| Step | Hyp | Ref
| Expression |
| 1 | | itg2uba.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
| 2 | | itg1cl 25720 |
. . . 4
⊢ (𝐺 ∈ dom ∫1
→ (∫1‘𝐺) ∈ ℝ) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 →
(∫1‘𝐺)
∈ ℝ) |
| 4 | 3 | rexrd 11311 |
. 2
⊢ (𝜑 →
(∫1‘𝐺)
∈ ℝ*) |
| 5 | | itg2uba.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 6 | | itg2uba.4 |
. . . . . . 7
⊢ (𝜑 → (vol*‘𝐴) = 0) |
| 7 | | nulmbl 25570 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) = 0) →
𝐴 ∈ dom
vol) |
| 8 | 5, 6, 7 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 9 | | cmmbl 25569 |
. . . . . 6
⊢ (𝐴 ∈ dom vol → (ℝ
∖ 𝐴) ∈ dom
vol) |
| 10 | 8, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → (ℝ ∖ 𝐴) ∈ dom
vol) |
| 11 | | ifnot 4578 |
. . . . . . . 8
⊢ if(¬
𝑥 ∈ 𝐴, (𝐺‘𝑥), 0) = if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) |
| 12 | | eldif 3961 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴)) |
| 13 | 12 | baibr 536 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (¬
𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (ℝ ∖ 𝐴))) |
| 14 | 13 | ifbid 4549 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → if(¬
𝑥 ∈ 𝐴, (𝐺‘𝑥), 0) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺‘𝑥), 0)) |
| 15 | 11, 14 | eqtr3id 2791 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺‘𝑥), 0)) |
| 16 | 15 | mpteq2ia 5245 |
. . . . . 6
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺‘𝑥), 0)) |
| 17 | 16 | i1fres 25740 |
. . . . 5
⊢ ((𝐺 ∈ dom ∫1
∧ (ℝ ∖ 𝐴)
∈ dom vol) → (𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 0, (𝐺‘𝑥))) ∈ dom
∫1) |
| 18 | 1, 10, 17 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) ∈ dom
∫1) |
| 19 | | itg1cl 25720 |
. . . 4
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) ∈ dom ∫1 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 0, (𝐺‘𝑥)))) ∈ ℝ) |
| 20 | 18, 19 | syl 17 |
. . 3
⊢ (𝜑 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 0, (𝐺‘𝑥)))) ∈ ℝ) |
| 21 | 20 | rexrd 11311 |
. 2
⊢ (𝜑 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 0, (𝐺‘𝑥)))) ∈
ℝ*) |
| 22 | | itg2uba.1 |
. . 3
⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
| 23 | | itg2cl 25767 |
. . 3
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∫2‘𝐹) ∈
ℝ*) |
| 24 | 22, 23 | syl 17 |
. 2
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ*) |
| 25 | | i1ff 25711 |
. . . . . . 7
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
| 26 | 1, 25 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
| 27 | | eldifi 4131 |
. . . . . 6
⊢ (𝑦 ∈ (ℝ ∖ 𝐴) → 𝑦 ∈ ℝ) |
| 28 | | ffvelcdm 7101 |
. . . . . 6
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑦 ∈ ℝ) →
(𝐺‘𝑦) ∈ ℝ) |
| 29 | 26, 27, 28 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑦) ∈ ℝ) |
| 30 | 29 | leidd 11829 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑦) ≤ (𝐺‘𝑦)) |
| 31 | | eldif 3961 |
. . . . . 6
⊢ (𝑦 ∈ (ℝ ∖ 𝐴) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝐴)) |
| 32 | | eleq1w 2824 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 33 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) |
| 34 | 32, 33 | ifbieq2d 4552 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) = if(𝑦 ∈ 𝐴, 0, (𝐺‘𝑦))) |
| 35 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) |
| 36 | | c0ex 11255 |
. . . . . . . . 9
⊢ 0 ∈
V |
| 37 | | fvex 6919 |
. . . . . . . . 9
⊢ (𝐺‘𝑦) ∈ V |
| 38 | 36, 37 | ifex 4576 |
. . . . . . . 8
⊢ if(𝑦 ∈ 𝐴, 0, (𝐺‘𝑦)) ∈ V |
| 39 | 34, 35, 38 | fvmpt 7016 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)))‘𝑦) = if(𝑦 ∈ 𝐴, 0, (𝐺‘𝑦))) |
| 40 | | iffalse 4534 |
. . . . . . 7
⊢ (¬
𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, 0, (𝐺‘𝑦)) = (𝐺‘𝑦)) |
| 41 | 39, 40 | sylan9eq 2797 |
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ ¬
𝑦 ∈ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)))‘𝑦) = (𝐺‘𝑦)) |
| 42 | 31, 41 | sylbi 217 |
. . . . 5
⊢ (𝑦 ∈ (ℝ ∖ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)))‘𝑦) = (𝐺‘𝑦)) |
| 43 | 42 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)))‘𝑦) = (𝐺‘𝑦)) |
| 44 | 30, 43 | breqtrrd 5171 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑦) ≤ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)))‘𝑦)) |
| 45 | 1, 5, 6, 18, 44 | itg1lea 25747 |
. 2
⊢ (𝜑 →
(∫1‘𝐺)
≤ (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))))) |
| 46 | | iftrue 4531 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) = 0) |
| 47 | 46 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) = 0) |
| 48 | 22 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
| 49 | | elxrge0 13497 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (0[,]+∞) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑥))) |
| 50 | 48, 49 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑥))) |
| 51 | 50 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹‘𝑥)) |
| 52 | 51 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 0 ≤ (𝐹‘𝑥)) |
| 53 | 47, 52 | eqbrtrd 5165 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) |
| 54 | | iffalse 4534 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) = (𝐺‘𝑥)) |
| 55 | 54 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) = (𝐺‘𝑥)) |
| 56 | | itg2uba.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
| 57 | 12, 56 | sylan2br 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴)) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
| 58 | 57 | anassrs 467 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
| 59 | 55, 58 | eqbrtrd 5165 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) |
| 60 | 53, 59 | pm2.61dan 813 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) |
| 61 | 60 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) |
| 62 | | reex 11246 |
. . . . . 6
⊢ ℝ
∈ V |
| 63 | 62 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
| 64 | | fvex 6919 |
. . . . . . 7
⊢ (𝐺‘𝑥) ∈ V |
| 65 | 36, 64 | ifex 4576 |
. . . . . 6
⊢ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) ∈ V |
| 66 | 65 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) ∈ V) |
| 67 | | fvexd 6921 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ V) |
| 68 | | eqidd 2738 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)))) |
| 69 | 22 | feqmptd 6977 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
| 70 | 63, 66, 67, 68, 69 | ofrfval2 7718 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥)) ≤ (𝐹‘𝑥))) |
| 71 | 61, 70 | mpbird 257 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) ∘r ≤ 𝐹) |
| 72 | | itg2ub 25768 |
. . 3
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 0, (𝐺‘𝑥))) ∘r ≤ 𝐹) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 0, (𝐺‘𝑥)))) ≤ (∫2‘𝐹)) |
| 73 | 22, 18, 71, 72 | syl3anc 1373 |
. 2
⊢ (𝜑 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 0, (𝐺‘𝑥)))) ≤ (∫2‘𝐹)) |
| 74 | 4, 21, 24, 45, 73 | xrletrd 13204 |
1
⊢ (𝜑 →
(∫1‘𝐺)
≤ (∫2‘𝐹)) |