MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss2 Structured version   Visualization version   GIF version

Theorem iinss2 5033
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
iinss2 (𝑥𝐴 𝑥𝐴 𝐵𝐵)

Proof of Theorem iinss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 4972 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
21elv 3464 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
3 rsp 3230 . . . 4 (∀𝑥𝐴 𝑦𝐵 → (𝑥𝐴𝑦𝐵))
43com12 32 . . 3 (𝑥𝐴 → (∀𝑥𝐴 𝑦𝐵𝑦𝐵))
52, 4biimtrid 242 . 2 (𝑥𝐴 → (𝑦 𝑥𝐴 𝐵𝑦𝐵))
65ssrdv 3964 1 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wral 3051  Vcvv 3459  wss 3926   ciin 4968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-v 3461  df-ss 3943  df-iin 4970
This theorem is referenced by:  dmiin  5933  gruiin  10824  txtube  23578  iooiinicc  45571  iooiinioc  45585  meaiininclem  46515  smfsuplem1  46840  smfsuplem3  46842  smflimsuplem2  46850  iinfssc  49024  iinfsubc  49025
  Copyright terms: Public domain W3C validator