Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaleiinlt Structured version   Visualization version   GIF version

Theorem preimaleiinlt 42998
Description: A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaleiinlt.x 𝑥𝜑
preimaleiinlt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimaleiinlt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimaleiinlt (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimaleiinlt
StepHypRef Expression
1 preimaleiinlt.x . . . 4 𝑥𝜑
2 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimaleiinlt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
43ad2antrr 724 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
5 preimaleiinlt.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
65ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
76rexrd 10690 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
85adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
9 nnrecre 11678 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
109adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
118, 10readdcld 10669 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1211ad4ant14 750 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1312rexrd 10690 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
14 simplr 767 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵𝐶)
15 nnrp 12399 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
16 rpreccl 12414 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1817adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
198, 18ltaddrpd 12463 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
2019ad4ant14 750 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
214, 7, 13, 14, 20xrlelttrd 12552 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐶 + (1 / 𝑛)))
222, 21jca 514 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
23 rabid 3378 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
2422, 23sylibr 236 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2524ralrimiva 3182 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
26 vex 3497 . . . . . . . 8 𝑥 ∈ V
27 eliin 4923 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2925, 28sylibr 236 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
3029ex 415 . . . . 5 ((𝜑𝑥𝐴) → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3130ex 415 . . . 4 (𝜑 → (𝑥𝐴 → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})))
321, 31ralrimi 3216 . . 3 (𝜑 → ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
33 nfcv 2977 . . . . 5 𝑥
34 nfrab1 3384 . . . . 5 𝑥{𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3533, 34nfiin 4949 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3635rabssf 41383 . . 3 ({𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3732, 36sylibr 236 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
38 nnn0 41645 . . . . 5 ℕ ≠ ∅
3938a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
40 iinrab 4990 . . . 4 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
4139, 40syl 17 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
423ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
4311ad4ant13 749 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
4443rexrd 10690 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
45 simpr 487 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 < (𝐶 + (1 / 𝑛)))
4642, 44, 45xrltled 12542 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ≤ (𝐶 + (1 / 𝑛)))
4746ex 415 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4847ralimdva 3177 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4948imp 409 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛)))
50 nfv 1911 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
51 nfra1 3219 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))
5250, 51nfan 1896 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)))
533adantr 483 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
545ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐶 ∈ ℝ)
5552, 53, 54xrralrecnnle 41651 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐵𝐶 ↔ ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
5649, 55mpbird 259 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵𝐶)
5756ex 415 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
5857ex 415 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶)))
591, 58ralrimi 3216 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
60 ss2rab 4046 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
6159, 60sylibr 236 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6241, 61eqsstrd 4004 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6337, 62eqssd 3983 1 (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wnf 1780  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3494  wss 3935  c0 4290   ciin 4919   class class class wbr 5065  (class class class)co 7155  cr 10535  1c1 10537   + caddc 10539  *cxr 10673   < clt 10674  cle 10675   / cdiv 11296  cn 11637  +crp 12388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-fl 13161
This theorem is referenced by:  salpreimaltle  43002
  Copyright terms: Public domain W3C validator