| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruiin | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruiin | ⊢ ((𝑈 ∈ Univ ∧ ∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥 𝑈 ∈ Univ | |
| 2 | nfii1 4993 | . . . 4 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
| 3 | 2 | nfel1 2908 | . . 3 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 |
| 4 | iinss2 5021 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) | |
| 5 | gruss 10749 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) | |
| 6 | 4, 5 | syl3an3 1165 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝑥 ∈ 𝐴) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
| 7 | 6 | 3exp 1119 | . . . 4 ⊢ (𝑈 ∈ Univ → (𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈))) |
| 8 | 7 | com23 86 | . . 3 ⊢ (𝑈 ∈ Univ → (𝑥 ∈ 𝐴 → (𝐵 ∈ 𝑈 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈))) |
| 9 | 1, 3, 8 | rexlimd 3244 | . 2 ⊢ (𝑈 ∈ Univ → (∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
| 10 | 9 | imp 406 | 1 ⊢ ((𝑈 ∈ Univ ∧ ∃𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 ∩ ciin 4956 Univcgru 10743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iin 4958 df-br 5108 df-tr 5215 df-iota 6464 df-fv 6519 df-ov 7390 df-gru 10744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |