Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaleiinlt Structured version   Visualization version   GIF version

Theorem preimaleiinlt 42495
Description: A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaleiinlt.x 𝑥𝜑
preimaleiinlt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimaleiinlt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimaleiinlt (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimaleiinlt
StepHypRef Expression
1 preimaleiinlt.x . . . 4 𝑥𝜑
2 simpllr 772 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimaleiinlt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
43ad2antrr 722 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
5 preimaleiinlt.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
65ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
76rexrd 10526 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
85adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
9 nnrecre 11516 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
109adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
118, 10readdcld 10505 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1211ad4ant14 748 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1312rexrd 10526 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
14 simplr 765 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵𝐶)
15 nnrp 12239 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
16 rpreccl 12254 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1817adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
198, 18ltaddrpd 12303 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
2019ad4ant14 748 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
214, 7, 13, 14, 20xrlelttrd 12392 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐶 + (1 / 𝑛)))
222, 21jca 512 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
23 rabid 3334 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
2422, 23sylibr 235 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2524ralrimiva 3147 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
26 vex 3435 . . . . . . . 8 𝑥 ∈ V
27 eliin 4824 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2925, 28sylibr 235 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
3029ex 413 . . . . 5 ((𝜑𝑥𝐴) → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3130ex 413 . . . 4 (𝜑 → (𝑥𝐴 → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})))
321, 31ralrimi 3181 . . 3 (𝜑 → ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
33 nfcv 2947 . . . . 5 𝑥
34 nfrab1 3341 . . . . 5 𝑥{𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3533, 34nfiin 4849 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3635rabssf 40878 . . 3 ({𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3732, 36sylibr 235 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
38 nnn0 41141 . . . . 5 ℕ ≠ ∅
3938a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
40 iinrab 4884 . . . 4 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
4139, 40syl 17 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
423ad2antrr 722 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
4311ad4ant13 747 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
4443rexrd 10526 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
45 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 < (𝐶 + (1 / 𝑛)))
4642, 44, 45xrltled 12382 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ≤ (𝐶 + (1 / 𝑛)))
4746ex 413 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4847ralimdva 3142 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4948imp 407 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛)))
50 nfv 1890 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
51 nfra1 3184 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))
5250, 51nfan 1879 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)))
533adantr 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
545ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐶 ∈ ℝ)
5552, 53, 54xrralrecnnle 41148 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐵𝐶 ↔ ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
5649, 55mpbird 258 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵𝐶)
5756ex 413 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
5857ex 413 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶)))
591, 58ralrimi 3181 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
60 ss2rab 3963 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
6159, 60sylibr 235 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6241, 61eqsstrd 3921 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6337, 62eqssd 3901 1 (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1520  wnf 1763  wcel 2079  wne 2982  wral 3103  {crab 3107  Vcvv 3432  wss 3854  c0 4206   ciin 4820   class class class wbr 4956  (class class class)co 7007  cr 10371  1c1 10373   + caddc 10375  *cxr 10509   < clt 10510  cle 10511   / cdiv 11134  cn 11475  +crp 12228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-sup 8742  df-inf 8743  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-n0 11735  df-z 11819  df-uz 12083  df-q 12187  df-rp 12229  df-fl 13000
This theorem is referenced by:  salpreimaltle  42499
  Copyright terms: Public domain W3C validator