Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiininclem Structured version   Visualization version   GIF version

Theorem meaiininclem 43125
Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiininclem.m (𝜑𝑀 ∈ Meas)
meaiininclem.n (𝜑𝑁 ∈ ℤ)
meaiininclem.z 𝑍 = (ℤ𝑁)
meaiininclem.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiininclem.i ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
meaiininclem.k (𝜑𝐾 ∈ (ℤ𝑁))
meaiininclem.r (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
meaiininclem.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
meaiininclem.g 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
meaiininclem.f 𝐹 = 𝑛𝑍 (𝐺𝑛)
Assertion
Ref Expression
meaiininclem (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem meaiininclem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiininclem.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (ℤ𝑁))
2 uzss 12253 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
31, 2syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4 meaiininclem.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑁)
53, 4sseqtrrdi 3966 . . . . . . . . . . . 12 (𝜑 → (ℤ𝐾) ⊆ 𝑍)
65adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝑍)
7 simpr 488 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛 ∈ (ℤ𝐾))
86, 7sseldd 3916 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛𝑍)
9 meaiininclem.g . . . . . . . . . . . 12 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
109a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))))
11 meaiininclem.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ Meas)
12 eqid 2798 . . . . . . . . . . . . . . 15 dom 𝑀 = dom 𝑀
1311, 12dmmeasal 43091 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1413adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom 𝑀 ∈ SAlg)
151, 4eleqtrrdi 2901 . . . . . . . . . . . . . . 15 (𝜑𝐾𝑍)
16 meaiininclem.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍⟶dom 𝑀)
1716ffvelrnda 6828 . . . . . . . . . . . . . . 15 ((𝜑𝐾𝑍) → (𝐸𝐾) ∈ dom 𝑀)
1815, 17mpdan 686 . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝐾) ∈ dom 𝑀)
1918adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝐾) ∈ dom 𝑀)
2016ffvelrnda 6828 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
21 saldifcl2 42968 . . . . . . . . . . . . 13 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀 ∧ (𝐸𝑛) ∈ dom 𝑀) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2214, 19, 20, 21syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2322elexd 3461 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ V)
2410, 23fvmpt2d 6758 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
258, 24syldan 594 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
2625fveq2d 6649 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))))
2711adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑀 ∈ Meas)
2818adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝐾) ∈ dom 𝑀)
29 meaiininclem.r . . . . . . . . . 10 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
3029adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℝ)
318, 20syldan 594 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ∈ dom 𝑀)
32 simpl 486 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝜑)
3332, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (ℤ𝐾) ⊆ 𝑍)
34 elfzouz 13037 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐾..^𝑛) → 𝑚 ∈ (ℤ𝐾))
3534adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚 ∈ (ℤ𝐾))
3633, 35sseldd 3916 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚𝑍)
37 eleq1w 2872 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛𝑍𝑚𝑍))
3837anbi2d 631 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛𝑍) ↔ (𝜑𝑚𝑍)))
39 fvoveq1 7158 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑚 + 1)))
40 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
4139, 40sseq12d 3948 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛) ↔ (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚)))
4238, 41imbi12d 348 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛)) ↔ ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))))
43 meaiininclem.i . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
4442, 43chvarvv 2005 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4532, 36, 44syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4645adantlr 714 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝐾)) ∧ 𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
477, 46ssdec 41724 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ⊆ (𝐸𝐾))
4827, 28, 30, 31, 47meadif 43118 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
4926, 48eqtrd 2833 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
5049oveq2d 7151 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))) = ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))))
5129recnd 10658 . . . . . . . 8 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5251adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5327, 28, 30, 47, 31meassre 43116 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℝ)
5453recnd 10658 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℂ)
5552, 54nncand 10991 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))) = (𝑀‘(𝐸𝑛)))
5650, 55eqtr2d 2834 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))))
5756mpteq2dva 5125 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))))
58 nfv 1915 . . . . 5 𝑛𝜑
59 eqid 2798 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
601eluzelzd 42007 . . . . 5 (𝜑𝐾 ∈ ℤ)
61 difssd 4060 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ (𝐸𝐾))
6224, 61eqsstrd 3953 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐸𝐾))
638, 62syldan 594 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ⊆ (𝐸𝐾))
6422, 9fmptd 6855 . . . . . . . . 9 (𝜑𝐺:𝑍⟶dom 𝑀)
6564ffvelrnda 6828 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ dom 𝑀)
668, 65syldan 594 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ∈ dom 𝑀)
6727, 28, 30, 63, 66meassre 43116 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℝ)
6867recnd 10658 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℂ)
69 meaiininclem.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
7043sscond 4069 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
7140difeq2d 4050 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐸𝐾) ∖ (𝐸𝑛)) = ((𝐸𝐾) ∖ (𝐸𝑚)))
7271cbvmptv 5133 . . . . . . . . . . . 12 (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))) = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
739, 72eqtri 2821 . . . . . . . . . . 11 𝐺 = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
74 fveq2 6645 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝐸𝑚) = (𝐸‘(𝑛 + 1)))
7574difeq2d 4050 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝐸𝐾) ∖ (𝐸𝑚)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
764peano2uzs 12290 . . . . . . . . . . . 12 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
7776adantl 485 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑛 + 1) ∈ 𝑍)
78 fvex 6658 . . . . . . . . . . . . 13 (𝐸𝐾) ∈ V
7978difexi 5196 . . . . . . . . . . . 12 ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V
8079a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V)
8173, 75, 77, 80fvmptd3 6768 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺‘(𝑛 + 1)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
8224, 81sseq12d 3948 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)) ↔ ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1)))))
8370, 82mpbird 260 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)))
8411adantr 484 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
8584, 12, 65, 19, 62meassle 43102 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑀‘(𝐺𝑛)) ≤ (𝑀‘(𝐸𝐾)))
86 eqid 2798 . . . . . . . 8 (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛)))
8711, 69, 4, 64, 83, 29, 85, 86meaiuninc2 43121 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
88 eqid 2798 . . . . . . . 8 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛)))
894, 86, 15, 88climresmpt 42301 . . . . . . 7 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛))))
9087, 89mpbird 260 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
91 meaiininclem.f . . . . . . . . 9 𝐹 = 𝑛𝑍 (𝐺𝑛)
9291eqcomi 2807 . . . . . . . 8 𝑛𝑍 (𝐺𝑛) = 𝐹
9392fveq2i 6648 . . . . . . 7 (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹)
9493a1i 11 . . . . . 6 (𝜑 → (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹))
9590, 94breqtrd 5056 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀𝐹))
9658, 59, 60, 51, 68, 95climsubc1mpt 42304 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
9757, 96eqbrtrd 5052 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
98 eqid 2798 . . . 4 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
99 eqid 2798 . . . 4 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛)))
1004, 98, 15, 99climresmpt 42301 . . 3 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
10197, 100mpbid 235 . 2 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
102 meaiininclem.s . . . 4 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
103102a1i 11 . . 3 (𝜑𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))))
104 eqidd 2799 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))))
1054uzct 41697 . . . . . . . . . 10 𝑍 ≼ ω
106105a1i 11 . . . . . . . . 9 (𝜑𝑍 ≼ ω)
10713, 106, 65saliuncl 42964 . . . . . . . 8 (𝜑 𝑛𝑍 (𝐺𝑛) ∈ dom 𝑀)
10891, 107eqeltrid 2894 . . . . . . 7 (𝜑𝐹 ∈ dom 𝑀)
109 saldifcl2 42968 . . . . . . . 8 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀𝐹 ∈ dom 𝑀) → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
11013, 18, 108, 109syl3anc 1368 . . . . . . 7 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
111 disjdif 4379 . . . . . . . 8 (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅
112111a1i 11 . . . . . . 7 (𝜑 → (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅)
11362iunssd 4937 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐺𝑛) ⊆ (𝐸𝐾))
11491, 113eqsstrid 3963 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸𝐾))
11511, 18, 29, 114, 108meassre 43116 . . . . . . 7 (𝜑 → (𝑀𝐹) ∈ ℝ)
116 difssd 4060 . . . . . . . 8 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ (𝐸𝐾))
11711, 18, 29, 116, 110meassre 43116 . . . . . . 7 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℝ)
11811, 12, 108, 110, 112, 115, 117meadjunre 43115 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))))
119 undif 4388 . . . . . . . 8 (𝐹 ⊆ (𝐸𝐾) ↔ (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
120114, 119sylib 221 . . . . . . 7 (𝜑 → (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
121120fveq2d 6649 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
122104, 118, 1213eqtr3d 2841 . . . . 5 (𝜑 → ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
123115recnd 10658 . . . . . 6 (𝜑 → (𝑀𝐹) ∈ ℂ)
124117recnd 10658 . . . . . 6 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℂ)
12551, 123, 124subaddd 11004 . . . . 5 (𝜑 → (((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)) ↔ ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾))))
126122, 125mpbird 260 . . . 4 (𝜑 → ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)))
127 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
128 simplr 768 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍)
129 eldifi 4054 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) → 𝑥 ∈ (𝐸𝐾))
130129ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
131 simpr 488 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ (𝐸𝑛))
132130, 131eldifd 3892 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
133 rspe 3263 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
134128, 132, 133syl2anc 587 . . . . . . . . . . . . . 14 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
135 eliun 4885 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
136134, 135sylibr 237 . . . . . . . . . . . . 13 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
137136adantlll 717 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
13891a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐹 = 𝑛𝑍 (𝐺𝑛))
13924iuneq2dv 4905 . . . . . . . . . . . . . . 15 (𝜑 𝑛𝑍 (𝐺𝑛) = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
140138, 139eqtrd 2833 . . . . . . . . . . . . . 14 (𝜑𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
141140eqcomd 2804 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
142141ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
143137, 142eleqtrd 2892 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥𝐹)
144 elndif 4056 . . . . . . . . . . 11 (𝑥𝐹 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
145143, 144syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
146127, 145condan 817 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
147146ralrimiva 3149 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
148 vex 3444 . . . . . . . . 9 𝑥 ∈ V
149 eliin 4886 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛)))
150148, 149ax-mp 5 . . . . . . . 8 (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
151147, 150sylibr 237 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → 𝑥 𝑛𝑍 (𝐸𝑛))
152151ssd 41716 . . . . . 6 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ 𝑛𝑍 (𝐸𝑛))
153 ssid 3937 . . . . . . . . . . . 12 (𝐸𝐾) ⊆ (𝐸𝐾)
154153a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐸𝐾) ⊆ (𝐸𝐾))
155 fveq2 6645 . . . . . . . . . . . . 13 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
156155sseq1d 3946 . . . . . . . . . . . 12 (𝑛 = 𝐾 → ((𝐸𝑛) ⊆ (𝐸𝐾) ↔ (𝐸𝐾) ⊆ (𝐸𝐾)))
157156rspcev 3571 . . . . . . . . . . 11 ((𝐾𝑍 ∧ (𝐸𝐾) ⊆ (𝐸𝐾)) → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
15815, 154, 157syl2anc 587 . . . . . . . . . 10 (𝜑 → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
159 iinss 4943 . . . . . . . . . 10 (∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
160158, 159syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
161160adantr 484 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
162 simpr 488 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 𝑛𝑍 (𝐸𝑛))
163161, 162sseldd 3916 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
164 nfcv 2955 . . . . . . . . . . . . 13 𝑛𝑥
165 nfii1 4916 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 (𝐸𝑛)
166164, 165nfel 2969 . . . . . . . . . . . 12 𝑛 𝑥 𝑛𝑍 (𝐸𝑛)
167 iinss2 4944 . . . . . . . . . . . . . . . 16 (𝑛𝑍 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
168167adantl 485 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
169 simpl 486 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 (𝐸𝑛))
170168, 169sseldd 3916 . . . . . . . . . . . . . 14 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
171 elndif 4056 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐸𝑛) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
172170, 171syl 17 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
173172ex 416 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 (𝐸𝑛) → (𝑛𝑍 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))))
174166, 173ralrimi 3180 . . . . . . . . . . 11 (𝑥 𝑛𝑍 (𝐸𝑛) → ∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
175 ralnex 3199 . . . . . . . . . . 11 (∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
176174, 175sylib 221 . . . . . . . . . 10 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
177176, 135sylnibr 332 . . . . . . . . 9 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
178177adantl 485 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
179140adantr 484 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
180178, 179neleqtrrd 2912 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥𝐹)
181163, 180eldifd 3892 . . . . . 6 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
182152, 181eqelssd 3936 . . . . 5 (𝜑 → ((𝐸𝐾) ∖ 𝐹) = 𝑛𝑍 (𝐸𝑛))
183182fveq2d 6649 . . . 4 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) = (𝑀 𝑛𝑍 (𝐸𝑛)))
184126, 183eqtr2d 2834 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
185103, 184breq12d 5043 . 2 (𝜑 → (𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
186101, 185mpbird 260 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243   ciun 4881   ciin 4882   class class class wbr 5030  cmpt 5110  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  ωcom 7560  cdom 8490  cc 10524  cr 10525  1c1 10527   + caddc 10529  cmin 10859  cz 11969  cuz 12231  ..^cfzo 13028  cli 14833  SAlgcsalg 42950  Meascmea 43088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-salg 42951  df-sumge0 43002  df-mea 43089
This theorem is referenced by:  meaiininc  43126
  Copyright terms: Public domain W3C validator