MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss2 Structured version   Visualization version   GIF version

Theorem iinss2 5061
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
iinss2 (𝑥𝐴 𝑥𝐴 𝐵𝐵)

Proof of Theorem iinss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 5003 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
21elv 3478 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
3 rsp 3242 . . . 4 (∀𝑥𝐴 𝑦𝐵 → (𝑥𝐴𝑦𝐵))
43com12 32 . . 3 (𝑥𝐴 → (∀𝑥𝐴 𝑦𝐵𝑦𝐵))
52, 4biimtrid 241 . 2 (𝑥𝐴 → (𝑦 𝑥𝐴 𝐵𝑦𝐵))
65ssrdv 3989 1 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2104  wral 3059  Vcvv 3472  wss 3949   ciin 4999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-v 3474  df-in 3956  df-ss 3966  df-iin 5001
This theorem is referenced by:  dmiin  5953  gruiin  10809  txtube  23366  iooiinicc  44555  iooiinioc  44569  meaiininclem  45502  smfsuplem1  45827  smfsuplem3  45829  smflimsuplem2  45837
  Copyright terms: Public domain W3C validator