Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiininclem Structured version   Visualization version   GIF version

Theorem meaiininclem 44717
Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiininclem.m (𝜑𝑀 ∈ Meas)
meaiininclem.n (𝜑𝑁 ∈ ℤ)
meaiininclem.z 𝑍 = (ℤ𝑁)
meaiininclem.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiininclem.i ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
meaiininclem.k (𝜑𝐾 ∈ (ℤ𝑁))
meaiininclem.r (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
meaiininclem.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
meaiininclem.g 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
meaiininclem.f 𝐹 = 𝑛𝑍 (𝐺𝑛)
Assertion
Ref Expression
meaiininclem (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem meaiininclem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiininclem.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (ℤ𝑁))
2 uzss 12786 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
31, 2syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4 meaiininclem.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑁)
53, 4sseqtrrdi 3995 . . . . . . . . . . . 12 (𝜑 → (ℤ𝐾) ⊆ 𝑍)
65adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝑍)
7 simpr 485 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛 ∈ (ℤ𝐾))
86, 7sseldd 3945 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛𝑍)
9 meaiininclem.g . . . . . . . . . . . 12 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
109a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))))
11 meaiininclem.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ Meas)
12 eqid 2736 . . . . . . . . . . . . . . 15 dom 𝑀 = dom 𝑀
1311, 12dmmeasal 44683 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1413adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom 𝑀 ∈ SAlg)
151, 4eleqtrrdi 2849 . . . . . . . . . . . . . . 15 (𝜑𝐾𝑍)
16 meaiininclem.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍⟶dom 𝑀)
1716ffvelcdmda 7035 . . . . . . . . . . . . . . 15 ((𝜑𝐾𝑍) → (𝐸𝐾) ∈ dom 𝑀)
1815, 17mpdan 685 . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝐾) ∈ dom 𝑀)
1918adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝐾) ∈ dom 𝑀)
2016ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
21 saldifcl2 44559 . . . . . . . . . . . . 13 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀 ∧ (𝐸𝑛) ∈ dom 𝑀) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2214, 19, 20, 21syl3anc 1371 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2322elexd 3465 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ V)
2410, 23fvmpt2d 6961 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
258, 24syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
2625fveq2d 6846 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))))
2711adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑀 ∈ Meas)
2818adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝐾) ∈ dom 𝑀)
29 meaiininclem.r . . . . . . . . . 10 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
3029adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℝ)
318, 20syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ∈ dom 𝑀)
32 simpl 483 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝜑)
3332, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (ℤ𝐾) ⊆ 𝑍)
34 elfzouz 13576 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐾..^𝑛) → 𝑚 ∈ (ℤ𝐾))
3534adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚 ∈ (ℤ𝐾))
3633, 35sseldd 3945 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚𝑍)
37 eleq1w 2820 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛𝑍𝑚𝑍))
3837anbi2d 629 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛𝑍) ↔ (𝜑𝑚𝑍)))
39 fvoveq1 7380 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑚 + 1)))
40 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
4139, 40sseq12d 3977 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛) ↔ (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚)))
4238, 41imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛)) ↔ ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))))
43 meaiininclem.i . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
4442, 43chvarvv 2002 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4532, 36, 44syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4645adantlr 713 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝐾)) ∧ 𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
477, 46ssdec 43288 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ⊆ (𝐸𝐾))
4827, 28, 30, 31, 47meadif 44710 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
4926, 48eqtrd 2776 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
5049oveq2d 7373 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))) = ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))))
5129recnd 11183 . . . . . . . 8 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5251adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5327, 28, 30, 47, 31meassre 44708 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℝ)
5453recnd 11183 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℂ)
5552, 54nncand 11517 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))) = (𝑀‘(𝐸𝑛)))
5650, 55eqtr2d 2777 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))))
5756mpteq2dva 5205 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))))
58 nfv 1917 . . . . 5 𝑛𝜑
59 eqid 2736 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
601eluzelzd 43599 . . . . 5 (𝜑𝐾 ∈ ℤ)
61 difssd 4092 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ (𝐸𝐾))
6224, 61eqsstrd 3982 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐸𝐾))
638, 62syldan 591 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ⊆ (𝐸𝐾))
6422, 9fmptd 7062 . . . . . . . . 9 (𝜑𝐺:𝑍⟶dom 𝑀)
6564ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ dom 𝑀)
668, 65syldan 591 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ∈ dom 𝑀)
6727, 28, 30, 63, 66meassre 44708 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℝ)
6867recnd 11183 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℂ)
69 meaiininclem.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
7043sscond 4101 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
7140difeq2d 4082 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐸𝐾) ∖ (𝐸𝑛)) = ((𝐸𝐾) ∖ (𝐸𝑚)))
7271cbvmptv 5218 . . . . . . . . . . . 12 (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))) = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
739, 72eqtri 2764 . . . . . . . . . . 11 𝐺 = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
74 fveq2 6842 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝐸𝑚) = (𝐸‘(𝑛 + 1)))
7574difeq2d 4082 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝐸𝐾) ∖ (𝐸𝑚)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
764peano2uzs 12827 . . . . . . . . . . . 12 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
7776adantl 482 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑛 + 1) ∈ 𝑍)
78 fvex 6855 . . . . . . . . . . . . 13 (𝐸𝐾) ∈ V
7978difexi 5285 . . . . . . . . . . . 12 ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V
8079a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V)
8173, 75, 77, 80fvmptd3 6971 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺‘(𝑛 + 1)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
8224, 81sseq12d 3977 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)) ↔ ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1)))))
8370, 82mpbird 256 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)))
8411adantr 481 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
8584, 12, 65, 19, 62meassle 44694 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑀‘(𝐺𝑛)) ≤ (𝑀‘(𝐸𝐾)))
86 eqid 2736 . . . . . . . 8 (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛)))
8711, 69, 4, 64, 83, 29, 85, 86meaiuninc2 44713 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
88 eqid 2736 . . . . . . . 8 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛)))
894, 86, 15, 88climresmpt 43890 . . . . . . 7 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛))))
9087, 89mpbird 256 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
91 meaiininclem.f . . . . . . . . 9 𝐹 = 𝑛𝑍 (𝐺𝑛)
9291eqcomi 2745 . . . . . . . 8 𝑛𝑍 (𝐺𝑛) = 𝐹
9392fveq2i 6845 . . . . . . 7 (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹)
9493a1i 11 . . . . . 6 (𝜑 → (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹))
9590, 94breqtrd 5131 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀𝐹))
9658, 59, 60, 51, 68, 95climsubc1mpt 43893 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
9757, 96eqbrtrd 5127 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
98 eqid 2736 . . . 4 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
99 eqid 2736 . . . 4 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛)))
1004, 98, 15, 99climresmpt 43890 . . 3 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
10197, 100mpbid 231 . 2 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
102 meaiininclem.s . . . 4 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
103102a1i 11 . . 3 (𝜑𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))))
104 eqidd 2737 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))))
1054uzct 43261 . . . . . . . . . 10 𝑍 ≼ ω
106105a1i 11 . . . . . . . . 9 (𝜑𝑍 ≼ ω)
10713, 106, 65saliuncl 44554 . . . . . . . 8 (𝜑 𝑛𝑍 (𝐺𝑛) ∈ dom 𝑀)
10891, 107eqeltrid 2842 . . . . . . 7 (𝜑𝐹 ∈ dom 𝑀)
109 saldifcl2 44559 . . . . . . . 8 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀𝐹 ∈ dom 𝑀) → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
11013, 18, 108, 109syl3anc 1371 . . . . . . 7 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
111 disjdif 4431 . . . . . . . 8 (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅
112111a1i 11 . . . . . . 7 (𝜑 → (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅)
11362iunssd 5010 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐺𝑛) ⊆ (𝐸𝐾))
11491, 113eqsstrid 3992 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸𝐾))
11511, 18, 29, 114, 108meassre 44708 . . . . . . 7 (𝜑 → (𝑀𝐹) ∈ ℝ)
116 difssd 4092 . . . . . . . 8 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ (𝐸𝐾))
11711, 18, 29, 116, 110meassre 44708 . . . . . . 7 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℝ)
11811, 12, 108, 110, 112, 115, 117meadjunre 44707 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))))
119 undif 4441 . . . . . . . 8 (𝐹 ⊆ (𝐸𝐾) ↔ (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
120114, 119sylib 217 . . . . . . 7 (𝜑 → (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
121120fveq2d 6846 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
122104, 118, 1213eqtr3d 2784 . . . . 5 (𝜑 → ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
123115recnd 11183 . . . . . 6 (𝜑 → (𝑀𝐹) ∈ ℂ)
124117recnd 11183 . . . . . 6 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℂ)
12551, 123, 124subaddd 11530 . . . . 5 (𝜑 → (((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)) ↔ ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾))))
126122, 125mpbird 256 . . . 4 (𝜑 → ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)))
127 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
128 simplr 767 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍)
129 eldifi 4086 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) → 𝑥 ∈ (𝐸𝐾))
130129ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
131 simpr 485 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ (𝐸𝑛))
132130, 131eldifd 3921 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
133 rspe 3232 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
134128, 132, 133syl2anc 584 . . . . . . . . . . . . . 14 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
135 eliun 4958 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
136134, 135sylibr 233 . . . . . . . . . . . . 13 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
137136adantlll 716 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
13891a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐹 = 𝑛𝑍 (𝐺𝑛))
13924iuneq2dv 4978 . . . . . . . . . . . . . . 15 (𝜑 𝑛𝑍 (𝐺𝑛) = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
140138, 139eqtrd 2776 . . . . . . . . . . . . . 14 (𝜑𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
141140eqcomd 2742 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
142141ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
143137, 142eleqtrd 2840 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥𝐹)
144 elndif 4088 . . . . . . . . . . 11 (𝑥𝐹 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
145143, 144syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
146127, 145condan 816 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
147146ralrimiva 3143 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
148 vex 3449 . . . . . . . . 9 𝑥 ∈ V
149 eliin 4959 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛)))
150148, 149ax-mp 5 . . . . . . . 8 (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
151147, 150sylibr 233 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → 𝑥 𝑛𝑍 (𝐸𝑛))
152151ssd 43280 . . . . . 6 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ 𝑛𝑍 (𝐸𝑛))
153 ssid 3966 . . . . . . . . . . . 12 (𝐸𝐾) ⊆ (𝐸𝐾)
154153a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐸𝐾) ⊆ (𝐸𝐾))
155 fveq2 6842 . . . . . . . . . . . . 13 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
156155sseq1d 3975 . . . . . . . . . . . 12 (𝑛 = 𝐾 → ((𝐸𝑛) ⊆ (𝐸𝐾) ↔ (𝐸𝐾) ⊆ (𝐸𝐾)))
157156rspcev 3581 . . . . . . . . . . 11 ((𝐾𝑍 ∧ (𝐸𝐾) ⊆ (𝐸𝐾)) → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
15815, 154, 157syl2anc 584 . . . . . . . . . 10 (𝜑 → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
159 iinss 5016 . . . . . . . . . 10 (∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
160158, 159syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
161160adantr 481 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
162 simpr 485 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 𝑛𝑍 (𝐸𝑛))
163161, 162sseldd 3945 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
164 nfcv 2907 . . . . . . . . . . . . 13 𝑛𝑥
165 nfii1 4989 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 (𝐸𝑛)
166164, 165nfel 2921 . . . . . . . . . . . 12 𝑛 𝑥 𝑛𝑍 (𝐸𝑛)
167 iinss2 5017 . . . . . . . . . . . . . . . 16 (𝑛𝑍 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
168167adantl 482 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
169 simpl 483 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 (𝐸𝑛))
170168, 169sseldd 3945 . . . . . . . . . . . . . 14 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
171 elndif 4088 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐸𝑛) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
172170, 171syl 17 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
173172ex 413 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 (𝐸𝑛) → (𝑛𝑍 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))))
174166, 173ralrimi 3240 . . . . . . . . . . 11 (𝑥 𝑛𝑍 (𝐸𝑛) → ∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
175 ralnex 3075 . . . . . . . . . . 11 (∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
176174, 175sylib 217 . . . . . . . . . 10 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
177176, 135sylnibr 328 . . . . . . . . 9 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
178177adantl 482 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
179140adantr 481 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
180178, 179neleqtrrd 2860 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥𝐹)
181163, 180eldifd 3921 . . . . . 6 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
182152, 181eqelssd 3965 . . . . 5 (𝜑 → ((𝐸𝐾) ∖ 𝐹) = 𝑛𝑍 (𝐸𝑛))
183182fveq2d 6846 . . . 4 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) = (𝑀 𝑛𝑍 (𝐸𝑛)))
184126, 183eqtr2d 2777 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
185103, 184breq12d 5118 . 2 (𝜑 → (𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
186101, 185mpbird 256 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282   ciun 4954   ciin 4955   class class class wbr 5105  cmpt 5188  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  ωcom 7802  cdom 8881  cc 11049  cr 11050  1c1 11052   + caddc 11054  cmin 11385  cz 12499  cuz 12763  ..^cfzo 13567  cli 15366  SAlgcsalg 44539  Meascmea 44680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-xadd 13034  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-salg 44540  df-sumge0 44594  df-mea 44681
This theorem is referenced by:  meaiininc  44718
  Copyright terms: Public domain W3C validator