![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruiin | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruiin | ⊢ ((𝑈 ∈ Univ ∧ ∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑥 𝑈 ∈ Univ | |
2 | nfii1 5031 | . . . 4 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
3 | 2 | nfel1 2917 | . . 3 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 |
4 | iinss2 5059 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) | |
5 | gruss 10793 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) | |
6 | 4, 5 | syl3an3 1163 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝑥 ∈ 𝐴) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
7 | 6 | 3exp 1117 | . . . 4 ⊢ (𝑈 ∈ Univ → (𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈))) |
8 | 7 | com23 86 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑥 ∈ 𝐴 → (𝐵 ∈ 𝑈 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈))) |
9 | 1, 3, 8 | rexlimd 3261 | . 2 ⊢ (𝑈 ∈ Univ → (∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
10 | 9 | imp 405 | 1 ⊢ ((𝑈 ∈ Univ ∧ ∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ∃wrex 3068 ⊆ wss 3947 ∩ ciin 4997 Univcgru 10787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iin 4999 df-br 5148 df-tr 5265 df-iota 6494 df-fv 6550 df-ov 7414 df-gru 10788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |