| Step | Hyp | Ref
| Expression |
| 1 | | f1osng 6889 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) |
| 2 | | f1of 6848 |
. . . . . . 7
⊢
({〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌} → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
| 4 | 3 | 3adant3 1133 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
| 5 | | suppsnop.f |
. . . . . 6
⊢ 𝐹 = {〈𝑋, 𝑌〉} |
| 6 | 5 | feq1i 6727 |
. . . . 5
⊢ (𝐹:{𝑋}⟶{𝑌} ↔ {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
| 7 | 4, 6 | sylibr 234 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝐹:{𝑋}⟶{𝑌}) |
| 8 | | snex 5436 |
. . . 4
⊢ {𝑋} ∈ V |
| 9 | | fex 7246 |
. . . 4
⊢ ((𝐹:{𝑋}⟶{𝑌} ∧ {𝑋} ∈ V) → 𝐹 ∈ V) |
| 10 | 7, 8, 9 | sylancl 586 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝐹 ∈ V) |
| 11 | | simp3 1139 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑍 ∈ 𝑈) |
| 12 | | suppval 8187 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}}) |
| 13 | 10, 11, 12 | syl2anc 584 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}}) |
| 14 | 7 | fdmd 6746 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → dom 𝐹 = {𝑋}) |
| 15 | 14 | rabeqdv 3452 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}}) |
| 16 | | sneq 4636 |
. . . . . 6
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
| 17 | 16 | imaeq2d 6078 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑋})) |
| 18 | 17 | neeq1d 3000 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝐹 “ {𝑥}) ≠ {𝑍} ↔ (𝐹 “ {𝑋}) ≠ {𝑍})) |
| 19 | 18 | rabsnif 4723 |
. . 3
⊢ {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) |
| 20 | 15, 19 | eqtrdi 2793 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅)) |
| 21 | 7 | ffnd 6737 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝐹 Fn {𝑋}) |
| 22 | | snidg 4660 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) |
| 23 | 22 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑋 ∈ {𝑋}) |
| 24 | | fnsnfv 6988 |
. . . . . . . 8
⊢ ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → {(𝐹‘𝑋)} = (𝐹 “ {𝑋})) |
| 25 | 24 | eqcomd 2743 |
. . . . . . 7
⊢ ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → (𝐹 “ {𝑋}) = {(𝐹‘𝑋)}) |
| 26 | 21, 23, 25 | syl2anc 584 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹 “ {𝑋}) = {(𝐹‘𝑋)}) |
| 27 | 26 | neeq1d 3000 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ {(𝐹‘𝑋)} ≠ {𝑍})) |
| 28 | 5 | fveq1i 6907 |
. . . . . . . 8
⊢ (𝐹‘𝑋) = ({〈𝑋, 𝑌〉}‘𝑋) |
| 29 | | fvsng 7200 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ({〈𝑋, 𝑌〉}‘𝑋) = 𝑌) |
| 30 | 29 | 3adant3 1133 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉}‘𝑋) = 𝑌) |
| 31 | 28, 30 | eqtrid 2789 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹‘𝑋) = 𝑌) |
| 32 | 31 | sneqd 4638 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {(𝐹‘𝑋)} = {𝑌}) |
| 33 | 32 | neeq1d 3000 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({(𝐹‘𝑋)} ≠ {𝑍} ↔ {𝑌} ≠ {𝑍})) |
| 34 | | sneqbg 4843 |
. . . . . . 7
⊢ (𝑌 ∈ 𝑊 → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍)) |
| 35 | 34 | 3ad2ant2 1135 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍)) |
| 36 | 35 | necon3abid 2977 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({𝑌} ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍)) |
| 37 | 27, 33, 36 | 3bitrd 305 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍)) |
| 38 | 37 | ifbid 4549 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(¬ 𝑌 = 𝑍, {𝑋}, ∅)) |
| 39 | | ifnot 4578 |
. . 3
⊢ if(¬
𝑌 = 𝑍, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋}) |
| 40 | 38, 39 | eqtrdi 2793 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋})) |
| 41 | 13, 20, 40 | 3eqtrd 2781 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋})) |