MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppsnop Structured version   Visualization version   GIF version

Theorem suppsnop 8219
Description: The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019.)
Hypothesis
Ref Expression
suppsnop.f 𝐹 = {⟨𝑋, 𝑌⟩}
Assertion
Ref Expression
suppsnop ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋}))

Proof of Theorem suppsnop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 f1osng 6903 . . . . . . 7 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
2 f1of 6862 . . . . . . 7 ({⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌} → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
31, 2syl 17 . . . . . 6 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
433adant3 1132 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
5 suppsnop.f . . . . . 6 𝐹 = {⟨𝑋, 𝑌⟩}
65feq1i 6738 . . . . 5 (𝐹:{𝑋}⟶{𝑌} ↔ {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
74, 6sylibr 234 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹:{𝑋}⟶{𝑌})
8 snex 5451 . . . 4 {𝑋} ∈ V
9 fex 7263 . . . 4 ((𝐹:{𝑋}⟶{𝑌} ∧ {𝑋} ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 585 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹 ∈ V)
11 simp3 1138 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑍𝑈)
12 suppval 8203 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
1310, 11, 12syl2anc 583 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
147fdmd 6757 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → dom 𝐹 = {𝑋})
1514rabeqdv 3459 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
16 sneq 4658 . . . . . 6 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1716imaeq2d 6089 . . . . 5 (𝑥 = 𝑋 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑋}))
1817neeq1d 3006 . . . 4 (𝑥 = 𝑋 → ((𝐹 “ {𝑥}) ≠ {𝑍} ↔ (𝐹 “ {𝑋}) ≠ {𝑍}))
1918rabsnif 4748 . . 3 {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅)
2015, 19eqtrdi 2796 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅))
217ffnd 6748 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹 Fn {𝑋})
22 snidg 4682 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
23223ad2ant1 1133 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑋 ∈ {𝑋})
24 fnsnfv 7001 . . . . . . . 8 ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
2524eqcomd 2746 . . . . . . 7 ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → (𝐹 “ {𝑋}) = {(𝐹𝑋)})
2621, 23, 25syl2anc 583 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 “ {𝑋}) = {(𝐹𝑋)})
2726neeq1d 3006 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ {(𝐹𝑋)} ≠ {𝑍}))
285fveq1i 6921 . . . . . . . 8 (𝐹𝑋) = ({⟨𝑋, 𝑌⟩}‘𝑋)
29 fvsng 7214 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
30293adant3 1132 . . . . . . . 8 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
3128, 30eqtrid 2792 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹𝑋) = 𝑌)
3231sneqd 4660 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {(𝐹𝑋)} = {𝑌})
3332neeq1d 3006 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({(𝐹𝑋)} ≠ {𝑍} ↔ {𝑌} ≠ {𝑍}))
34 sneqbg 4868 . . . . . . 7 (𝑌𝑊 → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍))
35343ad2ant2 1134 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍))
3635necon3abid 2983 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({𝑌} ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍))
3727, 33, 363bitrd 305 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍))
3837ifbid 4571 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(¬ 𝑌 = 𝑍, {𝑋}, ∅))
39 ifnot 4600 . . 3 if(¬ 𝑌 = 𝑍, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋})
4038, 39eqtrdi 2796 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋}))
4113, 20, 403eqtrd 2784 1 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  c0 4352  ifcif 4548  {csn 4648  cop 4654  dom cdm 5700  cima 5703   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator