Step | Hyp | Ref
| Expression |
1 | | f1osng 6642 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) |
2 | | f1of 6602 |
. . . . . . 7
⊢
({〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌} → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
4 | 3 | 3adant3 1129 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
5 | | suppsnop.f |
. . . . . 6
⊢ 𝐹 = {〈𝑋, 𝑌〉} |
6 | 5 | feq1i 6489 |
. . . . 5
⊢ (𝐹:{𝑋}⟶{𝑌} ↔ {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
7 | 4, 6 | sylibr 237 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝐹:{𝑋}⟶{𝑌}) |
8 | | snex 5300 |
. . . 4
⊢ {𝑋} ∈ V |
9 | | fex 6980 |
. . . 4
⊢ ((𝐹:{𝑋}⟶{𝑌} ∧ {𝑋} ∈ V) → 𝐹 ∈ V) |
10 | 7, 8, 9 | sylancl 589 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝐹 ∈ V) |
11 | | simp3 1135 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑍 ∈ 𝑈) |
12 | | suppval 7837 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}}) |
13 | 10, 11, 12 | syl2anc 587 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}}) |
14 | 7 | fdmd 6508 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → dom 𝐹 = {𝑋}) |
15 | 14 | rabeqdv 3397 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}}) |
16 | | sneq 4532 |
. . . . . 6
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
17 | 16 | imaeq2d 5901 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑋})) |
18 | 17 | neeq1d 3010 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝐹 “ {𝑥}) ≠ {𝑍} ↔ (𝐹 “ {𝑋}) ≠ {𝑍})) |
19 | 18 | rabsnif 4616 |
. . 3
⊢ {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) |
20 | 15, 19 | eqtrdi 2809 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅)) |
21 | 7 | ffnd 6499 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝐹 Fn {𝑋}) |
22 | | snidg 4556 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) |
23 | 22 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑋 ∈ {𝑋}) |
24 | | fnsnfv 6731 |
. . . . . . . 8
⊢ ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → {(𝐹‘𝑋)} = (𝐹 “ {𝑋})) |
25 | 24 | eqcomd 2764 |
. . . . . . 7
⊢ ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → (𝐹 “ {𝑋}) = {(𝐹‘𝑋)}) |
26 | 21, 23, 25 | syl2anc 587 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹 “ {𝑋}) = {(𝐹‘𝑋)}) |
27 | 26 | neeq1d 3010 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ {(𝐹‘𝑋)} ≠ {𝑍})) |
28 | 5 | fveq1i 6659 |
. . . . . . . 8
⊢ (𝐹‘𝑋) = ({〈𝑋, 𝑌〉}‘𝑋) |
29 | | fvsng 6933 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ({〈𝑋, 𝑌〉}‘𝑋) = 𝑌) |
30 | 29 | 3adant3 1129 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉}‘𝑋) = 𝑌) |
31 | 28, 30 | syl5eq 2805 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹‘𝑋) = 𝑌) |
32 | 31 | sneqd 4534 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {(𝐹‘𝑋)} = {𝑌}) |
33 | 32 | neeq1d 3010 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({(𝐹‘𝑋)} ≠ {𝑍} ↔ {𝑌} ≠ {𝑍})) |
34 | | sneqbg 4731 |
. . . . . . 7
⊢ (𝑌 ∈ 𝑊 → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍)) |
35 | 34 | 3ad2ant2 1131 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍)) |
36 | 35 | necon3abid 2987 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({𝑌} ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍)) |
37 | 27, 33, 36 | 3bitrd 308 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍)) |
38 | 37 | ifbid 4443 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(¬ 𝑌 = 𝑍, {𝑋}, ∅)) |
39 | | ifnot 4472 |
. . 3
⊢ if(¬
𝑌 = 𝑍, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋}) |
40 | 38, 39 | eqtrdi 2809 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋})) |
41 | 13, 20, 40 | 3eqtrd 2797 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋})) |