Proof of Theorem ubthlem1
Step | Hyp | Ref
| Expression |
1 | | rzal 4420 |
. . . . . . . . 9
⊢ (𝑇 = ∅ → ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘) |
2 | 1 | ralrimivw 3106 |
. . . . . . . 8
⊢ (𝑇 = ∅ → ∀𝑧 ∈ 𝑋 ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘) |
3 | | rabid2 3293 |
. . . . . . . 8
⊢ (𝑋 = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ↔ ∀𝑧 ∈ 𝑋 ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘) |
4 | 2, 3 | sylibr 237 |
. . . . . . 7
⊢ (𝑇 = ∅ → 𝑋 = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
5 | 4 | eqcomd 2743 |
. . . . . 6
⊢ (𝑇 = ∅ → {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} = 𝑋) |
6 | 5 | eleq1d 2822 |
. . . . 5
⊢ (𝑇 = ∅ → ({𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽) ↔ 𝑋 ∈ (Clsd‘𝐽))) |
7 | | iinrab 4977 |
. . . . . . 7
⊢ (𝑇 ≠ ∅ → ∩ 𝑡 ∈ 𝑇 {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
8 | 7 | adantl 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → ∩ 𝑡 ∈ 𝑇 {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
9 | | id 22 |
. . . . . . 7
⊢ (𝑇 ≠ ∅ → 𝑇 ≠ ∅) |
10 | | ubthlem.7 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) |
11 | 10 | sselda 3901 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊)) |
12 | | ubthlem.3 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐷 = (IndMet‘𝑈) |
13 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(IndMet‘𝑊) =
(IndMet‘𝑊) |
14 | | ubthlem.4 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐽 = (MetOpen‘𝐷) |
15 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊)) |
16 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊) |
17 | | ubthlem.5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑈 ∈ CBan |
18 | | bnnv 28947 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑈 ∈ CBan → 𝑈 ∈
NrmCVec) |
19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑈 ∈ NrmCVec |
20 | | ubthlem.6 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑊 ∈ NrmCVec |
21 | 12, 13, 14, 15, 16, 19, 20 | blocn2 28889 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊)))) |
22 | | ubth.1 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑋 = (BaseSet‘𝑈) |
23 | 22, 12 | cbncms 28946 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
24 | 17, 23 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐷 ∈ (CMet‘𝑋) |
25 | | cmetmet 24183 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
26 | | metxmet 23232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
27 | 24, 25, 26 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐷 ∈ (∞Met‘𝑋) |
28 | 14 | mopntopon 23337 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
29 | 27, 28 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐽 ∈ (TopOn‘𝑋) |
30 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) |
31 | 30, 13 | imsxmet 28773 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑊 ∈ NrmCVec →
(IndMet‘𝑊) ∈
(∞Met‘(BaseSet‘𝑊))) |
32 | 20, 31 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(IndMet‘𝑊)
∈ (∞Met‘(BaseSet‘𝑊)) |
33 | 15 | mopntopon 23337 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((IndMet‘𝑊)
∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈
(TopOn‘(BaseSet‘𝑊))) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)) |
35 | | iscncl 22166 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧
(MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽)))) |
36 | 29, 34, 35 | mp2an 692 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽))) |
37 | 21, 36 | sylib 221 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽))) |
38 | 11, 37 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽))) |
39 | 38 | simpld 498 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊)) |
40 | 39 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊)) |
41 | 40 | ffvelrnda 6904 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) |
42 | 41 | biantrurd 536 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘𝑥)) ≤ 𝑘 ↔ ((𝑡‘𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑁‘(𝑡‘𝑥)) ≤ 𝑘))) |
43 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑡‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑡‘𝑥))) |
44 | 43 | breq1d 5063 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑡‘𝑥) → ((𝑁‘𝑦) ≤ 𝑘 ↔ (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
45 | 44 | elrab 3602 |
. . . . . . . . . . . . 13
⊢ ((𝑡‘𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘} ↔ ((𝑡‘𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
46 | 42, 45 | bitr4di 292 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘𝑥)) ≤ 𝑘 ↔ (𝑡‘𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘})) |
47 | 46 | pm5.32da 582 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → ((𝑥 ∈ 𝑋 ∧ (𝑁‘(𝑡‘𝑥)) ≤ 𝑘) ↔ (𝑥 ∈ 𝑋 ∧ (𝑡‘𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘}))) |
48 | | 2fveq3 6722 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝑁‘(𝑡‘𝑧)) = (𝑁‘(𝑡‘𝑥))) |
49 | 48 | breq1d 5063 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
50 | 49 | elrab 3602 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ↔ (𝑥 ∈ 𝑋 ∧ (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
51 | 50 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → (𝑥 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ↔ (𝑥 ∈ 𝑋 ∧ (𝑁‘(𝑡‘𝑥)) ≤ 𝑘))) |
52 | | ffn 6545 |
. . . . . . . . . . . 12
⊢ (𝑡:𝑋⟶(BaseSet‘𝑊) → 𝑡 Fn 𝑋) |
53 | | elpreima 6878 |
. . . . . . . . . . . 12
⊢ (𝑡 Fn 𝑋 → (𝑥 ∈ (◡𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝑡‘𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘}))) |
54 | 40, 52, 53 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → (𝑥 ∈ (◡𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝑡‘𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘}))) |
55 | 47, 51, 54 | 3bitr4d 314 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → (𝑥 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ↔ 𝑥 ∈ (◡𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘}))) |
56 | 55 | eqrdv 2735 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} = (◡𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘})) |
57 | | imaeq2 5925 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘} → (◡𝑡 “ 𝑥) = (◡𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘})) |
58 | 57 | eleq1d 2822 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘} → ((◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽) ↔ (◡𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘}) ∈ (Clsd‘𝐽))) |
59 | 38 | simprd 499 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽)) |
60 | 59 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽)) |
61 | | nnre 11837 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
62 | 61 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → 𝑘 ∈ ℝ) |
63 | 62 | rexrd 10883 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → 𝑘 ∈ ℝ*) |
64 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(0vec‘𝑊) = (0vec‘𝑊) |
65 | 30, 64 | nvzcl 28715 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ NrmCVec →
(0vec‘𝑊)
∈ (BaseSet‘𝑊)) |
66 | 20, 65 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(0vec‘𝑊) ∈ (BaseSet‘𝑊) |
67 | | ubth.2 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑁 =
(normCV‘𝑊) |
68 | 30, 64, 67, 13 | nvnd 28769 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑊)) → (𝑁‘𝑦) = (𝑦(IndMet‘𝑊)(0vec‘𝑊))) |
69 | 20, 68 | mpan 690 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (BaseSet‘𝑊) → (𝑁‘𝑦) = (𝑦(IndMet‘𝑊)(0vec‘𝑊))) |
70 | | xmetsym 23245 |
. . . . . . . . . . . . . . . . 17
⊢
(((IndMet‘𝑊)
∈ (∞Met‘(BaseSet‘𝑊)) ∧ (0vec‘𝑊) ∈ (BaseSet‘𝑊) ∧ 𝑦 ∈ (BaseSet‘𝑊)) → ((0vec‘𝑊)(IndMet‘𝑊)𝑦) = (𝑦(IndMet‘𝑊)(0vec‘𝑊))) |
71 | 32, 66, 70 | mp3an12 1453 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (BaseSet‘𝑊) →
((0vec‘𝑊)(IndMet‘𝑊)𝑦) = (𝑦(IndMet‘𝑊)(0vec‘𝑊))) |
72 | 69, 71 | eqtr4d 2780 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (BaseSet‘𝑊) → (𝑁‘𝑦) = ((0vec‘𝑊)(IndMet‘𝑊)𝑦)) |
73 | 72 | breq1d 5063 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (BaseSet‘𝑊) → ((𝑁‘𝑦) ≤ 𝑘 ↔ ((0vec‘𝑊)(IndMet‘𝑊)𝑦) ≤ 𝑘)) |
74 | 73 | rabbiia 3382 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘} = {𝑦 ∈ (BaseSet‘𝑊) ∣ ((0vec‘𝑊)(IndMet‘𝑊)𝑦) ≤ 𝑘} |
75 | 15, 74 | blcld 23403 |
. . . . . . . . . . . 12
⊢
(((IndMet‘𝑊)
∈ (∞Met‘(BaseSet‘𝑊)) ∧ (0vec‘𝑊) ∈ (BaseSet‘𝑊) ∧ 𝑘 ∈ ℝ*) → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘} ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))) |
76 | 32, 66, 75 | mp3an12 1453 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℝ*
→ {𝑦 ∈
(BaseSet‘𝑊) ∣
(𝑁‘𝑦) ≤ 𝑘} ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))) |
77 | 63, 76 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘} ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))) |
78 | 58, 60, 77 | rspcdva 3539 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → (◡𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁‘𝑦) ≤ 𝑘}) ∈ (Clsd‘𝐽)) |
79 | 56, 78 | eqeltrd 2838 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑡 ∈ 𝑇) → {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) |
80 | 79 | ralrimiva 3105 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∀𝑡 ∈ 𝑇 {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) |
81 | | iincld 21936 |
. . . . . . 7
⊢ ((𝑇 ≠ ∅ ∧
∀𝑡 ∈ 𝑇 {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) → ∩ 𝑡 ∈ 𝑇 {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) |
82 | 9, 80, 81 | syl2anr 600 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → ∩ 𝑡 ∈ 𝑇 {𝑧 ∈ 𝑋 ∣ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) |
83 | 8, 82 | eqeltrrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) |
84 | 14 | mopntop 23338 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
85 | 27, 84 | ax-mp 5 |
. . . . . . 7
⊢ 𝐽 ∈ Top |
86 | 29 | toponunii 21813 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
87 | 86 | topcld 21932 |
. . . . . . 7
⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
88 | 85, 87 | ax-mp 5 |
. . . . . 6
⊢ 𝑋 ∈ (Clsd‘𝐽) |
89 | 88 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑋 ∈ (Clsd‘𝐽)) |
90 | 6, 83, 89 | pm2.61ne 3027 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) |
91 | | ubthlem.9 |
. . . 4
⊢ 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
92 | 90, 91 | fmptd 6931 |
. . 3
⊢ (𝜑 → 𝐴:ℕ⟶(Clsd‘𝐽)) |
93 | 92 | frnd 6553 |
. . . . . 6
⊢ (𝜑 → ran 𝐴 ⊆ (Clsd‘𝐽)) |
94 | 86 | cldss2 21927 |
. . . . . 6
⊢
(Clsd‘𝐽)
⊆ 𝒫 𝑋 |
95 | 93, 94 | sstrdi 3913 |
. . . . 5
⊢ (𝜑 → ran 𝐴 ⊆ 𝒫 𝑋) |
96 | | sspwuni 5008 |
. . . . 5
⊢ (ran
𝐴 ⊆ 𝒫 𝑋 ↔ ∪ ran 𝐴 ⊆ 𝑋) |
97 | 95, 96 | sylib 221 |
. . . 4
⊢ (𝜑 → ∪ ran 𝐴 ⊆ 𝑋) |
98 | | ubthlem.8 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) |
99 | | arch 12087 |
. . . . . . . . . 10
⊢ (𝑐 ∈ ℝ →
∃𝑘 ∈ ℕ
𝑐 < 𝑘) |
100 | 99 | adantl 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) → ∃𝑘 ∈ ℕ 𝑐 < 𝑘) |
101 | | simpr 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ) |
102 | | ltle 10921 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑐 < 𝑘 → 𝑐 ≤ 𝑘)) |
103 | 101, 61, 102 | syl2an 599 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘 → 𝑐 ≤ 𝑘)) |
104 | 103 | impr 458 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) → 𝑐 ≤ 𝑘) |
105 | 104 | adantr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡 ∈ 𝑇) → 𝑐 ≤ 𝑘) |
106 | 39 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) |
107 | 106 | an32s 652 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑇) → (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) |
108 | 30, 67 | nvcl 28742 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
109 | 20, 107, 108 | sylancr 590 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑇) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
110 | 109 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑡 ∈ 𝑇) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
111 | 110 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡 ∈ 𝑇) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
112 | | simpllr 776 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡 ∈ 𝑇) → 𝑐 ∈ ℝ) |
113 | | simplrl 777 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡 ∈ 𝑇) → 𝑘 ∈ ℕ) |
114 | 113, 61 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡 ∈ 𝑇) → 𝑘 ∈ ℝ) |
115 | | letr 10926 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁‘(𝑡‘𝑥)) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (((𝑁‘(𝑡‘𝑥)) ≤ 𝑐 ∧ 𝑐 ≤ 𝑘) → (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
116 | 111, 112,
114, 115 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡 ∈ 𝑇) → (((𝑁‘(𝑡‘𝑥)) ≤ 𝑐 ∧ 𝑐 ≤ 𝑘) → (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
117 | 105, 116 | mpan2d 694 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡 ∈ 𝑇) → ((𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
118 | 117 | ralimdva 3100 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
119 | 118 | expr 460 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘))) |
120 | 22 | fvexi 6731 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑋 ∈ V |
121 | 120 | rabex 5225 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ V |
122 | 91 | fvmpt2 6829 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ∈ V) → (𝐴‘𝑘) = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
123 | 121, 122 | mpan2 691 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → (𝐴‘𝑘) = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
124 | 123 | eleq2d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝑥 ∈ (𝐴‘𝑘) ↔ 𝑥 ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘})) |
125 | 49 | ralbidv 3118 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑥 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
126 | 125 | elrab 3602 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
127 | 124, 126 | bitrdi 290 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝑥 ∈ (𝐴‘𝑘) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘))) |
128 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
129 | 128 | biantrurd 536 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘 ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘))) |
130 | 129 | bicomd 226 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘) ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
131 | 127, 130 | sylan9bbr 514 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴‘𝑘) ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘)) |
132 | 92 | ffnd 6546 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 Fn ℕ) |
133 | 132 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 Fn ℕ) |
134 | | fnfvelrn 6901 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐴‘𝑘) ∈ ran 𝐴) |
135 | | elssuni 4851 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴‘𝑘) ∈ ran 𝐴 → (𝐴‘𝑘) ⊆ ∪ ran
𝐴) |
136 | 134, 135 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐴‘𝑘) ⊆ ∪ ran
𝐴) |
137 | 136 | sseld 3900 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴‘𝑘) → 𝑥 ∈ ∪ ran
𝐴)) |
138 | 133, 137 | sylan 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴‘𝑘) → 𝑥 ∈ ∪ ran
𝐴)) |
139 | 131, 138 | sylbird 263 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ ℕ) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘 → 𝑥 ∈ ∪ ran
𝐴)) |
140 | 139 | adantlr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑘 → 𝑥 ∈ ∪ ran
𝐴)) |
141 | 119, 140 | syl6d 75 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → 𝑥 ∈ ∪ ran
𝐴))) |
142 | 141 | rexlimdva 3203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) → (∃𝑘 ∈ ℕ 𝑐 < 𝑘 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → 𝑥 ∈ ∪ ran
𝐴))) |
143 | 100, 142 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ℝ) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → 𝑥 ∈ ∪ ran
𝐴)) |
144 | 143 | rexlimdva 3203 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → 𝑥 ∈ ∪ ran
𝐴)) |
145 | 144 | ralimdva 3100 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → ∀𝑥 ∈ 𝑋 𝑥 ∈ ∪ ran
𝐴)) |
146 | 98, 145 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝑥 ∈ ∪ ran
𝐴) |
147 | | dfss3 3888 |
. . . . 5
⊢ (𝑋 ⊆ ∪ ran 𝐴 ↔ ∀𝑥 ∈ 𝑋 𝑥 ∈ ∪ ran
𝐴) |
148 | 146, 147 | sylibr 237 |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ ∪ ran
𝐴) |
149 | 97, 148 | eqssd 3918 |
. . 3
⊢ (𝜑 → ∪ ran 𝐴 = 𝑋) |
150 | | eqid 2737 |
. . . . . 6
⊢
(0vec‘𝑈) = (0vec‘𝑈) |
151 | 22, 150 | nvzcl 28715 |
. . . . 5
⊢ (𝑈 ∈ NrmCVec →
(0vec‘𝑈)
∈ 𝑋) |
152 | | ne0i 4249 |
. . . . 5
⊢
((0vec‘𝑈) ∈ 𝑋 → 𝑋 ≠ ∅) |
153 | 19, 151, 152 | mp2b 10 |
. . . 4
⊢ 𝑋 ≠ ∅ |
154 | 14 | bcth2 24227 |
. . . 4
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝐴:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝐴 = 𝑋)) → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴‘𝑛)) ≠ ∅) |
155 | 24, 153, 154 | mpanl12 702 |
. . 3
⊢ ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ ∪ ran 𝐴 = 𝑋) → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴‘𝑛)) ≠ ∅) |
156 | 92, 149, 155 | syl2anc 587 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴‘𝑛)) ≠ ∅) |
157 | | ffvelrn 6902 |
. . . . . . . . . . 11
⊢ ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ (Clsd‘𝐽)) |
158 | 94, 157 | sseldi 3899 |
. . . . . . . . . 10
⊢ ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ 𝒫 𝑋) |
159 | 158 | elpwid 4524 |
. . . . . . . . 9
⊢ ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ 𝑋) |
160 | 92, 159 | sylan 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ 𝑋) |
161 | 86 | ntrss3 21957 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝐴‘𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴‘𝑛)) ⊆ 𝑋) |
162 | 85, 160, 161 | sylancr 590 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴‘𝑛)) ⊆ 𝑋) |
163 | 162 | sseld 3900 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛)) → 𝑦 ∈ 𝑋)) |
164 | 86 | ntropn 21946 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝐴‘𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴‘𝑛)) ∈ 𝐽) |
165 | 85, 160, 164 | sylancr 590 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴‘𝑛)) ∈ 𝐽) |
166 | 14 | mopni2 23391 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘(𝐴‘𝑛)) ∈ 𝐽 ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴‘𝑛))) |
167 | 27, 166 | mp3an1 1450 |
. . . . . . . . 9
⊢
((((int‘𝐽)‘(𝐴‘𝑛)) ∈ 𝐽 ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴‘𝑛))) |
168 | 165, 167 | sylan 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴‘𝑛))) |
169 | | elssuni 4851 |
. . . . . . . . . . . 12
⊢
(((int‘𝐽)‘(𝐴‘𝑛)) ∈ 𝐽 → ((int‘𝐽)‘(𝐴‘𝑛)) ⊆ ∪ 𝐽) |
170 | 169, 86 | sseqtrrdi 3952 |
. . . . . . . . . . 11
⊢
(((int‘𝐽)‘(𝐴‘𝑛)) ∈ 𝐽 → ((int‘𝐽)‘(𝐴‘𝑛)) ⊆ 𝑋) |
171 | 165, 170 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴‘𝑛)) ⊆ 𝑋) |
172 | 171 | sselda 3901 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛))) → 𝑦 ∈ 𝑋) |
173 | 86 | ntrss2 21954 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ (𝐴‘𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴‘𝑛)) ⊆ (𝐴‘𝑛)) |
174 | 85, 160, 173 | sylancr 590 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴‘𝑛)) ⊆ (𝐴‘𝑛)) |
175 | | sstr2 3908 |
. . . . . . . . . . . . 13
⊢ ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴‘𝑛)) → (((int‘𝐽)‘(𝐴‘𝑛)) ⊆ (𝐴‘𝑛) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴‘𝑛))) |
176 | 174, 175 | syl5com 31 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴‘𝑛)) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴‘𝑛))) |
177 | 176 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴‘𝑛)) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴‘𝑛))) |
178 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
179 | 178, 27 | jctil 523 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ 𝑋) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋)) |
180 | | rphalfcl 12613 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) |
181 | 180 | rpxrd 12629 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ*) |
182 | | rpxr 12595 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ*) |
183 | | rphalflt 12615 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) < 𝑥) |
184 | 181, 182,
183 | 3jca 1130 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ ((𝑥 / 2) ∈
ℝ* ∧ 𝑥
∈ ℝ* ∧ (𝑥 / 2) < 𝑥)) |
185 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} = {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} |
186 | 14, 185 | blsscls2 23402 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ ((𝑥 / 2) ∈ ℝ* ∧ 𝑥 ∈ ℝ*
∧ (𝑥 / 2) < 𝑥)) → {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥)) |
187 | 179, 184,
186 | syl2an 599 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥)) |
188 | | sstr2 3908 |
. . . . . . . . . . . 12
⊢ ({𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥) → ((𝑦(ball‘𝐷)𝑥) ⊆ (𝐴‘𝑛) → {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴‘𝑛))) |
189 | 187, 188 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ (𝐴‘𝑛) → {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴‘𝑛))) |
190 | 180 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈
ℝ+) |
191 | | breq2 5057 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = (𝑥 / 2) → ((𝑦𝐷𝑧) ≤ 𝑟 ↔ (𝑦𝐷𝑧) ≤ (𝑥 / 2))) |
192 | 191 | rabbidv 3390 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = (𝑥 / 2) → {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} = {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)}) |
193 | 192 | sseq1d 3932 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑥 / 2) → ({𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛) ↔ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴‘𝑛))) |
194 | 193 | rspcev 3537 |
. . . . . . . . . . . . 13
⊢ (((𝑥 / 2) ∈ ℝ+
∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴‘𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛)) |
195 | 194 | ex 416 |
. . . . . . . . . . . 12
⊢ ((𝑥 / 2) ∈ ℝ+
→ ({𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴‘𝑛) → ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛))) |
196 | 190, 195 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ({𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴‘𝑛) → ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛))) |
197 | 177, 189,
196 | 3syld 60 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴‘𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛))) |
198 | 197 | rexlimdva 3203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ 𝑋) → (∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴‘𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛))) |
199 | 172, 198 | syldan 594 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛))) → (∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴‘𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛))) |
200 | 168, 199 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛))) → ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛)) |
201 | 200 | ex 416 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛))) |
202 | 163, 201 | jcad 516 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛)) → (𝑦 ∈ 𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛)))) |
203 | 202 | eximdv 1925 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑦 𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛)) → ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛)))) |
204 | | n0 4261 |
. . . 4
⊢
(((int‘𝐽)‘(𝐴‘𝑛)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((int‘𝐽)‘(𝐴‘𝑛))) |
205 | | df-rex 3067 |
. . . 4
⊢
(∃𝑦 ∈
𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛))) |
206 | 203, 204,
205 | 3imtr4g 299 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((int‘𝐽)‘(𝐴‘𝑛)) ≠ ∅ → ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛))) |
207 | 206 | reximdva 3193 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴‘𝑛)) ≠ ∅ → ∃𝑛 ∈ ℕ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛))) |
208 | 156, 207 | mpd 15 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛)) |