Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimageiingt Structured version   Visualization version   GIF version

Theorem preimageiingt 44144
Description: A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimageiingt.x 𝑥𝜑
preimageiingt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimageiingt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimageiingt (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimageiingt
StepHypRef Expression
1 preimageiingt.x . . . 4 𝑥𝜑
2 simpllr 772 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimageiingt.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
43adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
5 nnrecre 11945 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
65adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
74, 6resubcld 11333 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ)
87rexrd 10956 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
98ad4ant14 748 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
103rexrd 10956 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ*)
1110ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
12 preimageiingt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
1312ad2antrr 722 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
14 nnrp 12670 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
15 rpreccl 12685 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
184, 17ltsubrpd 12733 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
1918ad4ant14 748 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
20 simplr 765 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶𝐵)
219, 11, 13, 19, 20xrltletrd 12824 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐵)
222, 21jca 511 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
23 rabid 3304 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
2422, 23sylibr 233 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2524ralrimiva 3107 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
26 vex 3426 . . . . . . . 8 𝑥 ∈ V
27 eliin 4926 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2925, 28sylibr 233 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
3029ex 412 . . . . 5 ((𝜑𝑥𝐴) → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3130ex 412 . . . 4 (𝜑 → (𝑥𝐴 → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})))
321, 31ralrimi 3139 . . 3 (𝜑 → ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
33 nfcv 2906 . . . . 5 𝑥
34 nfrab1 3310 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3533, 34nfiin 4952 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3635rabssf 42557 . . 3 ({𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3732, 36sylibr 233 . 2 (𝜑 → {𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
38 nnn0 42807 . . . . 5 ℕ ≠ ∅
39 iinrab 4994 . . . . 5 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
4038, 39ax-mp 5 . . . 4 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵}
4140a1i 11 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
428ad4ant13 747 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
4312ad2antrr 722 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
44 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) < 𝐵)
4542, 43, 44xrltled 12813 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ≤ 𝐵)
4645ex 412 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝐶 − (1 / 𝑛)) < 𝐵 → (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4746ralimdva 3102 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵 → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4847imp 406 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵)
49 nfv 1918 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
50 nfra1 3142 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵
5149, 50nfan 1903 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵)
523ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶 ∈ ℝ)
5312adantr 480 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
5451, 52, 53xrralrecnnge 42820 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶𝐵 ↔ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
5548, 54mpbird 256 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶𝐵)
5655ex 412 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
5756ex 412 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵)))
581, 57ralrimi 3139 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
59 ss2rab 4000 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
6058, 59sylibr 233 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6141, 60eqsstrd 3955 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6237, 61eqssd 3934 1 (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  wss 3883  c0 4253   ciin 4922   class class class wbr 5070  (class class class)co 7255  cr 10801  1c1 10803  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fl 13440
This theorem is referenced by:  salpreimagtge  44148
  Copyright terms: Public domain W3C validator