Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimageiingt Structured version   Visualization version   GIF version

Theorem preimageiingt 46641
Description: A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimageiingt.x 𝑥𝜑
preimageiingt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimageiingt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimageiingt (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimageiingt
StepHypRef Expression
1 preimageiingt.x . . . 4 𝑥𝜑
2 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimageiingt.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
43adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
5 nnrecre 12335 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
65adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
74, 6resubcld 11718 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ)
87rexrd 11340 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
98ad4ant14 751 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
103rexrd 11340 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ*)
1110ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
12 preimageiingt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
1312ad2antrr 725 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
14 nnrp 13068 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
15 rpreccl 13083 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
184, 17ltsubrpd 13131 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
1918ad4ant14 751 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
20 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶𝐵)
219, 11, 13, 19, 20xrltletrd 13223 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐵)
222, 21jca 511 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
23 rabid 3465 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
2422, 23sylibr 234 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2524ralrimiva 3152 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
26 vex 3492 . . . . . . . 8 𝑥 ∈ V
27 eliin 5020 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2925, 28sylibr 234 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
3029ex 412 . . . . 5 ((𝜑𝑥𝐴) → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3130ex 412 . . . 4 (𝜑 → (𝑥𝐴 → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})))
321, 31ralrimi 3263 . . 3 (𝜑 → ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
33 nfcv 2908 . . . . 5 𝑥
34 nfrab1 3464 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3533, 34nfiin 5047 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3635rabssf 45021 . . 3 ({𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3732, 36sylibr 234 . 2 (𝜑 → {𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
38 nnn0 45293 . . . . 5 ℕ ≠ ∅
39 iinrab 5092 . . . . 5 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
4038, 39ax-mp 5 . . . 4 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵}
4140a1i 11 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
428ad4ant13 750 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
4312ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
44 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) < 𝐵)
4542, 43, 44xrltled 13212 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ≤ 𝐵)
4645ex 412 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝐶 − (1 / 𝑛)) < 𝐵 → (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4746ralimdva 3173 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵 → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4847imp 406 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵)
49 nfv 1913 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
50 nfra1 3290 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵
5149, 50nfan 1898 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵)
523ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶 ∈ ℝ)
5312adantr 480 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
5451, 52, 53xrralrecnnge 45305 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶𝐵 ↔ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
5548, 54mpbird 257 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶𝐵)
5655ex 412 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
5756ex 412 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵)))
581, 57ralrimi 3263 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
59 ss2rab 4094 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
6058, 59sylibr 234 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6141, 60eqsstrd 4047 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6237, 61eqssd 4026 1 (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  wss 3976  c0 4352   ciin 5016   class class class wbr 5166  (class class class)co 7448  cr 11183  1c1 11185  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fl 13843
This theorem is referenced by:  salpreimagtge  46646
  Copyright terms: Public domain W3C validator