| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinss2 | Structured version Visualization version GIF version | ||
| Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.) |
| Ref | Expression |
|---|---|
| iinss2 | ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliin 4941 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 2 | 1 | elv 3441 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 3 | rsp 3220 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 4 | 3 | com12 32 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵)) |
| 5 | 2, 4 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐵)) |
| 6 | 5 | ssrdv 3935 | 1 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ∩ ciin 4937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-iin 4939 |
| This theorem is referenced by: dmiin 5888 gruiin 10696 txtube 23550 iooiinicc 45582 iooiinioc 45596 meaiininclem 46524 smfsuplem1 46849 smfsuplem3 46851 smflimsuplem2 46859 iinfssc 49089 iinfsubc 49090 |
| Copyright terms: Public domain | W3C validator |