MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppsnop Structured version   Visualization version   GIF version

Theorem suppsnop 8159
Description: The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019.)
Hypothesis
Ref Expression
suppsnop.f 𝐹 = {⟨𝑋, 𝑌⟩}
Assertion
Ref Expression
suppsnop ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋}))

Proof of Theorem suppsnop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 f1osng 6871 . . . . . . 7 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
2 f1of 6830 . . . . . . 7 ({⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌} → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
31, 2syl 17 . . . . . 6 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
433adant3 1132 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
5 suppsnop.f . . . . . 6 𝐹 = {⟨𝑋, 𝑌⟩}
65feq1i 6705 . . . . 5 (𝐹:{𝑋}⟶{𝑌} ↔ {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
74, 6sylibr 233 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹:{𝑋}⟶{𝑌})
8 snex 5430 . . . 4 {𝑋} ∈ V
9 fex 7224 . . . 4 ((𝐹:{𝑋}⟶{𝑌} ∧ {𝑋} ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 586 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹 ∈ V)
11 simp3 1138 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑍𝑈)
12 suppval 8144 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
1310, 11, 12syl2anc 584 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
147fdmd 6725 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → dom 𝐹 = {𝑋})
1514rabeqdv 3447 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
16 sneq 4637 . . . . . 6 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1716imaeq2d 6057 . . . . 5 (𝑥 = 𝑋 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑋}))
1817neeq1d 3000 . . . 4 (𝑥 = 𝑋 → ((𝐹 “ {𝑥}) ≠ {𝑍} ↔ (𝐹 “ {𝑋}) ≠ {𝑍}))
1918rabsnif 4726 . . 3 {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅)
2015, 19eqtrdi 2788 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅))
217ffnd 6715 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹 Fn {𝑋})
22 snidg 4661 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
23223ad2ant1 1133 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑋 ∈ {𝑋})
24 fnsnfv 6967 . . . . . . . 8 ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
2524eqcomd 2738 . . . . . . 7 ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → (𝐹 “ {𝑋}) = {(𝐹𝑋)})
2621, 23, 25syl2anc 584 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 “ {𝑋}) = {(𝐹𝑋)})
2726neeq1d 3000 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ {(𝐹𝑋)} ≠ {𝑍}))
285fveq1i 6889 . . . . . . . 8 (𝐹𝑋) = ({⟨𝑋, 𝑌⟩}‘𝑋)
29 fvsng 7174 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
30293adant3 1132 . . . . . . . 8 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
3128, 30eqtrid 2784 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹𝑋) = 𝑌)
3231sneqd 4639 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {(𝐹𝑋)} = {𝑌})
3332neeq1d 3000 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({(𝐹𝑋)} ≠ {𝑍} ↔ {𝑌} ≠ {𝑍}))
34 sneqbg 4843 . . . . . . 7 (𝑌𝑊 → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍))
35343ad2ant2 1134 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍))
3635necon3abid 2977 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({𝑌} ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍))
3727, 33, 363bitrd 304 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍))
3837ifbid 4550 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(¬ 𝑌 = 𝑍, {𝑋}, ∅))
39 ifnot 4579 . . 3 if(¬ 𝑌 = 𝑍, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋})
4038, 39eqtrdi 2788 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋}))
4113, 20, 403eqtrd 2776 1 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  {crab 3432  Vcvv 3474  c0 4321  ifcif 4527  {csn 4627  cop 4633  dom cdm 5675  cima 5678   Fn wfn 6535  wf 6536  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405   supp csupp 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-supp 8143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator