MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruiin Structured version   Visualization version   GIF version

Theorem gruiin 10704
Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruiin ((𝑈 ∈ Univ ∧ ∃𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Distinct variable groups:   𝑥,𝑈   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem gruiin
StepHypRef Expression
1 nfv 1914 . . 3 𝑥 𝑈 ∈ Univ
2 nfii1 4979 . . . 4 𝑥 𝑥𝐴 𝐵
32nfel1 2908 . . 3 𝑥 𝑥𝐴 𝐵𝑈
4 iinss2 5006 . . . . . 6 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
5 gruss 10690 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝐵𝑈 𝑥𝐴 𝐵𝐵) → 𝑥𝐴 𝐵𝑈)
64, 5syl3an3 1165 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑥𝐴) → 𝑥𝐴 𝐵𝑈)
763exp 1119 . . . 4 (𝑈 ∈ Univ → (𝐵𝑈 → (𝑥𝐴 𝑥𝐴 𝐵𝑈)))
87com23 86 . . 3 (𝑈 ∈ Univ → (𝑥𝐴 → (𝐵𝑈 𝑥𝐴 𝐵𝑈)))
91, 3, 8rexlimd 3236 . 2 (𝑈 ∈ Univ → (∃𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵𝑈))
109imp 406 1 ((𝑈 ∈ Univ ∧ ∃𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wrex 3053  wss 3903   ciin 4942  Univcgru 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iin 4944  df-br 5093  df-tr 5200  df-iota 6438  df-fv 6490  df-ov 7352  df-gru 10685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator