MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem1 Structured version   Visualization version   GIF version

Theorem ubthlem1 30902
Description: Lemma for ubth 30905. The function 𝐴 exhibits a countable collection of sets that are closed, being the inverse image under 𝑡 of the closed ball of radius 𝑘, and by assumption they cover 𝑋. Thus, by the Baire Category theorem bcth2 25383, for some 𝑛 the set 𝐴𝑛 has an interior, meaning that there is a closed ball {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
ubthlem.8 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
ubthlem.9 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
Assertion
Ref Expression
ubthlem1 (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
Distinct variable groups:   𝑘,𝑐,𝑛,𝑟,𝑥,𝑦,𝑧,𝐴   𝑡,𝑐,𝐷,𝑘,𝑛,𝑟,𝑥,𝑧   𝑘,𝐽,𝑛   𝑦,𝑡,𝐽,𝑥   𝑁,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧   𝜑,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦   𝑇,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧   𝑈,𝑐,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧   𝑊,𝑐,𝑛,𝑟,𝑡,𝑥,𝑦   𝑋,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑡)   𝐷(𝑦)   𝑈(𝑘)   𝐽(𝑧,𝑟,𝑐)   𝑊(𝑧,𝑘)

Proof of Theorem ubthlem1
StepHypRef Expression
1 rzal 4532 . . . . . . . . 9 (𝑇 = ∅ → ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘)
21ralrimivw 3156 . . . . . . . 8 (𝑇 = ∅ → ∀𝑧𝑋𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘)
3 rabid2 3478 . . . . . . . 8 (𝑋 = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ ∀𝑧𝑋𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘)
42, 3sylibr 234 . . . . . . 7 (𝑇 = ∅ → 𝑋 = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
54eqcomd 2746 . . . . . 6 (𝑇 = ∅ → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} = 𝑋)
65eleq1d 2829 . . . . 5 (𝑇 = ∅ → ({𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽) ↔ 𝑋 ∈ (Clsd‘𝐽)))
7 iinrab 5092 . . . . . . 7 (𝑇 ≠ ∅ → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
87adantl 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
9 id 22 . . . . . . 7 (𝑇 ≠ ∅ → 𝑇 ≠ ∅)
10 ubthlem.7 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
1110sselda 4008 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
12 ubthlem.3 . . . . . . . . . . . . . . . . . . . 20 𝐷 = (IndMet‘𝑈)
13 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (IndMet‘𝑊) = (IndMet‘𝑊)
14 ubthlem.4 . . . . . . . . . . . . . . . . . . . 20 𝐽 = (MetOpen‘𝐷)
15 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊))
16 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
17 ubthlem.5 . . . . . . . . . . . . . . . . . . . . 21 𝑈 ∈ CBan
18 bnnv 30898 . . . . . . . . . . . . . . . . . . . . 21 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
1917, 18ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝑈 ∈ NrmCVec
20 ubthlem.6 . . . . . . . . . . . . . . . . . . . 20 𝑊 ∈ NrmCVec
2112, 13, 14, 15, 16, 19, 20blocn2 30840 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))))
22 ubth.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋 = (BaseSet‘𝑈)
2322, 12cbncms 30897 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
2417, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 𝐷 ∈ (CMet‘𝑋)
25 cmetmet 25339 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
26 metxmet 24365 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2724, 25, 26mp2b 10 . . . . . . . . . . . . . . . . . . . . 21 𝐷 ∈ (∞Met‘𝑋)
2814mopntopon 24470 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝐽 ∈ (TopOn‘𝑋)
30 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3130, 13imsxmet 30724 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ NrmCVec → (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)))
3220, 31ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊))
3315mopntopon 24470 . . . . . . . . . . . . . . . . . . . . 21 ((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)))
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))
35 iscncl 23298 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (TopOn‘𝑋) ∧ (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))))
3629, 34, 35mp2an 691 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
3721, 36sylib 218 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
3811, 37syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
3938simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
4039adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
4140ffvelcdmda 7118 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
4241biantrurd 532 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡𝑥)) ≤ 𝑘 ↔ ((𝑡𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
43 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑦 = (𝑡𝑥) → (𝑁𝑦) = (𝑁‘(𝑡𝑥)))
4443breq1d 5176 . . . . . . . . . . . . . 14 (𝑦 = (𝑡𝑥) → ((𝑁𝑦) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
4544elrab 3708 . . . . . . . . . . . . 13 ((𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ↔ ((𝑡𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
4642, 45bitr4di 289 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡𝑥)) ≤ 𝑘 ↔ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}))
4746pm5.32da 578 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → ((𝑥𝑋 ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘) ↔ (𝑥𝑋 ∧ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
48 2fveq3 6925 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑥)))
4948breq1d 5176 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
5049elrab 3708 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ (𝑥𝑋 ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
5150a1i 11 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ (𝑥𝑋 ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
52 ffn 6747 . . . . . . . . . . . 12 (𝑡:𝑋⟶(BaseSet‘𝑊) → 𝑡 Fn 𝑋)
53 elpreima 7091 . . . . . . . . . . . 12 (𝑡 Fn 𝑋 → (𝑥 ∈ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ↔ (𝑥𝑋 ∧ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
5440, 52, 533syl 18 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑥 ∈ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ↔ (𝑥𝑋 ∧ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
5547, 51, 543bitr4d 311 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ 𝑥 ∈ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
5655eqrdv 2738 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} = (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}))
57 imaeq2 6085 . . . . . . . . . . 11 (𝑥 = {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} → (𝑡𝑥) = (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}))
5857eleq1d 2829 . . . . . . . . . 10 (𝑥 = {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} → ((𝑡𝑥) ∈ (Clsd‘𝐽) ↔ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ∈ (Clsd‘𝐽)))
5938simprd 495 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))
6059adantlr 714 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))
61 nnre 12300 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
6261ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → 𝑘 ∈ ℝ)
6362rexrd 11340 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → 𝑘 ∈ ℝ*)
64 eqid 2740 . . . . . . . . . . . . . 14 (0vec𝑊) = (0vec𝑊)
6530, 64nvzcl 30666 . . . . . . . . . . . . 13 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
6620, 65ax-mp 5 . . . . . . . . . . . 12 (0vec𝑊) ∈ (BaseSet‘𝑊)
67 ubth.2 . . . . . . . . . . . . . . . . . 18 𝑁 = (normCV𝑊)
6830, 64, 67, 13nvnd 30720 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑊)) → (𝑁𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
6920, 68mpan 689 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (BaseSet‘𝑊) → (𝑁𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
70 xmetsym 24378 . . . . . . . . . . . . . . . . 17 (((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊) ∧ 𝑦 ∈ (BaseSet‘𝑊)) → ((0vec𝑊)(IndMet‘𝑊)𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
7132, 66, 70mp3an12 1451 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (BaseSet‘𝑊) → ((0vec𝑊)(IndMet‘𝑊)𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
7269, 71eqtr4d 2783 . . . . . . . . . . . . . . 15 (𝑦 ∈ (BaseSet‘𝑊) → (𝑁𝑦) = ((0vec𝑊)(IndMet‘𝑊)𝑦))
7372breq1d 5176 . . . . . . . . . . . . . 14 (𝑦 ∈ (BaseSet‘𝑊) → ((𝑁𝑦) ≤ 𝑘 ↔ ((0vec𝑊)(IndMet‘𝑊)𝑦) ≤ 𝑘))
7473rabbiia 3447 . . . . . . . . . . . . 13 {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} = {𝑦 ∈ (BaseSet‘𝑊) ∣ ((0vec𝑊)(IndMet‘𝑊)𝑦) ≤ 𝑘}
7515, 74blcld 24539 . . . . . . . . . . . 12 (((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊) ∧ 𝑘 ∈ ℝ*) → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))))
7632, 66, 75mp3an12 1451 . . . . . . . . . . 11 (𝑘 ∈ ℝ* → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))))
7763, 76syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))))
7858, 60, 77rspcdva 3636 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ∈ (Clsd‘𝐽))
7956, 78eqeltrd 2844 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
8079ralrimiva 3152 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ∀𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
81 iincld 23068 . . . . . . 7 ((𝑇 ≠ ∅ ∧ ∀𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
829, 80, 81syl2anr 596 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
838, 82eqeltrrd 2845 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
8414mopntop 24471 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
8527, 84ax-mp 5 . . . . . . 7 𝐽 ∈ Top
8629toponunii 22943 . . . . . . . 8 𝑋 = 𝐽
8786topcld 23064 . . . . . . 7 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
8885, 87ax-mp 5 . . . . . 6 𝑋 ∈ (Clsd‘𝐽)
8988a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑋 ∈ (Clsd‘𝐽))
906, 83, 89pm2.61ne 3033 . . . 4 ((𝜑𝑘 ∈ ℕ) → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
91 ubthlem.9 . . . 4 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
9290, 91fmptd 7148 . . 3 (𝜑𝐴:ℕ⟶(Clsd‘𝐽))
9392frnd 6755 . . . . . 6 (𝜑 → ran 𝐴 ⊆ (Clsd‘𝐽))
9486cldss2 23059 . . . . . 6 (Clsd‘𝐽) ⊆ 𝒫 𝑋
9593, 94sstrdi 4021 . . . . 5 (𝜑 → ran 𝐴 ⊆ 𝒫 𝑋)
96 sspwuni 5123 . . . . 5 (ran 𝐴 ⊆ 𝒫 𝑋 ran 𝐴𝑋)
9795, 96sylib 218 . . . 4 (𝜑 ran 𝐴𝑋)
98 ubthlem.8 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
99 arch 12550 . . . . . . . . . 10 (𝑐 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑐 < 𝑘)
10099adantl 481 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → ∃𝑘 ∈ ℕ 𝑐 < 𝑘)
101 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
102 ltle 11378 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑐 < 𝑘𝑐𝑘))
103101, 61, 102syl2an 595 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘𝑐𝑘))
104103impr 454 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) → 𝑐𝑘)
105104adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑐𝑘)
10639ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
107106an32s 651 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ 𝑡𝑇) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
10830, 67nvcl 30693 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
10920, 107, 108sylancr 586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑡𝑇) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
110109adantlr 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑡𝑇) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
111110adantlr 714 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
112 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑐 ∈ ℝ)
113 simplrl 776 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑘 ∈ ℕ)
114113, 61syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑘 ∈ ℝ)
115 letr 11384 . . . . . . . . . . . . . . 15 (((𝑁‘(𝑡𝑥)) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (((𝑁‘(𝑡𝑥)) ≤ 𝑐𝑐𝑘) → (𝑁‘(𝑡𝑥)) ≤ 𝑘))
116111, 112, 114, 115syl3anc 1371 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → (((𝑁‘(𝑡𝑥)) ≤ 𝑐𝑐𝑘) → (𝑁‘(𝑡𝑥)) ≤ 𝑘))
117105, 116mpan2d 693 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → ((𝑁‘(𝑡𝑥)) ≤ 𝑐 → (𝑁‘(𝑡𝑥)) ≤ 𝑘))
118117ralimdva 3173 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
119118expr 456 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
12022fvexi 6934 . . . . . . . . . . . . . . . . . 18 𝑋 ∈ V
121120rabex 5357 . . . . . . . . . . . . . . . . 17 {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ V
12291fvmpt2 7040 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ V) → (𝐴𝑘) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
123121, 122mpan2 690 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝐴𝑘) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
124123eleq2d 2830 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑥 ∈ (𝐴𝑘) ↔ 𝑥 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘}))
12549ralbidv 3184 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
126125elrab 3708 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ (𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
127124, 126bitrdi 287 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑥 ∈ (𝐴𝑘) ↔ (𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
128 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → 𝑥𝑋)
129128biantrurd 532 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘 ↔ (𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
130129bicomd 223 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘) ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
131127, 130sylan9bbr 510 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴𝑘) ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
13292ffnd 6748 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn ℕ)
133132adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 𝐴 Fn ℕ)
134 fnfvelrn 7114 . . . . . . . . . . . . . . . 16 ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ran 𝐴)
135 elssuni 4961 . . . . . . . . . . . . . . . 16 ((𝐴𝑘) ∈ ran 𝐴 → (𝐴𝑘) ⊆ ran 𝐴)
136134, 135syl 17 . . . . . . . . . . . . . . 15 ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ⊆ ran 𝐴)
137136sseld 4007 . . . . . . . . . . . . . 14 ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴𝑘) → 𝑥 ran 𝐴))
138133, 137sylan 579 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴𝑘) → 𝑥 ran 𝐴))
139131, 138sylbird 260 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ ℕ) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘𝑥 ran 𝐴))
140139adantlr 714 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘𝑥 ran 𝐴))
141119, 140syl6d 75 . . . . . . . . . 10 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴)))
142141rexlimdva 3161 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → (∃𝑘 ∈ ℕ 𝑐 < 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴)))
143100, 142mpd 15 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴))
144143rexlimdva 3161 . . . . . . 7 ((𝜑𝑥𝑋) → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴))
145144ralimdva 3173 . . . . . 6 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∀𝑥𝑋 𝑥 ran 𝐴))
14698, 145mpd 15 . . . . 5 (𝜑 → ∀𝑥𝑋 𝑥 ran 𝐴)
147 dfss3 3997 . . . . 5 (𝑋 ran 𝐴 ↔ ∀𝑥𝑋 𝑥 ran 𝐴)
148146, 147sylibr 234 . . . 4 (𝜑𝑋 ran 𝐴)
14997, 148eqssd 4026 . . 3 (𝜑 ran 𝐴 = 𝑋)
150 eqid 2740 . . . . . 6 (0vec𝑈) = (0vec𝑈)
15122, 150nvzcl 30666 . . . . 5 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
152 ne0i 4364 . . . . 5 ((0vec𝑈) ∈ 𝑋𝑋 ≠ ∅)
15319, 151, 152mp2b 10 . . . 4 𝑋 ≠ ∅
15414bcth2 25383 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝐴:ℕ⟶(Clsd‘𝐽) ∧ ran 𝐴 = 𝑋)) → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅)
15524, 153, 154mpanl12 701 . . 3 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ ran 𝐴 = 𝑋) → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅)
15692, 149, 155syl2anc 583 . 2 (𝜑 → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅)
157 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ (Clsd‘𝐽))
15894, 157sselid 4006 . . . . . . . . . 10 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 𝑋)
159158elpwid 4631 . . . . . . . . 9 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ 𝑋)
16092, 159sylan 579 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ 𝑋)
16186ntrss3 23089 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐴𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
16285, 160, 161sylancr 586 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
163162sseld 4007 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → 𝑦𝑋))
16486ntropn 23078 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐴𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽)
16585, 160, 164sylancr 586 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽)
16614mopni2 24527 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)))
16727, 166mp3an1 1448 . . . . . . . . 9 ((((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)))
168165, 167sylan 579 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)))
169 elssuni 4961 . . . . . . . . . . . 12 (((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽 → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝐽)
170169, 86sseqtrrdi 4060 . . . . . . . . . . 11 (((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽 → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
171165, 170syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
172171sselda 4008 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → 𝑦𝑋)
17386ntrss2 23086 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝐴𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ (𝐴𝑛))
17485, 160, 173sylancr 586 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ (𝐴𝑛))
175 sstr2 4015 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → (((int‘𝐽)‘(𝐴𝑛)) ⊆ (𝐴𝑛) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛)))
176174, 175syl5com 31 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛)))
177176ad2antrr 725 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛)))
178 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) → 𝑦𝑋)
179178, 27jctil 519 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋))
180 rphalfcl 13084 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
181180rpxrd 13100 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ*)
182 rpxr 13066 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
183 rphalflt 13086 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
184181, 182, 1833jca 1128 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((𝑥 / 2) ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑥 / 2) < 𝑥))
185 eqid 2740 . . . . . . . . . . . . . 14 {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} = {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)}
18614, 185blsscls2 24538 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((𝑥 / 2) ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑥 / 2) < 𝑥)) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥))
187179, 184, 186syl2an 595 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥))
188 sstr2 4015 . . . . . . . . . . . 12 ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥) → ((𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)))
189187, 188syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)))
190180adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
191 breq2 5170 . . . . . . . . . . . . . . . 16 (𝑟 = (𝑥 / 2) → ((𝑦𝐷𝑧) ≤ 𝑟 ↔ (𝑦𝐷𝑧) ≤ (𝑥 / 2)))
192191rabbidv 3451 . . . . . . . . . . . . . . 15 (𝑟 = (𝑥 / 2) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} = {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)})
193192sseq1d 4040 . . . . . . . . . . . . . 14 (𝑟 = (𝑥 / 2) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛) ↔ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)))
194193rspcev 3635 . . . . . . . . . . . . 13 (((𝑥 / 2) ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
195194ex 412 . . . . . . . . . . . 12 ((𝑥 / 2) ∈ ℝ+ → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
196190, 195syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
197177, 189, 1963syld 60 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
198197rexlimdva 3161 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) → (∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
199172, 198syldan 590 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → (∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
200168, 199mpd 15 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
201200ex 412 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
202163, 201jcad 512 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → (𝑦𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))))
203202eximdv 1916 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∃𝑦 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑦(𝑦𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))))
204 n0 4376 . . . 4 (((int‘𝐽)‘(𝐴𝑛)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)))
205 df-rex 3077 . . . 4 (∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛) ↔ ∃𝑦(𝑦𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
206203, 204, 2053imtr4g 296 . . 3 ((𝜑𝑛 ∈ ℕ) → (((int‘𝐽)‘(𝐴𝑛)) ≠ ∅ → ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
207206reximdva 3174 . 2 (𝜑 → (∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅ → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
208156, 207mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   ciin 5016   class class class wbr 5166  cmpt 5249  ccnv 5699  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  cn 12293  2c2 12348  +crp 13057  ∞Metcxmet 21372  Metcmet 21373  ballcbl 21374  MetOpencmopn 21377  Topctop 22920  TopOnctopon 22937  Clsdccld 23045  intcnt 23046   Cn ccn 23253  CMetccmet 25307  NrmCVeccnv 30616  BaseSetcba 30618  0veccn0v 30620  normCVcnmcv 30622  IndMetcims 30623   BLnOp cblo 30774  CBanccbn 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-dc 10515  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-lno 30776  df-nmoo 30777  df-blo 30778  df-0o 30779  df-cbn 30895
This theorem is referenced by:  ubthlem3  30904
  Copyright terms: Public domain W3C validator