MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem1 Structured version   Visualization version   GIF version

Theorem ubthlem1 30856
Description: Lemma for ubth 30859. The function 𝐴 exhibits a countable collection of sets that are closed, being the inverse image under 𝑡 of the closed ball of radius 𝑘, and by assumption they cover 𝑋. Thus, by the Baire Category theorem bcth2 25287, for some 𝑛 the set 𝐴𝑛 has an interior, meaning that there is a closed ball {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
ubthlem.8 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
ubthlem.9 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
Assertion
Ref Expression
ubthlem1 (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
Distinct variable groups:   𝑘,𝑐,𝑛,𝑟,𝑥,𝑦,𝑧,𝐴   𝑡,𝑐,𝐷,𝑘,𝑛,𝑟,𝑥,𝑧   𝑘,𝐽,𝑛   𝑦,𝑡,𝐽,𝑥   𝑁,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧   𝜑,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦   𝑇,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧   𝑈,𝑐,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧   𝑊,𝑐,𝑛,𝑟,𝑡,𝑥,𝑦   𝑋,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑡)   𝐷(𝑦)   𝑈(𝑘)   𝐽(𝑧,𝑟,𝑐)   𝑊(𝑧,𝑘)

Proof of Theorem ubthlem1
StepHypRef Expression
1 rzal 4489 . . . . . . . . 9 (𝑇 = ∅ → ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘)
21ralrimivw 3137 . . . . . . . 8 (𝑇 = ∅ → ∀𝑧𝑋𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘)
3 rabid2 3454 . . . . . . . 8 (𝑋 = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ ∀𝑧𝑋𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘)
42, 3sylibr 234 . . . . . . 7 (𝑇 = ∅ → 𝑋 = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
54eqcomd 2742 . . . . . 6 (𝑇 = ∅ → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} = 𝑋)
65eleq1d 2820 . . . . 5 (𝑇 = ∅ → ({𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽) ↔ 𝑋 ∈ (Clsd‘𝐽)))
7 iinrab 5050 . . . . . . 7 (𝑇 ≠ ∅ → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
87adantl 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
9 id 22 . . . . . . 7 (𝑇 ≠ ∅ → 𝑇 ≠ ∅)
10 ubthlem.7 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
1110sselda 3963 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
12 ubthlem.3 . . . . . . . . . . . . . . . . . . . 20 𝐷 = (IndMet‘𝑈)
13 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (IndMet‘𝑊) = (IndMet‘𝑊)
14 ubthlem.4 . . . . . . . . . . . . . . . . . . . 20 𝐽 = (MetOpen‘𝐷)
15 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊))
16 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
17 ubthlem.5 . . . . . . . . . . . . . . . . . . . . 21 𝑈 ∈ CBan
18 bnnv 30852 . . . . . . . . . . . . . . . . . . . . 21 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
1917, 18ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝑈 ∈ NrmCVec
20 ubthlem.6 . . . . . . . . . . . . . . . . . . . 20 𝑊 ∈ NrmCVec
2112, 13, 14, 15, 16, 19, 20blocn2 30794 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))))
22 ubth.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋 = (BaseSet‘𝑈)
2322, 12cbncms 30851 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
2417, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 𝐷 ∈ (CMet‘𝑋)
25 cmetmet 25243 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
26 metxmet 24278 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2724, 25, 26mp2b 10 . . . . . . . . . . . . . . . . . . . . 21 𝐷 ∈ (∞Met‘𝑋)
2814mopntopon 24383 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝐽 ∈ (TopOn‘𝑋)
30 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3130, 13imsxmet 30678 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ NrmCVec → (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)))
3220, 31ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊))
3315mopntopon 24383 . . . . . . . . . . . . . . . . . . . . 21 ((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)))
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))
35 iscncl 23212 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (TopOn‘𝑋) ∧ (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))))
3629, 34, 35mp2an 692 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
3721, 36sylib 218 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
3811, 37syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
3938simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
4039adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
4140ffvelcdmda 7079 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
4241biantrurd 532 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡𝑥)) ≤ 𝑘 ↔ ((𝑡𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
43 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑦 = (𝑡𝑥) → (𝑁𝑦) = (𝑁‘(𝑡𝑥)))
4443breq1d 5134 . . . . . . . . . . . . . 14 (𝑦 = (𝑡𝑥) → ((𝑁𝑦) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
4544elrab 3676 . . . . . . . . . . . . 13 ((𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ↔ ((𝑡𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
4642, 45bitr4di 289 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡𝑥)) ≤ 𝑘 ↔ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}))
4746pm5.32da 579 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → ((𝑥𝑋 ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘) ↔ (𝑥𝑋 ∧ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
48 2fveq3 6886 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑥)))
4948breq1d 5134 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
5049elrab 3676 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ (𝑥𝑋 ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
5150a1i 11 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ (𝑥𝑋 ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
52 ffn 6711 . . . . . . . . . . . 12 (𝑡:𝑋⟶(BaseSet‘𝑊) → 𝑡 Fn 𝑋)
53 elpreima 7053 . . . . . . . . . . . 12 (𝑡 Fn 𝑋 → (𝑥 ∈ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ↔ (𝑥𝑋 ∧ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
5440, 52, 533syl 18 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑥 ∈ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ↔ (𝑥𝑋 ∧ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
5547, 51, 543bitr4d 311 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ 𝑥 ∈ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
5655eqrdv 2734 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} = (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}))
57 imaeq2 6048 . . . . . . . . . . 11 (𝑥 = {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} → (𝑡𝑥) = (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}))
5857eleq1d 2820 . . . . . . . . . 10 (𝑥 = {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} → ((𝑡𝑥) ∈ (Clsd‘𝐽) ↔ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ∈ (Clsd‘𝐽)))
5938simprd 495 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))
6059adantlr 715 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))
61 nnre 12252 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
6261ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → 𝑘 ∈ ℝ)
6362rexrd 11290 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → 𝑘 ∈ ℝ*)
64 eqid 2736 . . . . . . . . . . . . . 14 (0vec𝑊) = (0vec𝑊)
6530, 64nvzcl 30620 . . . . . . . . . . . . 13 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
6620, 65ax-mp 5 . . . . . . . . . . . 12 (0vec𝑊) ∈ (BaseSet‘𝑊)
67 ubth.2 . . . . . . . . . . . . . . . . . 18 𝑁 = (normCV𝑊)
6830, 64, 67, 13nvnd 30674 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑊)) → (𝑁𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
6920, 68mpan 690 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (BaseSet‘𝑊) → (𝑁𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
70 xmetsym 24291 . . . . . . . . . . . . . . . . 17 (((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊) ∧ 𝑦 ∈ (BaseSet‘𝑊)) → ((0vec𝑊)(IndMet‘𝑊)𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
7132, 66, 70mp3an12 1453 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (BaseSet‘𝑊) → ((0vec𝑊)(IndMet‘𝑊)𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
7269, 71eqtr4d 2774 . . . . . . . . . . . . . . 15 (𝑦 ∈ (BaseSet‘𝑊) → (𝑁𝑦) = ((0vec𝑊)(IndMet‘𝑊)𝑦))
7372breq1d 5134 . . . . . . . . . . . . . 14 (𝑦 ∈ (BaseSet‘𝑊) → ((𝑁𝑦) ≤ 𝑘 ↔ ((0vec𝑊)(IndMet‘𝑊)𝑦) ≤ 𝑘))
7473rabbiia 3424 . . . . . . . . . . . . 13 {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} = {𝑦 ∈ (BaseSet‘𝑊) ∣ ((0vec𝑊)(IndMet‘𝑊)𝑦) ≤ 𝑘}
7515, 74blcld 24449 . . . . . . . . . . . 12 (((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊) ∧ 𝑘 ∈ ℝ*) → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))))
7632, 66, 75mp3an12 1453 . . . . . . . . . . 11 (𝑘 ∈ ℝ* → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))))
7763, 76syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))))
7858, 60, 77rspcdva 3607 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ∈ (Clsd‘𝐽))
7956, 78eqeltrd 2835 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
8079ralrimiva 3133 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ∀𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
81 iincld 22982 . . . . . . 7 ((𝑇 ≠ ∅ ∧ ∀𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
829, 80, 81syl2anr 597 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
838, 82eqeltrrd 2836 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
8414mopntop 24384 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
8527, 84ax-mp 5 . . . . . . 7 𝐽 ∈ Top
8629toponunii 22859 . . . . . . . 8 𝑋 = 𝐽
8786topcld 22978 . . . . . . 7 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
8885, 87ax-mp 5 . . . . . 6 𝑋 ∈ (Clsd‘𝐽)
8988a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑋 ∈ (Clsd‘𝐽))
906, 83, 89pm2.61ne 3018 . . . 4 ((𝜑𝑘 ∈ ℕ) → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
91 ubthlem.9 . . . 4 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
9290, 91fmptd 7109 . . 3 (𝜑𝐴:ℕ⟶(Clsd‘𝐽))
9392frnd 6719 . . . . . 6 (𝜑 → ran 𝐴 ⊆ (Clsd‘𝐽))
9486cldss2 22973 . . . . . 6 (Clsd‘𝐽) ⊆ 𝒫 𝑋
9593, 94sstrdi 3976 . . . . 5 (𝜑 → ran 𝐴 ⊆ 𝒫 𝑋)
96 sspwuni 5081 . . . . 5 (ran 𝐴 ⊆ 𝒫 𝑋 ran 𝐴𝑋)
9795, 96sylib 218 . . . 4 (𝜑 ran 𝐴𝑋)
98 ubthlem.8 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
99 arch 12503 . . . . . . . . . 10 (𝑐 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑐 < 𝑘)
10099adantl 481 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → ∃𝑘 ∈ ℕ 𝑐 < 𝑘)
101 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
102 ltle 11328 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑐 < 𝑘𝑐𝑘))
103101, 61, 102syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘𝑐𝑘))
104103impr 454 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) → 𝑐𝑘)
105104adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑐𝑘)
10639ffvelcdmda 7079 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
107106an32s 652 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ 𝑡𝑇) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
10830, 67nvcl 30647 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
10920, 107, 108sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑡𝑇) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
110109adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑡𝑇) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
111110adantlr 715 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
112 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑐 ∈ ℝ)
113 simplrl 776 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑘 ∈ ℕ)
114113, 61syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑘 ∈ ℝ)
115 letr 11334 . . . . . . . . . . . . . . 15 (((𝑁‘(𝑡𝑥)) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (((𝑁‘(𝑡𝑥)) ≤ 𝑐𝑐𝑘) → (𝑁‘(𝑡𝑥)) ≤ 𝑘))
116111, 112, 114, 115syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → (((𝑁‘(𝑡𝑥)) ≤ 𝑐𝑐𝑘) → (𝑁‘(𝑡𝑥)) ≤ 𝑘))
117105, 116mpan2d 694 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → ((𝑁‘(𝑡𝑥)) ≤ 𝑐 → (𝑁‘(𝑡𝑥)) ≤ 𝑘))
118117ralimdva 3153 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
119118expr 456 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
12022fvexi 6895 . . . . . . . . . . . . . . . . . 18 𝑋 ∈ V
121120rabex 5314 . . . . . . . . . . . . . . . . 17 {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ V
12291fvmpt2 7002 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ V) → (𝐴𝑘) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
123121, 122mpan2 691 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝐴𝑘) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
124123eleq2d 2821 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑥 ∈ (𝐴𝑘) ↔ 𝑥 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘}))
12549ralbidv 3164 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
126125elrab 3676 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ (𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
127124, 126bitrdi 287 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑥 ∈ (𝐴𝑘) ↔ (𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
128 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → 𝑥𝑋)
129128biantrurd 532 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘 ↔ (𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
130129bicomd 223 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘) ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
131127, 130sylan9bbr 510 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴𝑘) ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
13292ffnd 6712 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn ℕ)
133132adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 𝐴 Fn ℕ)
134 fnfvelrn 7075 . . . . . . . . . . . . . . . 16 ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ran 𝐴)
135 elssuni 4918 . . . . . . . . . . . . . . . 16 ((𝐴𝑘) ∈ ran 𝐴 → (𝐴𝑘) ⊆ ran 𝐴)
136134, 135syl 17 . . . . . . . . . . . . . . 15 ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ⊆ ran 𝐴)
137136sseld 3962 . . . . . . . . . . . . . 14 ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴𝑘) → 𝑥 ran 𝐴))
138133, 137sylan 580 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴𝑘) → 𝑥 ran 𝐴))
139131, 138sylbird 260 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ ℕ) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘𝑥 ran 𝐴))
140139adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘𝑥 ran 𝐴))
141119, 140syl6d 75 . . . . . . . . . 10 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴)))
142141rexlimdva 3142 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → (∃𝑘 ∈ ℕ 𝑐 < 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴)))
143100, 142mpd 15 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴))
144143rexlimdva 3142 . . . . . . 7 ((𝜑𝑥𝑋) → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴))
145144ralimdva 3153 . . . . . 6 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∀𝑥𝑋 𝑥 ran 𝐴))
14698, 145mpd 15 . . . . 5 (𝜑 → ∀𝑥𝑋 𝑥 ran 𝐴)
147 dfss3 3952 . . . . 5 (𝑋 ran 𝐴 ↔ ∀𝑥𝑋 𝑥 ran 𝐴)
148146, 147sylibr 234 . . . 4 (𝜑𝑋 ran 𝐴)
14997, 148eqssd 3981 . . 3 (𝜑 ran 𝐴 = 𝑋)
150 eqid 2736 . . . . . 6 (0vec𝑈) = (0vec𝑈)
15122, 150nvzcl 30620 . . . . 5 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
152 ne0i 4321 . . . . 5 ((0vec𝑈) ∈ 𝑋𝑋 ≠ ∅)
15319, 151, 152mp2b 10 . . . 4 𝑋 ≠ ∅
15414bcth2 25287 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝐴:ℕ⟶(Clsd‘𝐽) ∧ ran 𝐴 = 𝑋)) → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅)
15524, 153, 154mpanl12 702 . . 3 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ ran 𝐴 = 𝑋) → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅)
15692, 149, 155syl2anc 584 . 2 (𝜑 → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅)
157 ffvelcdm 7076 . . . . . . . . . . 11 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ (Clsd‘𝐽))
15894, 157sselid 3961 . . . . . . . . . 10 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 𝑋)
159158elpwid 4589 . . . . . . . . 9 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ 𝑋)
16092, 159sylan 580 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ 𝑋)
16186ntrss3 23003 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐴𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
16285, 160, 161sylancr 587 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
163162sseld 3962 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → 𝑦𝑋))
16486ntropn 22992 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐴𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽)
16585, 160, 164sylancr 587 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽)
16614mopni2 24437 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)))
16727, 166mp3an1 1450 . . . . . . . . 9 ((((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)))
168165, 167sylan 580 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)))
169 elssuni 4918 . . . . . . . . . . . 12 (((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽 → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝐽)
170169, 86sseqtrrdi 4005 . . . . . . . . . . 11 (((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽 → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
171165, 170syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
172171sselda 3963 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → 𝑦𝑋)
17386ntrss2 23000 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝐴𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ (𝐴𝑛))
17485, 160, 173sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ (𝐴𝑛))
175 sstr2 3970 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → (((int‘𝐽)‘(𝐴𝑛)) ⊆ (𝐴𝑛) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛)))
176174, 175syl5com 31 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛)))
177176ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛)))
178 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) → 𝑦𝑋)
179178, 27jctil 519 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋))
180 rphalfcl 13041 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
181180rpxrd 13057 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ*)
182 rpxr 13023 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
183 rphalflt 13043 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
184181, 182, 1833jca 1128 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((𝑥 / 2) ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑥 / 2) < 𝑥))
185 eqid 2736 . . . . . . . . . . . . . 14 {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} = {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)}
18614, 185blsscls2 24448 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((𝑥 / 2) ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑥 / 2) < 𝑥)) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥))
187179, 184, 186syl2an 596 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥))
188 sstr2 3970 . . . . . . . . . . . 12 ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥) → ((𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)))
189187, 188syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)))
190180adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
191 breq2 5128 . . . . . . . . . . . . . . . 16 (𝑟 = (𝑥 / 2) → ((𝑦𝐷𝑧) ≤ 𝑟 ↔ (𝑦𝐷𝑧) ≤ (𝑥 / 2)))
192191rabbidv 3428 . . . . . . . . . . . . . . 15 (𝑟 = (𝑥 / 2) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} = {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)})
193192sseq1d 3995 . . . . . . . . . . . . . 14 (𝑟 = (𝑥 / 2) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛) ↔ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)))
194193rspcev 3606 . . . . . . . . . . . . 13 (((𝑥 / 2) ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
195194ex 412 . . . . . . . . . . . 12 ((𝑥 / 2) ∈ ℝ+ → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
196190, 195syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
197177, 189, 1963syld 60 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
198197rexlimdva 3142 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) → (∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
199172, 198syldan 591 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → (∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
200168, 199mpd 15 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
201200ex 412 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
202163, 201jcad 512 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → (𝑦𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))))
203202eximdv 1917 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∃𝑦 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑦(𝑦𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))))
204 n0 4333 . . . 4 (((int‘𝐽)‘(𝐴𝑛)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)))
205 df-rex 3062 . . . 4 (∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛) ↔ ∃𝑦(𝑦𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
206203, 204, 2053imtr4g 296 . . 3 ((𝜑𝑛 ∈ ℕ) → (((int‘𝐽)‘(𝐴𝑛)) ≠ ∅ → ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
207206reximdva 3154 . 2 (𝜑 → (∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅ → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
208156, 207mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  wss 3931  c0 4313  𝒫 cpw 4580   cuni 4888   ciin 4973   class class class wbr 5124  cmpt 5206  ccnv 5658  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cr 11133  *cxr 11273   < clt 11274  cle 11275   / cdiv 11899  cn 12245  2c2 12300  +crp 13013  ∞Metcxmet 21305  Metcmet 21306  ballcbl 21307  MetOpencmopn 21310  Topctop 22836  TopOnctopon 22853  Clsdccld 22959  intcnt 22960   Cn ccn 23167  CMetccmet 25211  NrmCVeccnv 30570  BaseSetcba 30572  0veccn0v 30574  normCVcnmcv 30576  IndMetcims 30577   BLnOp cblo 30728  CBanccbn 30848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-dc 10465  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-rest 17441  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-cn 23170  df-cnp 23171  df-lm 23172  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-cfil 25212  df-cau 25213  df-cmet 25214  df-grpo 30479  df-gid 30480  df-ginv 30481  df-gdiv 30482  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-vs 30585  df-nmcv 30586  df-ims 30587  df-lno 30730  df-nmoo 30731  df-blo 30732  df-0o 30733  df-cbn 30849
This theorem is referenced by:  ubthlem3  30858
  Copyright terms: Public domain W3C validator