MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruiin Structured version   Visualization version   GIF version

Theorem gruiin 10701
Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruiin ((𝑈 ∈ Univ ∧ ∃𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Distinct variable groups:   𝑥,𝑈   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem gruiin
StepHypRef Expression
1 nfv 1915 . . 3 𝑥 𝑈 ∈ Univ
2 nfii1 4977 . . . 4 𝑥 𝑥𝐴 𝐵
32nfel1 2911 . . 3 𝑥 𝑥𝐴 𝐵𝑈
4 iinss2 5004 . . . . . 6 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
5 gruss 10687 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝐵𝑈 𝑥𝐴 𝐵𝐵) → 𝑥𝐴 𝐵𝑈)
64, 5syl3an3 1165 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑥𝐴) → 𝑥𝐴 𝐵𝑈)
763exp 1119 . . . 4 (𝑈 ∈ Univ → (𝐵𝑈 → (𝑥𝐴 𝑥𝐴 𝐵𝑈)))
87com23 86 . . 3 (𝑈 ∈ Univ → (𝑥𝐴 → (𝐵𝑈 𝑥𝐴 𝐵𝑈)))
91, 3, 8rexlimd 3239 . 2 (𝑈 ∈ Univ → (∃𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵𝑈))
109imp 406 1 ((𝑈 ∈ Univ ∧ ∃𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wrex 3056  wss 3897   ciin 4940  Univcgru 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iin 4942  df-br 5090  df-tr 5197  df-iota 6437  df-fv 6489  df-ov 7349  df-gru 10682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator