| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinss2 | Structured version Visualization version GIF version | ||
| Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.) |
| Ref | Expression |
|---|---|
| iinss2 | ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliin 4972 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 2 | 1 | elv 3464 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 3 | rsp 3230 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 4 | 3 | com12 32 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵)) |
| 5 | 2, 4 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐵)) |
| 6 | 5 | ssrdv 3964 | 1 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 ∩ ciin 4968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-iin 4970 |
| This theorem is referenced by: dmiin 5933 gruiin 10824 txtube 23578 iooiinicc 45571 iooiinioc 45585 meaiininclem 46515 smfsuplem1 46840 smfsuplem3 46842 smflimsuplem2 46850 iinfssc 49024 iinfsubc 49025 |
| Copyright terms: Public domain | W3C validator |