MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2uba Structured version   Visualization version   GIF version

Theorem itg2uba 24919
Description: Approximate version of itg2ub 24909. If 𝐹 approximately dominates 𝐺, then 1𝐺 ≤ ∫2𝐹. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2uba.1 (𝜑𝐹:ℝ⟶(0[,]+∞))
itg2uba.2 (𝜑𝐺 ∈ dom ∫1)
itg2uba.3 (𝜑𝐴 ⊆ ℝ)
itg2uba.4 (𝜑 → (vol*‘𝐴) = 0)
itg2uba.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
Assertion
Ref Expression
itg2uba (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg2uba
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itg2uba.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
2 itg1cl 24860 . . . 4 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
31, 2syl 17 . . 3 (𝜑 → (∫1𝐺) ∈ ℝ)
43rexrd 11036 . 2 (𝜑 → (∫1𝐺) ∈ ℝ*)
5 itg2uba.3 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
6 itg2uba.4 . . . . . . 7 (𝜑 → (vol*‘𝐴) = 0)
7 nulmbl 24710 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol)
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝐴 ∈ dom vol)
9 cmmbl 24709 . . . . . 6 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
108, 9syl 17 . . . . 5 (𝜑 → (ℝ ∖ 𝐴) ∈ dom vol)
11 ifnot 4517 . . . . . . . 8 if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥𝐴, 0, (𝐺𝑥))
12 eldif 3902 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
1312baibr 537 . . . . . . . . 9 (𝑥 ∈ ℝ → (¬ 𝑥𝐴𝑥 ∈ (ℝ ∖ 𝐴)))
1413ifbid 4488 . . . . . . . 8 (𝑥 ∈ ℝ → if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1511, 14eqtr3id 2794 . . . . . . 7 (𝑥 ∈ ℝ → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1615mpteq2ia 5182 . . . . . 6 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1716i1fres 24881 . . . . 5 ((𝐺 ∈ dom ∫1 ∧ (ℝ ∖ 𝐴) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
181, 10, 17syl2anc 584 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
19 itg1cl 24860 . . . 4 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2018, 19syl 17 . . 3 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2120rexrd 11036 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ*)
22 itg2uba.1 . . 3 (𝜑𝐹:ℝ⟶(0[,]+∞))
23 itg2cl 24908 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
2422, 23syl 17 . 2 (𝜑 → (∫2𝐹) ∈ ℝ*)
25 i1ff 24851 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
261, 25syl 17 . . . . . 6 (𝜑𝐺:ℝ⟶ℝ)
27 eldifi 4066 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) → 𝑦 ∈ ℝ)
28 ffvelrn 6956 . . . . . 6 ((𝐺:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐺𝑦) ∈ ℝ)
2926, 27, 28syl2an 596 . . . . 5 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ∈ ℝ)
3029leidd 11552 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ (𝐺𝑦))
31 eldif 3902 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴))
32 eleq1w 2823 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
33 fveq2 6771 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
3432, 33ifbieq2d 4491 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑦𝐴, 0, (𝐺𝑦)))
35 eqid 2740 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))
36 c0ex 10980 . . . . . . . . 9 0 ∈ V
37 fvex 6784 . . . . . . . . 9 (𝐺𝑦) ∈ V
3836, 37ifex 4515 . . . . . . . 8 if(𝑦𝐴, 0, (𝐺𝑦)) ∈ V
3934, 35, 38fvmpt 6872 . . . . . . 7 (𝑦 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = if(𝑦𝐴, 0, (𝐺𝑦)))
40 iffalse 4474 . . . . . . 7 𝑦𝐴 → if(𝑦𝐴, 0, (𝐺𝑦)) = (𝐺𝑦))
4139, 40sylan9eq 2800 . . . . . 6 ((𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4231, 41sylbi 216 . . . . 5 (𝑦 ∈ (ℝ ∖ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4342adantl 482 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4430, 43breqtrrd 5107 . . 3 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦))
451, 5, 6, 18, 44itg1lea 24888 . 2 (𝜑 → (∫1𝐺) ≤ (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))))
46 iftrue 4471 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4746adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4822ffvelrnda 6958 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
49 elxrge0 13200 . . . . . . . . . 10 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5048, 49sylib 217 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5150simprd 496 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
5251adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
5347, 52eqbrtrd 5101 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
54 iffalse 4474 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
5554adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
56 itg2uba.5 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5712, 56sylan2br 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5857anassrs 468 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → (𝐺𝑥) ≤ (𝐹𝑥))
5955, 58eqbrtrd 5101 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6053, 59pm2.61dan 810 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6160ralrimiva 3110 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
62 reex 10973 . . . . . 6 ℝ ∈ V
6362a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
64 fvex 6784 . . . . . . 7 (𝐺𝑥) ∈ V
6536, 64ifex 4515 . . . . . 6 if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V
6665a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V)
67 fvexd 6786 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
68 eqidd 2741 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))))
6922feqmptd 6834 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
7063, 66, 67, 68, 69ofrfval2 7549 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥)))
7161, 70mpbird 256 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘r𝐹)
72 itg2ub 24909 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘r𝐹) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
7322, 18, 71, 72syl3anc 1370 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
744, 21, 24, 45, 73xrletrd 12907 1 (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  cdif 3889  wss 3892  ifcif 4465   class class class wbr 5079  cmpt 5162  dom cdm 5590  wf 6428  cfv 6432  (class class class)co 7272  r cofr 7527  cr 10881  0cc0 10882  +∞cpnf 11017  *cxr 11019  cle 11021  [,]cicc 13093  vol*covol 24637  volcvol 24638  1citg1 24790  2citg2 24791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-ofr 7529  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-er 8490  df-map 8609  df-pm 8610  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-dju 9670  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-n0 12245  df-z 12331  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-ioo 13094  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-fl 13523  df-seq 13733  df-exp 13794  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-clim 15208  df-sum 15409  df-rest 17144  df-topgen 17165  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-top 22054  df-topon 22071  df-bases 22107  df-cmp 22549  df-ovol 24639  df-vol 24640  df-mbf 24794  df-itg1 24795  df-itg2 24796
This theorem is referenced by:  itg2lea  24920  itg2split  24925
  Copyright terms: Public domain W3C validator