![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2resupmax | Structured version Visualization version GIF version |
Description: The supremum of two real numbers is the maximum of these two numbers. (Contributed by AV, 8-Jun-2021.) |
Ref | Expression |
---|---|
2resupmax | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11299 | . . 3 ⊢ < Or ℝ | |
2 | suppr 9470 | . . 3 ⊢ (( < Or ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐵 < 𝐴, 𝐴, 𝐵)) | |
3 | 1, 2 | mp3an1 1447 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐵 < 𝐴, 𝐴, 𝐵)) |
4 | ifnot 4580 | . . 3 ⊢ if(¬ 𝐵 < 𝐴, 𝐵, 𝐴) = if(𝐵 < 𝐴, 𝐴, 𝐵) | |
5 | lenlt 11297 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
6 | 5 | bicomd 222 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ 𝐴 ≤ 𝐵)) |
7 | 6 | ifbid 4551 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(¬ 𝐵 < 𝐴, 𝐵, 𝐴) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
8 | 4, 7 | eqtr3id 2785 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐵 < 𝐴, 𝐴, 𝐵) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
9 | 3, 8 | eqtrd 2771 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ifcif 4528 {cpr 4630 class class class wbr 5148 Or wor 5587 supcsup 9439 ℝcr 11113 < clt 11253 ≤ cle 11254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-pre-lttri 11188 ax-pre-lttrn 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |