Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaleiinlt Structured version   Visualization version   GIF version

Theorem preimaleiinlt 45423
Description: A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaleiinlt.x 𝑥𝜑
preimaleiinlt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimaleiinlt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimaleiinlt (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimaleiinlt
StepHypRef Expression
1 preimaleiinlt.x . . . 4 𝑥𝜑
2 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimaleiinlt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
43ad2antrr 724 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
5 preimaleiinlt.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
65ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
76rexrd 11260 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
85adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
9 nnrecre 12250 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
109adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
118, 10readdcld 11239 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1211ad4ant14 750 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1312rexrd 11260 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
14 simplr 767 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵𝐶)
15 nnrp 12981 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
16 rpreccl 12996 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1817adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
198, 18ltaddrpd 13045 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
2019ad4ant14 750 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
214, 7, 13, 14, 20xrlelttrd 13135 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐶 + (1 / 𝑛)))
222, 21jca 512 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
23 rabid 3452 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
2422, 23sylibr 233 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2524ralrimiva 3146 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
26 vex 3478 . . . . . . . 8 𝑥 ∈ V
27 eliin 5001 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2925, 28sylibr 233 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
3029ex 413 . . . . 5 ((𝜑𝑥𝐴) → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3130ex 413 . . . 4 (𝜑 → (𝑥𝐴 → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})))
321, 31ralrimi 3254 . . 3 (𝜑 → ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
33 nfcv 2903 . . . . 5 𝑥
34 nfrab1 3451 . . . . 5 𝑥{𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3533, 34nfiin 5027 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3635rabssf 43793 . . 3 ({𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3732, 36sylibr 233 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
38 nnn0 44074 . . . . 5 ℕ ≠ ∅
3938a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
40 iinrab 5071 . . . 4 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
4139, 40syl 17 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
423ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
4311ad4ant13 749 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
4443rexrd 11260 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
45 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 < (𝐶 + (1 / 𝑛)))
4642, 44, 45xrltled 13125 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ≤ (𝐶 + (1 / 𝑛)))
4746ex 413 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4847ralimdva 3167 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4948imp 407 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛)))
50 nfv 1917 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
51 nfra1 3281 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))
5250, 51nfan 1902 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)))
533adantr 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
545ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐶 ∈ ℝ)
5552, 53, 54xrralrecnnle 44079 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐵𝐶 ↔ ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
5649, 55mpbird 256 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵𝐶)
5756ex 413 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
5857ex 413 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶)))
591, 58ralrimi 3254 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
60 ss2rab 4067 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
6159, 60sylibr 233 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6241, 61eqsstrd 4019 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6337, 62eqssd 3998 1 (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wne 2940  wral 3061  {crab 3432  Vcvv 3474  wss 3947  c0 4321   ciin 4997   class class class wbr 5147  (class class class)co 7405  cr 11105  1c1 11107   + caddc 11109  *cxr 11243   < clt 11244  cle 11245   / cdiv 11867  cn 12208  +crp 12970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fl 13753
This theorem is referenced by:  salpreimaltle  45428
  Copyright terms: Public domain W3C validator