 13554 df-fzo 13701 df-seq 14049 df-hash 14376 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-hom 17331 df-cco 17332 df-rest 17478 df-topn 17479 df-0g 17497 df-gsum 17498 df-topgen 17499 df-prds 17503 df-xrs 17558 df-imas 17564 df-xps 17566 df-mre 17640 df-mrc 17641 df-acs 17643 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21383 df-xmet 21384 df-bl 21386 df-mopn 21387 df-top 22925 df-topon 22942 df-topsp 22964 df-bases 22978 df-xms 24355 df-tms 24357 |
This theorem is referenced by: txmetcnp 24585 |
Copyright terms: Public domain | W3C validator |