Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimageiingt Structured version   Visualization version   GIF version

Theorem preimageiingt 45047
Description: A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimageiingt.x 𝑥𝜑
preimageiingt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimageiingt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimageiingt (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimageiingt
StepHypRef Expression
1 preimageiingt.x . . . 4 𝑥𝜑
2 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimageiingt.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
43adantr 482 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
5 nnrecre 12200 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
65adantl 483 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
74, 6resubcld 11588 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ)
87rexrd 11210 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
98ad4ant14 751 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
103rexrd 11210 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ*)
1110ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
12 preimageiingt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
1312ad2antrr 725 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
14 nnrp 12931 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
15 rpreccl 12946 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 483 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
184, 17ltsubrpd 12994 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
1918ad4ant14 751 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
20 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶𝐵)
219, 11, 13, 19, 20xrltletrd 13086 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐵)
222, 21jca 513 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
23 rabid 3426 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
2422, 23sylibr 233 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2524ralrimiva 3140 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
26 vex 3448 . . . . . . . 8 𝑥 ∈ V
27 eliin 4960 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2925, 28sylibr 233 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
3029ex 414 . . . . 5 ((𝜑𝑥𝐴) → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3130ex 414 . . . 4 (𝜑 → (𝑥𝐴 → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})))
321, 31ralrimi 3239 . . 3 (𝜑 → ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
33 nfcv 2904 . . . . 5 𝑥
34 nfrab1 3425 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3533, 34nfiin 4986 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3635rabssf 43417 . . 3 ({𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3732, 36sylibr 233 . 2 (𝜑 → {𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
38 nnn0 43699 . . . . 5 ℕ ≠ ∅
39 iinrab 5030 . . . . 5 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
4038, 39ax-mp 5 . . . 4 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵}
4140a1i 11 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
428ad4ant13 750 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
4312ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
44 simpr 486 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) < 𝐵)
4542, 43, 44xrltled 13075 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ≤ 𝐵)
4645ex 414 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝐶 − (1 / 𝑛)) < 𝐵 → (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4746ralimdva 3161 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵 → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4847imp 408 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵)
49 nfv 1918 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
50 nfra1 3266 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵
5149, 50nfan 1903 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵)
523ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶 ∈ ℝ)
5312adantr 482 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
5451, 52, 53xrralrecnnge 43711 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶𝐵 ↔ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
5548, 54mpbird 257 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶𝐵)
5655ex 414 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
5756ex 414 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵)))
581, 57ralrimi 3239 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
59 ss2rab 4029 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
6058, 59sylibr 233 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6141, 60eqsstrd 3983 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6237, 61eqssd 3962 1 (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wnf 1786  wcel 2107  wne 2940  wral 3061  {crab 3406  Vcvv 3444  wss 3911  c0 4283   ciin 4956   class class class wbr 5106  (class class class)co 7358  cr 11055  1c1 11057  *cxr 11193   < clt 11194  cle 11195  cmin 11390   / cdiv 11817  cn 12158  +crp 12920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-q 12879  df-rp 12921  df-fl 13703
This theorem is referenced by:  salpreimagtge  45052
  Copyright terms: Public domain W3C validator