Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaleiinlt Structured version   Visualization version   GIF version

Theorem preimaleiinlt 46829
Description: A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaleiinlt.x 𝑥𝜑
preimaleiinlt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimaleiinlt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimaleiinlt (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimaleiinlt
StepHypRef Expression
1 preimaleiinlt.x . . . 4 𝑥𝜑
2 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimaleiinlt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
43ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
5 preimaleiinlt.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
65ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
76rexrd 11162 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
85adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
9 nnrecre 12167 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
109adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
118, 10readdcld 11141 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1211ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1312rexrd 11162 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
14 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵𝐶)
15 nnrp 12902 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
16 rpreccl 12918 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1817adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
198, 18ltaddrpd 12967 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
2019ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
214, 7, 13, 14, 20xrlelttrd 13059 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐶 + (1 / 𝑛)))
222, 21jca 511 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
23 rabid 3416 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
2422, 23sylibr 234 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2524ralrimiva 3124 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
26 vex 3440 . . . . . . . 8 𝑥 ∈ V
27 eliin 4944 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2925, 28sylibr 234 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
3029ex 412 . . . . 5 ((𝜑𝑥𝐴) → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3130ex 412 . . . 4 (𝜑 → (𝑥𝐴 → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})))
321, 31ralrimi 3230 . . 3 (𝜑 → ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
33 nfcv 2894 . . . . 5 𝑥
34 nfrab1 3415 . . . . 5 𝑥{𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3533, 34nfiin 4972 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3635rabssf 45226 . . 3 ({𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3732, 36sylibr 234 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
38 nnn0 45486 . . . . 5 ℕ ≠ ∅
3938a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
40 iinrab 5015 . . . 4 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
4139, 40syl 17 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
423ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
4311ad4ant13 751 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
4443rexrd 11162 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
45 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 < (𝐶 + (1 / 𝑛)))
4642, 44, 45xrltled 13049 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ≤ (𝐶 + (1 / 𝑛)))
4746ex 412 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4847ralimdva 3144 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4948imp 406 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛)))
50 nfv 1915 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
51 nfra1 3256 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))
5250, 51nfan 1900 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)))
533adantr 480 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
545ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐶 ∈ ℝ)
5552, 53, 54xrralrecnnle 45491 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐵𝐶 ↔ ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
5649, 55mpbird 257 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵𝐶)
5756ex 412 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
5857ex 412 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶)))
591, 58ralrimi 3230 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
60 ss2rab 4016 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
6159, 60sylibr 234 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6241, 61eqsstrd 3964 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6337, 62eqssd 3947 1 (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  wss 3897  c0 4280   ciin 4940   class class class wbr 5089  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146  cle 11147   / cdiv 11774  cn 12125  +crp 12890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fl 13696
This theorem is referenced by:  salpreimaltle  46834
  Copyright terms: Public domain W3C validator