![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinss2 | Structured version Visualization version GIF version |
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.) |
Ref | Expression |
---|---|
iinss2 | ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliin 5020 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
2 | 1 | elv 3493 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
3 | rsp 3253 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
4 | 3 | com12 32 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵)) |
5 | 2, 4 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐵)) |
6 | 5 | ssrdv 4014 | 1 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-iin 5018 |
This theorem is referenced by: dmiin 5978 gruiin 10879 txtube 23669 iooiinicc 45460 iooiinioc 45474 meaiininclem 46407 smfsuplem1 46732 smfsuplem3 46734 smflimsuplem2 46742 |
Copyright terms: Public domain | W3C validator |