MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruiin Structured version   Visualization version   GIF version

Theorem gruiin 10848
Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruiin ((𝑈 ∈ Univ ∧ ∃𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Distinct variable groups:   𝑥,𝑈   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem gruiin
StepHypRef Expression
1 nfv 1912 . . 3 𝑥 𝑈 ∈ Univ
2 nfii1 5034 . . . 4 𝑥 𝑥𝐴 𝐵
32nfel1 2920 . . 3 𝑥 𝑥𝐴 𝐵𝑈
4 iinss2 5062 . . . . . 6 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
5 gruss 10834 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝐵𝑈 𝑥𝐴 𝐵𝐵) → 𝑥𝐴 𝐵𝑈)
64, 5syl3an3 1164 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑥𝐴) → 𝑥𝐴 𝐵𝑈)
763exp 1118 . . . 4 (𝑈 ∈ Univ → (𝐵𝑈 → (𝑥𝐴 𝑥𝐴 𝐵𝑈)))
87com23 86 . . 3 (𝑈 ∈ Univ → (𝑥𝐴 → (𝐵𝑈 𝑥𝐴 𝐵𝑈)))
91, 3, 8rexlimd 3264 . 2 (𝑈 ∈ Univ → (∃𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵𝑈))
109imp 406 1 ((𝑈 ∈ Univ ∧ ∃𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wrex 3068  wss 3963   ciin 4997  Univcgru 10828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iin 4999  df-br 5149  df-tr 5266  df-iota 6516  df-fv 6571  df-ov 7434  df-gru 10829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator