MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2uba Structured version   Visualization version   GIF version

Theorem itg2uba 24813
Description: Approximate version of itg2ub 24803. If 𝐹 approximately dominates 𝐺, then 1𝐺 ≤ ∫2𝐹. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2uba.1 (𝜑𝐹:ℝ⟶(0[,]+∞))
itg2uba.2 (𝜑𝐺 ∈ dom ∫1)
itg2uba.3 (𝜑𝐴 ⊆ ℝ)
itg2uba.4 (𝜑 → (vol*‘𝐴) = 0)
itg2uba.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
Assertion
Ref Expression
itg2uba (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg2uba
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itg2uba.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
2 itg1cl 24754 . . . 4 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
31, 2syl 17 . . 3 (𝜑 → (∫1𝐺) ∈ ℝ)
43rexrd 10956 . 2 (𝜑 → (∫1𝐺) ∈ ℝ*)
5 itg2uba.3 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
6 itg2uba.4 . . . . . . 7 (𝜑 → (vol*‘𝐴) = 0)
7 nulmbl 24604 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol)
85, 6, 7syl2anc 583 . . . . . 6 (𝜑𝐴 ∈ dom vol)
9 cmmbl 24603 . . . . . 6 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
108, 9syl 17 . . . . 5 (𝜑 → (ℝ ∖ 𝐴) ∈ dom vol)
11 ifnot 4508 . . . . . . . 8 if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥𝐴, 0, (𝐺𝑥))
12 eldif 3893 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
1312baibr 536 . . . . . . . . 9 (𝑥 ∈ ℝ → (¬ 𝑥𝐴𝑥 ∈ (ℝ ∖ 𝐴)))
1413ifbid 4479 . . . . . . . 8 (𝑥 ∈ ℝ → if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1511, 14eqtr3id 2793 . . . . . . 7 (𝑥 ∈ ℝ → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1615mpteq2ia 5173 . . . . . 6 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1716i1fres 24775 . . . . 5 ((𝐺 ∈ dom ∫1 ∧ (ℝ ∖ 𝐴) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
181, 10, 17syl2anc 583 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
19 itg1cl 24754 . . . 4 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2018, 19syl 17 . . 3 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2120rexrd 10956 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ*)
22 itg2uba.1 . . 3 (𝜑𝐹:ℝ⟶(0[,]+∞))
23 itg2cl 24802 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
2422, 23syl 17 . 2 (𝜑 → (∫2𝐹) ∈ ℝ*)
25 i1ff 24745 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
261, 25syl 17 . . . . . 6 (𝜑𝐺:ℝ⟶ℝ)
27 eldifi 4057 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) → 𝑦 ∈ ℝ)
28 ffvelrn 6941 . . . . . 6 ((𝐺:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐺𝑦) ∈ ℝ)
2926, 27, 28syl2an 595 . . . . 5 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ∈ ℝ)
3029leidd 11471 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ (𝐺𝑦))
31 eldif 3893 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴))
32 eleq1w 2821 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
33 fveq2 6756 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
3432, 33ifbieq2d 4482 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑦𝐴, 0, (𝐺𝑦)))
35 eqid 2738 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))
36 c0ex 10900 . . . . . . . . 9 0 ∈ V
37 fvex 6769 . . . . . . . . 9 (𝐺𝑦) ∈ V
3836, 37ifex 4506 . . . . . . . 8 if(𝑦𝐴, 0, (𝐺𝑦)) ∈ V
3934, 35, 38fvmpt 6857 . . . . . . 7 (𝑦 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = if(𝑦𝐴, 0, (𝐺𝑦)))
40 iffalse 4465 . . . . . . 7 𝑦𝐴 → if(𝑦𝐴, 0, (𝐺𝑦)) = (𝐺𝑦))
4139, 40sylan9eq 2799 . . . . . 6 ((𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4231, 41sylbi 216 . . . . 5 (𝑦 ∈ (ℝ ∖ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4342adantl 481 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4430, 43breqtrrd 5098 . . 3 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦))
451, 5, 6, 18, 44itg1lea 24782 . 2 (𝜑 → (∫1𝐺) ≤ (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))))
46 iftrue 4462 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4746adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4822ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
49 elxrge0 13118 . . . . . . . . . 10 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5048, 49sylib 217 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5150simprd 495 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
5251adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
5347, 52eqbrtrd 5092 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
54 iffalse 4465 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
5554adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
56 itg2uba.5 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5712, 56sylan2br 594 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5857anassrs 467 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → (𝐺𝑥) ≤ (𝐹𝑥))
5955, 58eqbrtrd 5092 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6053, 59pm2.61dan 809 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6160ralrimiva 3107 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
62 reex 10893 . . . . . 6 ℝ ∈ V
6362a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
64 fvex 6769 . . . . . . 7 (𝐺𝑥) ∈ V
6536, 64ifex 4506 . . . . . 6 if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V
6665a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V)
67 fvexd 6771 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
68 eqidd 2739 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))))
6922feqmptd 6819 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
7063, 66, 67, 68, 69ofrfval2 7532 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥)))
7161, 70mpbird 256 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘r𝐹)
72 itg2ub 24803 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘r𝐹) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
7322, 18, 71, 72syl3anc 1369 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
744, 21, 24, 45, 73xrletrd 12825 1 (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  r cofr 7510  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939  cle 10941  [,]cicc 13011  vol*covol 24531  volcvol 24532  1citg1 24684  2citg2 24685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690
This theorem is referenced by:  itg2lea  24814  itg2split  24819
  Copyright terms: Public domain W3C validator