Proof of Theorem preimaleiinlt
Step | Hyp | Ref
| Expression |
1 | | preimaleiinlt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
2 | | simpllr 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ 𝐴) |
3 | | preimaleiinlt.b |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
4 | 3 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈
ℝ*) |
5 | | preimaleiinlt.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 5 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) |
7 | 6 | rexrd 10956 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈
ℝ*) |
8 | 5 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) |
9 | | nnrecre 11945 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
10 | 9 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
11 | 8, 10 | readdcld 10935 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
12 | 11 | ad4ant14 748 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
13 | 12 | rexrd 10956 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈
ℝ*) |
14 | | simplr 765 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 ≤ 𝐶) |
15 | | nnrp 12670 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
16 | | rpreccl 12685 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℝ+
→ (1 / 𝑛) ∈
ℝ+) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
18 | 17 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ+) |
19 | 8, 18 | ltaddrpd 12734 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛))) |
20 | 19 | ad4ant14 748 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛))) |
21 | 4, 7, 13, 14, 20 | xrlelttrd 12823 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐶 + (1 / 𝑛))) |
22 | 2, 21 | jca 511 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ 𝐴 ∧ 𝐵 < (𝐶 + (1 / 𝑛)))) |
23 | | rabid 3304 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 < (𝐶 + (1 / 𝑛)))) |
24 | 22, 23 | sylibr 233 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
25 | 24 | ralrimiva 3107 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
26 | | vex 3426 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
27 | | eliin 4926 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (𝑥 ∈ ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))})) |
28 | 26, 27 | ax-mp 5 |
. . . . . . 7
⊢ (𝑥 ∈ ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
29 | 25, 28 | sylibr 233 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ≤ 𝐶) → 𝑥 ∈ ∩
𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
30 | 29 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝐶 → 𝑥 ∈ ∩
𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))})) |
31 | 30 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 ≤ 𝐶 → 𝑥 ∈ ∩
𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}))) |
32 | 1, 31 | ralrimi 3139 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 ≤ 𝐶 → 𝑥 ∈ ∩
𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))})) |
33 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥ℕ |
34 | | nfrab1 3310 |
. . . . 5
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} |
35 | 33, 34 | nfiin 4952 |
. . . 4
⊢
Ⅎ𝑥∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} |
36 | 35 | rabssf 42557 |
. . 3
⊢ ({𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ⊆ ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑥 ∈ 𝐴 (𝐵 ≤ 𝐶 → 𝑥 ∈ ∩
𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))})) |
37 | 32, 36 | sylibr 233 |
. 2
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ⊆ ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
38 | | nnn0 42807 |
. . . . 5
⊢ ℕ
≠ ∅ |
39 | 38 | a1i 11 |
. . . 4
⊢ (𝜑 → ℕ ≠
∅) |
40 | | iinrab 4994 |
. . . 4
⊢ (ℕ
≠ ∅ → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥 ∈ 𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))}) |
41 | 39, 40 | syl 17 |
. . 3
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥 ∈ 𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))}) |
42 | 3 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈
ℝ*) |
43 | 11 | ad4ant13 747 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
44 | 43 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈
ℝ*) |
45 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 < (𝐶 + (1 / 𝑛))) |
46 | 42, 44, 45 | xrltled 12813 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ≤ (𝐶 + (1 / 𝑛))) |
47 | 46 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) → (𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ (𝐶 + (1 / 𝑛)))) |
48 | 47 | ralimdva 3102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛)))) |
49 | 48 | imp 406 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))) |
50 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐴) |
51 | | nfra1 3142 |
. . . . . . . . . 10
⊢
Ⅎ𝑛∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) |
52 | 50, 51 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑛((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) |
53 | 3 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈
ℝ*) |
54 | 5 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐶 ∈ ℝ) |
55 | 52, 53, 54 | xrralrecnnle 42812 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐵 ≤ 𝐶 ↔ ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛)))) |
56 | 49, 55 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ≤ 𝐶) |
57 | 56 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ 𝐶)) |
58 | 57 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ 𝐶))) |
59 | 1, 58 | ralrimi 3139 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ 𝐶)) |
60 | | ss2rab 4000 |
. . . 4
⊢ ({𝑥 ∈ 𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ↔ ∀𝑥 ∈ 𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ 𝐶)) |
61 | 59, 60 | sylibr 233 |
. . 3
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) |
62 | 41, 61 | eqsstrd 3955 |
. 2
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) |
63 | 37, 62 | eqssd 3934 |
1
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} = ∩
𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |