Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimageiingt Structured version   Visualization version   GIF version

Theorem preimageiingt 44951
Description: A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimageiingt.x 𝑥𝜑
preimageiingt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimageiingt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimageiingt (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimageiingt
StepHypRef Expression
1 preimageiingt.x . . . 4 𝑥𝜑
2 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimageiingt.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
43adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
5 nnrecre 12195 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
65adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
74, 6resubcld 11583 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ)
87rexrd 11205 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
98ad4ant14 750 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
103rexrd 11205 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ*)
1110ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
12 preimageiingt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
1312ad2antrr 724 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
14 nnrp 12926 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
15 rpreccl 12941 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
184, 17ltsubrpd 12989 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
1918ad4ant14 750 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
20 simplr 767 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶𝐵)
219, 11, 13, 19, 20xrltletrd 13080 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐵)
222, 21jca 512 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
23 rabid 3427 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
2422, 23sylibr 233 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2524ralrimiva 3143 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
26 vex 3449 . . . . . . . 8 𝑥 ∈ V
27 eliin 4959 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2925, 28sylibr 233 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
3029ex 413 . . . . 5 ((𝜑𝑥𝐴) → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3130ex 413 . . . 4 (𝜑 → (𝑥𝐴 → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})))
321, 31ralrimi 3240 . . 3 (𝜑 → ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
33 nfcv 2907 . . . . 5 𝑥
34 nfrab1 3426 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3533, 34nfiin 4985 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3635rabssf 43319 . . 3 ({𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3732, 36sylibr 233 . 2 (𝜑 → {𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
38 nnn0 43602 . . . . 5 ℕ ≠ ∅
39 iinrab 5029 . . . . 5 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
4038, 39ax-mp 5 . . . 4 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵}
4140a1i 11 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
428ad4ant13 749 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
4312ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
44 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) < 𝐵)
4542, 43, 44xrltled 13069 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ≤ 𝐵)
4645ex 413 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝐶 − (1 / 𝑛)) < 𝐵 → (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4746ralimdva 3164 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵 → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4847imp 407 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵)
49 nfv 1917 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
50 nfra1 3267 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵
5149, 50nfan 1902 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵)
523ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶 ∈ ℝ)
5312adantr 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
5451, 52, 53xrralrecnnge 43615 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶𝐵 ↔ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
5548, 54mpbird 256 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶𝐵)
5655ex 413 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
5756ex 413 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵)))
581, 57ralrimi 3240 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
59 ss2rab 4028 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
6058, 59sylibr 233 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6141, 60eqsstrd 3982 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6237, 61eqssd 3961 1 (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wne 2943  wral 3064  {crab 3407  Vcvv 3445  wss 3910  c0 4282   ciin 4955   class class class wbr 5105  (class class class)co 7357  cr 11050  1c1 11052  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  +crp 12915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fl 13697
This theorem is referenced by:  salpreimagtge  44956
  Copyright terms: Public domain W3C validator