Proof of Theorem itgaddnclem2
| Step | Hyp | Ref
| Expression |
| 1 | | itgaddnclem.1 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 2 | | max0sub 13238 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → (if(0
≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵) |
| 3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵) |
| 4 | | itgaddnclem.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| 5 | | max0sub 13238 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℝ → (if(0
≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶) |
| 7 | 3, 6 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) + (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0))) = (𝐵 + 𝐶)) |
| 8 | | 0re 11263 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 9 | | ifcl 4571 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) |
| 10 | 1, 8, 9 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) |
| 11 | 10 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℂ) |
| 12 | | ifcl 4571 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
| 13 | 4, 8, 12 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
| 14 | 13 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ) |
| 15 | 1 | renegcld 11690 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
| 16 | | ifcl 4571 |
. . . . . . . . . . 11
⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
| 17 | 15, 8, 16 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
| 18 | 17 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℂ) |
| 19 | 4 | renegcld 11690 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ∈ ℝ) |
| 20 | | ifcl 4571 |
. . . . . . . . . . 11
⊢ ((-𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ) |
| 21 | 19, 8, 20 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ) |
| 22 | 21 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ) |
| 23 | 11, 14, 18, 22 | addsub4d 11667 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) = ((if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) + (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)))) |
| 24 | 1, 4 | readdcld 11290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + 𝐶) ∈ ℝ) |
| 25 | | max0sub 13238 |
. . . . . . . . 9
⊢ ((𝐵 + 𝐶) ∈ ℝ → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = (𝐵 + 𝐶)) |
| 26 | 24, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = (𝐵 + 𝐶)) |
| 27 | 7, 23, 26 | 3eqtr4rd 2788 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))) |
| 28 | 24 | renegcld 11690 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(𝐵 + 𝐶) ∈ ℝ) |
| 29 | | ifcl 4571 |
. . . . . . . . . 10
⊢ ((-(𝐵 + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ -(𝐵 +
𝐶), -(𝐵 + 𝐶), 0) ∈ ℝ) |
| 30 | 28, 8, 29 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℝ) |
| 31 | 30 | recnd 11289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℂ) |
| 32 | 10, 13 | readdcld 11290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ) |
| 33 | 32 | recnd 11289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℂ) |
| 34 | | ifcl 4571 |
. . . . . . . . . 10
⊢ (((𝐵 + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℝ) |
| 35 | 24, 8, 34 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℝ) |
| 36 | 35 | recnd 11289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℂ) |
| 37 | 17, 21 | readdcld 11290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) ∈ ℝ) |
| 38 | 37 | recnd 11289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) ∈ ℂ) |
| 39 | 31, 33, 36, 38 | addsubeq4d 11671 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) ↔ (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))))) |
| 40 | 27, 39 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))) |
| 41 | 40 | itgeq2dv 25817 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) d𝑥 = ∫𝐴(if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) d𝑥) |
| 42 | | ibladdnc.2 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 43 | | ibladdnc.4 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 44 | | ibladdnc.m |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) |
| 45 | 1, 42, 4, 43, 44 | ibladdnc 37684 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈
𝐿1) |
| 46 | 24 | iblre 25829 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈
𝐿1))) |
| 47 | 45, 46 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈
𝐿1)) |
| 48 | 47 | simprd 495 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈
𝐿1) |
| 49 | 1 | iblre 25829 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈
𝐿1))) |
| 50 | 42, 49 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈
𝐿1)) |
| 51 | 50 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈
𝐿1) |
| 52 | 4 | iblre 25829 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈
𝐿1))) |
| 53 | 43, 52 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈
𝐿1)) |
| 54 | 53 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈
𝐿1) |
| 55 | | iblmbf 25802 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 56 | 42, 55 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 57 | | iblmbf 25802 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 58 | 43, 57 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 59 | 56, 1, 58, 4, 44 | mbfposadd 37674 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈ MblFn) |
| 60 | 10, 51, 13, 54, 59 | ibladdnc 37684 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈
𝐿1) |
| 61 | | max1 13227 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0)) |
| 62 | 8, 1, 61 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0)) |
| 63 | | max1 13227 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
| 64 | 8, 4, 63 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
| 65 | 10, 13, 62, 64 | addge0d 11839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
| 66 | 65 | iftrued 4533 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
| 67 | 66 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + if(0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)) = (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
| 68 | 67 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + if(0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))) |
| 69 | 24, 44 | mbfneg 25685 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(𝐵 + 𝐶)) ∈ MblFn) |
| 70 | 1 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 71 | 4 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 72 | 70, 71 | negdid 11633 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(𝐵 + 𝐶) = (-𝐵 + -𝐶)) |
| 73 | 72 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(𝐵 + 𝐶) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = ((-𝐵 + -𝐶) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
| 74 | 15 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℂ) |
| 75 | 19 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ∈ ℂ) |
| 76 | 74, 75, 11, 14 | add4d 11490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((-𝐵 + -𝐶) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = ((-𝐵 + if(0 ≤ 𝐵, 𝐵, 0)) + (-𝐶 + if(0 ≤ 𝐶, 𝐶, 0)))) |
| 77 | | negeq 11500 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 = 0 → -𝐵 = -0) |
| 78 | | neg0 11555 |
. . . . . . . . . . . . . . . 16
⊢ -0 =
0 |
| 79 | 77, 78 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = 0 → -𝐵 = 0) |
| 80 | | 0le0 12367 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≤
0 |
| 81 | 80, 79 | breqtrrid 5181 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 = 0 → 0 ≤ -𝐵) |
| 82 | 81 | iftrued 4533 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = 0 → if(0 ≤ -𝐵, -𝐵, 0) = -𝐵) |
| 83 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 = 0 → 𝐵 = 0) |
| 84 | 80, 83 | breqtrrid 5181 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 = 0 → 0 ≤ 𝐵) |
| 85 | 84 | iftrued 4533 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 = 0 → if(0 ≤ 𝐵, 𝐵, 0) = 𝐵) |
| 86 | 85, 83 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = 0 → if(0 ≤ 𝐵, 𝐵, 0) = 0) |
| 87 | 79, 86 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 = 0 → (-𝐵 + if(0 ≤ 𝐵, 𝐵, 0)) = (0 + 0)) |
| 88 | | 00id 11436 |
. . . . . . . . . . . . . . . 16
⊢ (0 + 0) =
0 |
| 89 | 87, 88 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = 0 → (-𝐵 + if(0 ≤ 𝐵, 𝐵, 0)) = 0) |
| 90 | 79, 82, 89 | 3eqtr4rd 2788 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = 0 → (-𝐵 + if(0 ≤ 𝐵, 𝐵, 0)) = if(0 ≤ -𝐵, -𝐵, 0)) |
| 91 | 90 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 = 0) → (-𝐵 + if(0 ≤ 𝐵, 𝐵, 0)) = if(0 ≤ -𝐵, -𝐵, 0)) |
| 92 | | ovif2 7532 |
. . . . . . . . . . . . . 14
⊢ (-𝐵 + if(0 ≤ 𝐵, 𝐵, 0)) = if(0 ≤ 𝐵, (-𝐵 + 𝐵), (-𝐵 + 0)) |
| 93 | 70 | negne0bd 11613 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≠ 0 ↔ -𝐵 ≠ 0)) |
| 94 | 93 | biimpa 476 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → -𝐵 ≠ 0) |
| 95 | 1 | le0neg2d 11835 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ -𝐵 ≤ 0)) |
| 96 | | leloe 11347 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → (-𝐵 ≤ 0
↔ (-𝐵 < 0 ∨
-𝐵 = 0))) |
| 97 | 15, 8, 96 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐵 ≤ 0 ↔ (-𝐵 < 0 ∨ -𝐵 = 0))) |
| 98 | 95, 97 | bitrd 279 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ (-𝐵 < 0 ∨ -𝐵 = 0))) |
| 99 | | df-ne 2941 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (-𝐵 ≠ 0 ↔ ¬ -𝐵 = 0) |
| 100 | | biorf 937 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
-𝐵 = 0 → (-𝐵 < 0 ↔ (-𝐵 = 0 ∨ -𝐵 < 0))) |
| 101 | 99, 100 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (-𝐵 ≠ 0 → (-𝐵 < 0 ↔ (-𝐵 = 0 ∨ -𝐵 < 0))) |
| 102 | | orcom 871 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-𝐵 = 0 ∨ -𝐵 < 0) ↔ (-𝐵 < 0 ∨ -𝐵 = 0)) |
| 103 | 101, 102 | bitr2di 288 |
. . . . . . . . . . . . . . . . . . 19
⊢ (-𝐵 ≠ 0 → ((-𝐵 < 0 ∨ -𝐵 = 0) ↔ -𝐵 < 0)) |
| 104 | 98, 103 | sylan9bb 509 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ -𝐵 ≠ 0) → (0 ≤ 𝐵 ↔ -𝐵 < 0)) |
| 105 | 94, 104 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (0 ≤ 𝐵 ↔ -𝐵 < 0)) |
| 106 | | ltnle 11340 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → (-𝐵 < 0
↔ ¬ 0 ≤ -𝐵)) |
| 107 | 15, 8, 106 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐵 < 0 ↔ ¬ 0 ≤ -𝐵)) |
| 108 | 107 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (-𝐵 < 0 ↔ ¬ 0 ≤ -𝐵)) |
| 109 | 105, 108 | bitrd 279 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (0 ≤ 𝐵 ↔ ¬ 0 ≤ -𝐵)) |
| 110 | 74, 70 | addcomd 11463 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐵 + 𝐵) = (𝐵 + -𝐵)) |
| 111 | 70 | negidd 11610 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + -𝐵) = 0) |
| 112 | 110, 111 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐵 + 𝐵) = 0) |
| 113 | 112 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (-𝐵 + 𝐵) = 0) |
| 114 | 74 | addridd 11461 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐵 + 0) = -𝐵) |
| 115 | 114 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (-𝐵 + 0) = -𝐵) |
| 116 | 109, 113,
115 | ifbieq12d 4554 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → if(0 ≤ 𝐵, (-𝐵 + 𝐵), (-𝐵 + 0)) = if(¬ 0 ≤ -𝐵, 0, -𝐵)) |
| 117 | | ifnot 4578 |
. . . . . . . . . . . . . . 15
⊢ if(¬
0 ≤ -𝐵, 0, -𝐵) = if(0 ≤ -𝐵, -𝐵, 0) |
| 118 | 116, 117 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → if(0 ≤ 𝐵, (-𝐵 + 𝐵), (-𝐵 + 0)) = if(0 ≤ -𝐵, -𝐵, 0)) |
| 119 | 92, 118 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (-𝐵 + if(0 ≤ 𝐵, 𝐵, 0)) = if(0 ≤ -𝐵, -𝐵, 0)) |
| 120 | 91, 119 | pm2.61dane 3029 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐵 + if(0 ≤ 𝐵, 𝐵, 0)) = if(0 ≤ -𝐵, -𝐵, 0)) |
| 121 | | negeq 11500 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 = 0 → -𝐶 = -0) |
| 122 | 121, 78 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 = 0 → -𝐶 = 0) |
| 123 | 80, 122 | breqtrrid 5181 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 = 0 → 0 ≤ -𝐶) |
| 124 | 123 | iftrued 4533 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 = 0 → if(0 ≤ -𝐶, -𝐶, 0) = -𝐶) |
| 125 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶 = 0 → 𝐶 = 0) |
| 126 | 80, 125 | breqtrrid 5181 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 = 0 → 0 ≤ 𝐶) |
| 127 | 126 | iftrued 4533 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 = 0 → if(0 ≤ 𝐶, 𝐶, 0) = 𝐶) |
| 128 | 127, 125 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 = 0 → if(0 ≤ 𝐶, 𝐶, 0) = 0) |
| 129 | 122, 128 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 = 0 → (-𝐶 + if(0 ≤ 𝐶, 𝐶, 0)) = (0 + 0)) |
| 130 | 129, 88 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 = 0 → (-𝐶 + if(0 ≤ 𝐶, 𝐶, 0)) = 0) |
| 131 | 122, 124,
130 | 3eqtr4rd 2788 |
. . . . . . . . . . . . . 14
⊢ (𝐶 = 0 → (-𝐶 + if(0 ≤ 𝐶, 𝐶, 0)) = if(0 ≤ -𝐶, -𝐶, 0)) |
| 132 | 131 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 = 0) → (-𝐶 + if(0 ≤ 𝐶, 𝐶, 0)) = if(0 ≤ -𝐶, -𝐶, 0)) |
| 133 | | ovif2 7532 |
. . . . . . . . . . . . . 14
⊢ (-𝐶 + if(0 ≤ 𝐶, 𝐶, 0)) = if(0 ≤ 𝐶, (-𝐶 + 𝐶), (-𝐶 + 0)) |
| 134 | 71 | negne0bd 11613 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≠ 0 ↔ -𝐶 ≠ 0)) |
| 135 | 134 | biimpa 476 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → -𝐶 ≠ 0) |
| 136 | 4 | le0neg2d 11835 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐶 ↔ -𝐶 ≤ 0)) |
| 137 | | leloe 11347 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((-𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → (-𝐶 ≤ 0
↔ (-𝐶 < 0 ∨
-𝐶 = 0))) |
| 138 | 19, 8, 137 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐶 ≤ 0 ↔ (-𝐶 < 0 ∨ -𝐶 = 0))) |
| 139 | 136, 138 | bitrd 279 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐶 ↔ (-𝐶 < 0 ∨ -𝐶 = 0))) |
| 140 | | df-ne 2941 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (-𝐶 ≠ 0 ↔ ¬ -𝐶 = 0) |
| 141 | | biorf 937 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
-𝐶 = 0 → (-𝐶 < 0 ↔ (-𝐶 = 0 ∨ -𝐶 < 0))) |
| 142 | 140, 141 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (-𝐶 ≠ 0 → (-𝐶 < 0 ↔ (-𝐶 = 0 ∨ -𝐶 < 0))) |
| 143 | | orcom 871 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-𝐶 = 0 ∨ -𝐶 < 0) ↔ (-𝐶 < 0 ∨ -𝐶 = 0)) |
| 144 | 142, 143 | bitr2di 288 |
. . . . . . . . . . . . . . . . . . 19
⊢ (-𝐶 ≠ 0 → ((-𝐶 < 0 ∨ -𝐶 = 0) ↔ -𝐶 < 0)) |
| 145 | 139, 144 | sylan9bb 509 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ -𝐶 ≠ 0) → (0 ≤ 𝐶 ↔ -𝐶 < 0)) |
| 146 | 135, 145 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (0 ≤ 𝐶 ↔ -𝐶 < 0)) |
| 147 | | ltnle 11340 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((-𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → (-𝐶 < 0
↔ ¬ 0 ≤ -𝐶)) |
| 148 | 19, 8, 147 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐶 < 0 ↔ ¬ 0 ≤ -𝐶)) |
| 149 | 148 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (-𝐶 < 0 ↔ ¬ 0 ≤ -𝐶)) |
| 150 | 146, 149 | bitrd 279 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (0 ≤ 𝐶 ↔ ¬ 0 ≤ -𝐶)) |
| 151 | 75, 71 | addcomd 11463 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐶 + 𝐶) = (𝐶 + -𝐶)) |
| 152 | 71 | negidd 11610 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 + -𝐶) = 0) |
| 153 | 151, 152 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐶 + 𝐶) = 0) |
| 154 | 153 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (-𝐶 + 𝐶) = 0) |
| 155 | 75 | addridd 11461 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐶 + 0) = -𝐶) |
| 156 | 155 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (-𝐶 + 0) = -𝐶) |
| 157 | 150, 154,
156 | ifbieq12d 4554 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → if(0 ≤ 𝐶, (-𝐶 + 𝐶), (-𝐶 + 0)) = if(¬ 0 ≤ -𝐶, 0, -𝐶)) |
| 158 | | ifnot 4578 |
. . . . . . . . . . . . . . 15
⊢ if(¬
0 ≤ -𝐶, 0, -𝐶) = if(0 ≤ -𝐶, -𝐶, 0) |
| 159 | 157, 158 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → if(0 ≤ 𝐶, (-𝐶 + 𝐶), (-𝐶 + 0)) = if(0 ≤ -𝐶, -𝐶, 0)) |
| 160 | 133, 159 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (-𝐶 + if(0 ≤ 𝐶, 𝐶, 0)) = if(0 ≤ -𝐶, -𝐶, 0)) |
| 161 | 132, 160 | pm2.61dane 3029 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-𝐶 + if(0 ≤ 𝐶, 𝐶, 0)) = if(0 ≤ -𝐶, -𝐶, 0)) |
| 162 | 120, 161 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((-𝐵 + if(0 ≤ 𝐵, 𝐵, 0)) + (-𝐶 + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) |
| 163 | 73, 76, 162 | 3eqtrd 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(𝐵 + 𝐶) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) |
| 164 | 163 | mpteq2dva 5242 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (-(𝐵 + 𝐶) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))) |
| 165 | 1, 56 | mbfneg 25685 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) |
| 166 | 4, 58 | mbfneg 25685 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐶) ∈ MblFn) |
| 167 | 72 | mpteq2dva 5242 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(𝐵 + 𝐶)) = (𝑥 ∈ 𝐴 ↦ (-𝐵 + -𝐶))) |
| 168 | 167, 69 | eqeltrrd 2842 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (-𝐵 + -𝐶)) ∈ MblFn) |
| 169 | 165, 15, 166, 19, 168 | mbfposadd 37674 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) ∈ MblFn) |
| 170 | 164, 169 | eqeltrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (-(𝐵 + 𝐶) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) ∈ MblFn) |
| 171 | 69, 28, 59, 32, 170 | mbfposadd 37674 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + if(0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) ∈ MblFn) |
| 172 | 68, 171 | eqeltrrd 2842 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) ∈ MblFn) |
| 173 | | max1 13227 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ -(𝐵 +
𝐶) ∈ ℝ) → 0
≤ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) |
| 174 | 8, 28, 173 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) |
| 175 | 30, 48, 32, 60, 172, 30, 32, 174, 65 | itgaddnclem1 37685 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) d𝑥 = (∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥)) |
| 176 | 47 | simpld 494 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈
𝐿1) |
| 177 | 50 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈
𝐿1) |
| 178 | 53 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈
𝐿1) |
| 179 | 17, 177, 21, 178, 169 | ibladdnc 37684 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) ∈
𝐿1) |
| 180 | | max1 13227 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝐵
∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
| 181 | 8, 15, 180 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
| 182 | | max1 13227 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝐶
∈ ℝ) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0)) |
| 183 | 8, 19, 182 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0)) |
| 184 | 17, 21, 181, 183 | addge0d 11839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) |
| 185 | 184 | iftrued 4533 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)), (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)), 0) = (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) |
| 186 | 185 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + if(0 ≤ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)), (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)), 0)) = (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))) |
| 187 | 186 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + if(0 ≤ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)), (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)), 0))) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))))) |
| 188 | 70, 71, 18, 22 | add4d 11490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 + 𝐶) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) = ((𝐵 + if(0 ≤ -𝐵, -𝐵, 0)) + (𝐶 + if(0 ≤ -𝐶, -𝐶, 0)))) |
| 189 | 82, 79 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = 0 → if(0 ≤ -𝐵, -𝐵, 0) = 0) |
| 190 | 83, 189 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 = 0 → (𝐵 + if(0 ≤ -𝐵, -𝐵, 0)) = (0 + 0)) |
| 191 | 190, 88 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = 0 → (𝐵 + if(0 ≤ -𝐵, -𝐵, 0)) = 0) |
| 192 | 83, 85, 191 | 3eqtr4rd 2788 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = 0 → (𝐵 + if(0 ≤ -𝐵, -𝐵, 0)) = if(0 ≤ 𝐵, 𝐵, 0)) |
| 193 | 192 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 = 0) → (𝐵 + if(0 ≤ -𝐵, -𝐵, 0)) = if(0 ≤ 𝐵, 𝐵, 0)) |
| 194 | | ovif2 7532 |
. . . . . . . . . . . . . 14
⊢ (𝐵 + if(0 ≤ -𝐵, -𝐵, 0)) = if(0 ≤ -𝐵, (𝐵 + -𝐵), (𝐵 + 0)) |
| 195 | 1 | le0neg1d 11834 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵)) |
| 196 | | leloe 11347 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐵 ≤ 0
↔ (𝐵 < 0 ∨ 𝐵 = 0))) |
| 197 | 1, 8, 196 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 0 ↔ (𝐵 < 0 ∨ 𝐵 = 0))) |
| 198 | 195, 197 | bitr3d 281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ -𝐵 ↔ (𝐵 < 0 ∨ 𝐵 = 0))) |
| 199 | | df-ne 2941 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ≠ 0 ↔ ¬ 𝐵 = 0) |
| 200 | | biorf 937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝐵 = 0 → (𝐵 < 0 ↔ (𝐵 = 0 ∨ 𝐵 < 0))) |
| 201 | 199, 200 | sylbi 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ≠ 0 → (𝐵 < 0 ↔ (𝐵 = 0 ∨ 𝐵 < 0))) |
| 202 | | orcom 871 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 = 0 ∨ 𝐵 < 0) ↔ (𝐵 < 0 ∨ 𝐵 = 0)) |
| 203 | 201, 202 | bitr2di 288 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ≠ 0 → ((𝐵 < 0 ∨ 𝐵 = 0) ↔ 𝐵 < 0)) |
| 204 | 198, 203 | sylan9bb 509 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (0 ≤ -𝐵 ↔ 𝐵 < 0)) |
| 205 | | ltnle 11340 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐵 < 0
↔ ¬ 0 ≤ 𝐵)) |
| 206 | 1, 8, 205 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 < 0 ↔ ¬ 0 ≤ 𝐵)) |
| 207 | 206 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (𝐵 < 0 ↔ ¬ 0 ≤ 𝐵)) |
| 208 | 204, 207 | bitrd 279 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (0 ≤ -𝐵 ↔ ¬ 0 ≤ 𝐵)) |
| 209 | 111 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (𝐵 + -𝐵) = 0) |
| 210 | 70 | addridd 11461 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + 0) = 𝐵) |
| 211 | 210 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (𝐵 + 0) = 𝐵) |
| 212 | 208, 209,
211 | ifbieq12d 4554 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → if(0 ≤ -𝐵, (𝐵 + -𝐵), (𝐵 + 0)) = if(¬ 0 ≤ 𝐵, 0, 𝐵)) |
| 213 | | ifnot 4578 |
. . . . . . . . . . . . . . 15
⊢ if(¬
0 ≤ 𝐵, 0, 𝐵) = if(0 ≤ 𝐵, 𝐵, 0) |
| 214 | 212, 213 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → if(0 ≤ -𝐵, (𝐵 + -𝐵), (𝐵 + 0)) = if(0 ≤ 𝐵, 𝐵, 0)) |
| 215 | 194, 214 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≠ 0) → (𝐵 + if(0 ≤ -𝐵, -𝐵, 0)) = if(0 ≤ 𝐵, 𝐵, 0)) |
| 216 | 193, 215 | pm2.61dane 3029 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + if(0 ≤ -𝐵, -𝐵, 0)) = if(0 ≤ 𝐵, 𝐵, 0)) |
| 217 | 124, 122 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 = 0 → if(0 ≤ -𝐶, -𝐶, 0) = 0) |
| 218 | 125, 217 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 = 0 → (𝐶 + if(0 ≤ -𝐶, -𝐶, 0)) = (0 + 0)) |
| 219 | 218, 88 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 = 0 → (𝐶 + if(0 ≤ -𝐶, -𝐶, 0)) = 0) |
| 220 | 125, 127,
219 | 3eqtr4rd 2788 |
. . . . . . . . . . . . . 14
⊢ (𝐶 = 0 → (𝐶 + if(0 ≤ -𝐶, -𝐶, 0)) = if(0 ≤ 𝐶, 𝐶, 0)) |
| 221 | 220 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 = 0) → (𝐶 + if(0 ≤ -𝐶, -𝐶, 0)) = if(0 ≤ 𝐶, 𝐶, 0)) |
| 222 | | ovif2 7532 |
. . . . . . . . . . . . . 14
⊢ (𝐶 + if(0 ≤ -𝐶, -𝐶, 0)) = if(0 ≤ -𝐶, (𝐶 + -𝐶), (𝐶 + 0)) |
| 223 | 4 | le0neg1d 11834 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ 0 ↔ 0 ≤ -𝐶)) |
| 224 | | leloe 11347 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐶 ≤ 0
↔ (𝐶 < 0 ∨ 𝐶 = 0))) |
| 225 | 4, 8, 224 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ 0 ↔ (𝐶 < 0 ∨ 𝐶 = 0))) |
| 226 | 223, 225 | bitr3d 281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ -𝐶 ↔ (𝐶 < 0 ∨ 𝐶 = 0))) |
| 227 | | df-ne 2941 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0) |
| 228 | | biorf 937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝐶 = 0 → (𝐶 < 0 ↔ (𝐶 = 0 ∨ 𝐶 < 0))) |
| 229 | 227, 228 | sylbi 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 ≠ 0 → (𝐶 < 0 ↔ (𝐶 = 0 ∨ 𝐶 < 0))) |
| 230 | | orcom 871 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 = 0 ∨ 𝐶 < 0) ↔ (𝐶 < 0 ∨ 𝐶 = 0)) |
| 231 | 229, 230 | bitr2di 288 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 ≠ 0 → ((𝐶 < 0 ∨ 𝐶 = 0) ↔ 𝐶 < 0)) |
| 232 | 226, 231 | sylan9bb 509 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (0 ≤ -𝐶 ↔ 𝐶 < 0)) |
| 233 | | ltnle 11340 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐶 < 0
↔ ¬ 0 ≤ 𝐶)) |
| 234 | 4, 8, 233 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 < 0 ↔ ¬ 0 ≤ 𝐶)) |
| 235 | 234 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (𝐶 < 0 ↔ ¬ 0 ≤ 𝐶)) |
| 236 | 232, 235 | bitrd 279 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (0 ≤ -𝐶 ↔ ¬ 0 ≤ 𝐶)) |
| 237 | 152 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (𝐶 + -𝐶) = 0) |
| 238 | 71 | addridd 11461 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 + 0) = 𝐶) |
| 239 | 238 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (𝐶 + 0) = 𝐶) |
| 240 | 236, 237,
239 | ifbieq12d 4554 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → if(0 ≤ -𝐶, (𝐶 + -𝐶), (𝐶 + 0)) = if(¬ 0 ≤ 𝐶, 0, 𝐶)) |
| 241 | | ifnot 4578 |
. . . . . . . . . . . . . . 15
⊢ if(¬
0 ≤ 𝐶, 0, 𝐶) = if(0 ≤ 𝐶, 𝐶, 0) |
| 242 | 240, 241 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → if(0 ≤ -𝐶, (𝐶 + -𝐶), (𝐶 + 0)) = if(0 ≤ 𝐶, 𝐶, 0)) |
| 243 | 222, 242 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ≠ 0) → (𝐶 + if(0 ≤ -𝐶, -𝐶, 0)) = if(0 ≤ 𝐶, 𝐶, 0)) |
| 244 | 221, 243 | pm2.61dane 3029 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 + if(0 ≤ -𝐶, -𝐶, 0)) = if(0 ≤ 𝐶, 𝐶, 0)) |
| 245 | 216, 244 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 + if(0 ≤ -𝐵, -𝐵, 0)) + (𝐶 + if(0 ≤ -𝐶, -𝐶, 0))) = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
| 246 | 188, 245 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 + 𝐶) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
| 247 | 246 | mpteq2dva 5242 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐵 + 𝐶) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
| 248 | 247, 59 | eqeltrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐵 + 𝐶) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))) ∈ MblFn) |
| 249 | 44, 24, 169, 37, 248 | mbfposadd 37674 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + if(0 ≤ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)), (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)), 0))) ∈ MblFn) |
| 250 | 187, 249 | eqeltrrd 2842 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))) ∈ MblFn) |
| 251 | | max1 13227 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ (𝐵 +
𝐶) ∈ ℝ) → 0
≤ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) |
| 252 | 8, 24, 251 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) |
| 253 | 35, 176, 37, 179, 250, 35, 37, 252, 184 | itgaddnclem1 37685 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) d𝑥 = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥)) |
| 254 | 41, 175, 253 | 3eqtr3d 2785 |
. . . 4
⊢ (𝜑 → (∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥) = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥)) |
| 255 | 30, 48 | itgcl 25819 |
. . . . 5
⊢ (𝜑 → ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 ∈ ℂ) |
| 256 | 10, 51, 13, 54, 59, 10, 13, 62, 64 | itgaddnclem1 37685 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥)) |
| 257 | 10, 51 | itgcl 25819 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 ∈ ℂ) |
| 258 | 13, 54 | itgcl 25819 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 ∈ ℂ) |
| 259 | 257, 258 | addcld 11280 |
. . . . . 6
⊢ (𝜑 → (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) ∈ ℂ) |
| 260 | 256, 259 | eqeltrd 2841 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 ∈ ℂ) |
| 261 | 35, 176 | itgcl 25819 |
. . . . 5
⊢ (𝜑 → ∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 ∈ ℂ) |
| 262 | 17, 177, 21, 178, 169, 17, 21, 181, 183 | itgaddnclem1 37685 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥 = (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)) |
| 263 | 17, 177 | itgcl 25819 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 ∈ ℂ) |
| 264 | 21, 178 | itgcl 25819 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥 ∈ ℂ) |
| 265 | 263, 264 | addcld 11280 |
. . . . . 6
⊢ (𝜑 → (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥) ∈ ℂ) |
| 266 | 262, 265 | eqeltrd 2841 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥 ∈ ℂ) |
| 267 | 255, 260,
261, 266 | addsubeq4d 11671 |
. . . 4
⊢ (𝜑 → ((∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥) = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥) ↔ (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥))) |
| 268 | 254, 267 | mpbid 232 |
. . 3
⊢ (𝜑 → (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥)) |
| 269 | 256, 262 | oveq12d 7449 |
. . 3
⊢ (𝜑 → (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) − (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))) |
| 270 | 257, 258,
263, 264 | addsub4d 11667 |
. . 3
⊢ (𝜑 → ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) − (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))) |
| 271 | 268, 269,
270 | 3eqtrd 2781 |
. 2
⊢ (𝜑 → (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))) |
| 272 | 24, 45 | itgreval 25832 |
. 2
⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥)) |
| 273 | 1, 42 | itgreval 25832 |
. . 3
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) |
| 274 | 4, 43 | itgreval 25832 |
. . 3
⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)) |
| 275 | 273, 274 | oveq12d 7449 |
. 2
⊢ (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))) |
| 276 | 271, 272,
275 | 3eqtr4d 2787 |
1
⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) |