MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2resupmax Structured version   Visualization version   GIF version

Theorem 2resupmax 13155
Description: The supremum of two real numbers is the maximum of these two numbers. (Contributed by AV, 8-Jun-2021.)
Assertion
Ref Expression
2resupmax ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))

Proof of Theorem 2resupmax
StepHypRef Expression
1 ltso 11261 . . 3 < Or ℝ
2 suppr 9430 . . 3 (( < Or ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐵 < 𝐴, 𝐴, 𝐵))
31, 2mp3an1 1450 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐵 < 𝐴, 𝐴, 𝐵))
4 ifnot 4544 . . 3 if(¬ 𝐵 < 𝐴, 𝐵, 𝐴) = if(𝐵 < 𝐴, 𝐴, 𝐵)
5 lenlt 11259 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
65bicomd 223 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴𝐴𝐵))
76ifbid 4515 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(¬ 𝐵 < 𝐴, 𝐵, 𝐴) = if(𝐴𝐵, 𝐵, 𝐴))
84, 7eqtr3id 2779 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐵 < 𝐴, 𝐴, 𝐵) = if(𝐴𝐵, 𝐵, 𝐴))
93, 8eqtrd 2765 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4491  {cpr 4594   class class class wbr 5110   Or wor 5548  supcsup 9398  cr 11074   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator