Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruiin | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruiin | ⊢ ((𝑈 ∈ Univ ∧ ∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1920 | . . 3 ⊢ Ⅎ𝑥 𝑈 ∈ Univ | |
2 | nfii1 4964 | . . . 4 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
3 | 2 | nfel1 2924 | . . 3 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 |
4 | iinss2 4991 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) | |
5 | gruss 10536 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) | |
6 | 4, 5 | syl3an3 1163 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝑥 ∈ 𝐴) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
7 | 6 | 3exp 1117 | . . . 4 ⊢ (𝑈 ∈ Univ → (𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈))) |
8 | 7 | com23 86 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑥 ∈ 𝐴 → (𝐵 ∈ 𝑈 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈))) |
9 | 1, 3, 8 | rexlimd 3247 | . 2 ⊢ (𝑈 ∈ Univ → (∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
10 | 9 | imp 406 | 1 ⊢ ((𝑈 ∈ Univ ∧ ∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3066 ⊆ wss 3891 ∩ ciin 4930 Univcgru 10530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iin 4932 df-br 5079 df-tr 5196 df-iota 6388 df-fv 6438 df-ov 7271 df-gru 10531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |