MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2uba Structured version   Visualization version   GIF version

Theorem itg2uba 25696
Description: Approximate version of itg2ub 25686. If 𝐹 approximately dominates 𝐺, then 1𝐺 ≤ ∫2𝐹. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2uba.1 (𝜑𝐹:ℝ⟶(0[,]+∞))
itg2uba.2 (𝜑𝐺 ∈ dom ∫1)
itg2uba.3 (𝜑𝐴 ⊆ ℝ)
itg2uba.4 (𝜑 → (vol*‘𝐴) = 0)
itg2uba.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
Assertion
Ref Expression
itg2uba (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg2uba
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itg2uba.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
2 itg1cl 25638 . . . 4 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
31, 2syl 17 . . 3 (𝜑 → (∫1𝐺) ∈ ℝ)
43rexrd 11285 . 2 (𝜑 → (∫1𝐺) ∈ ℝ*)
5 itg2uba.3 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
6 itg2uba.4 . . . . . . 7 (𝜑 → (vol*‘𝐴) = 0)
7 nulmbl 25488 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol)
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝐴 ∈ dom vol)
9 cmmbl 25487 . . . . . 6 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
108, 9syl 17 . . . . 5 (𝜑 → (ℝ ∖ 𝐴) ∈ dom vol)
11 ifnot 4553 . . . . . . . 8 if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥𝐴, 0, (𝐺𝑥))
12 eldif 3936 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
1312baibr 536 . . . . . . . . 9 (𝑥 ∈ ℝ → (¬ 𝑥𝐴𝑥 ∈ (ℝ ∖ 𝐴)))
1413ifbid 4524 . . . . . . . 8 (𝑥 ∈ ℝ → if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1511, 14eqtr3id 2784 . . . . . . 7 (𝑥 ∈ ℝ → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1615mpteq2ia 5216 . . . . . 6 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1716i1fres 25658 . . . . 5 ((𝐺 ∈ dom ∫1 ∧ (ℝ ∖ 𝐴) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
181, 10, 17syl2anc 584 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
19 itg1cl 25638 . . . 4 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2018, 19syl 17 . . 3 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2120rexrd 11285 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ*)
22 itg2uba.1 . . 3 (𝜑𝐹:ℝ⟶(0[,]+∞))
23 itg2cl 25685 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
2422, 23syl 17 . 2 (𝜑 → (∫2𝐹) ∈ ℝ*)
25 i1ff 25629 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
261, 25syl 17 . . . . . 6 (𝜑𝐺:ℝ⟶ℝ)
27 eldifi 4106 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) → 𝑦 ∈ ℝ)
28 ffvelcdm 7071 . . . . . 6 ((𝐺:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐺𝑦) ∈ ℝ)
2926, 27, 28syl2an 596 . . . . 5 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ∈ ℝ)
3029leidd 11803 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ (𝐺𝑦))
31 eldif 3936 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴))
32 eleq1w 2817 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
33 fveq2 6876 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
3432, 33ifbieq2d 4527 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑦𝐴, 0, (𝐺𝑦)))
35 eqid 2735 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))
36 c0ex 11229 . . . . . . . . 9 0 ∈ V
37 fvex 6889 . . . . . . . . 9 (𝐺𝑦) ∈ V
3836, 37ifex 4551 . . . . . . . 8 if(𝑦𝐴, 0, (𝐺𝑦)) ∈ V
3934, 35, 38fvmpt 6986 . . . . . . 7 (𝑦 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = if(𝑦𝐴, 0, (𝐺𝑦)))
40 iffalse 4509 . . . . . . 7 𝑦𝐴 → if(𝑦𝐴, 0, (𝐺𝑦)) = (𝐺𝑦))
4139, 40sylan9eq 2790 . . . . . 6 ((𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4231, 41sylbi 217 . . . . 5 (𝑦 ∈ (ℝ ∖ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4342adantl 481 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4430, 43breqtrrd 5147 . . 3 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦))
451, 5, 6, 18, 44itg1lea 25665 . 2 (𝜑 → (∫1𝐺) ≤ (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))))
46 iftrue 4506 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4746adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4822ffvelcdmda 7074 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
49 elxrge0 13474 . . . . . . . . . 10 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5048, 49sylib 218 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5150simprd 495 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
5251adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
5347, 52eqbrtrd 5141 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
54 iffalse 4509 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
5554adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
56 itg2uba.5 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5712, 56sylan2br 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5857anassrs 467 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → (𝐺𝑥) ≤ (𝐹𝑥))
5955, 58eqbrtrd 5141 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6053, 59pm2.61dan 812 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6160ralrimiva 3132 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
62 reex 11220 . . . . . 6 ℝ ∈ V
6362a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
64 fvex 6889 . . . . . . 7 (𝐺𝑥) ∈ V
6536, 64ifex 4551 . . . . . 6 if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V
6665a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V)
67 fvexd 6891 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
68 eqidd 2736 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))))
6922feqmptd 6947 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
7063, 66, 67, 68, 69ofrfval2 7692 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥)))
7161, 70mpbird 257 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘r𝐹)
72 itg2ub 25686 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘r𝐹) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
7322, 18, 71, 72syl3anc 1373 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
744, 21, 24, 45, 73xrletrd 13178 1 (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cdif 3923  wss 3926  ifcif 4500   class class class wbr 5119  cmpt 5201  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  r cofr 7670  cr 11128  0cc0 11129  +∞cpnf 11266  *cxr 11268  cle 11270  [,]cicc 13365  vol*covol 25415  volcvol 25416  1citg1 25568  2citg2 25569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cmp 23325  df-ovol 25417  df-vol 25418  df-mbf 25572  df-itg1 25573  df-itg2 25574
This theorem is referenced by:  itg2lea  25697  itg2split  25702
  Copyright terms: Public domain W3C validator