Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiininclem Structured version   Visualization version   GIF version

Theorem meaiininclem 43699
Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiininclem.m (𝜑𝑀 ∈ Meas)
meaiininclem.n (𝜑𝑁 ∈ ℤ)
meaiininclem.z 𝑍 = (ℤ𝑁)
meaiininclem.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiininclem.i ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
meaiininclem.k (𝜑𝐾 ∈ (ℤ𝑁))
meaiininclem.r (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
meaiininclem.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
meaiininclem.g 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
meaiininclem.f 𝐹 = 𝑛𝑍 (𝐺𝑛)
Assertion
Ref Expression
meaiininclem (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem meaiininclem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiininclem.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (ℤ𝑁))
2 uzss 12461 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
31, 2syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4 meaiininclem.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑁)
53, 4sseqtrrdi 3952 . . . . . . . . . . . 12 (𝜑 → (ℤ𝐾) ⊆ 𝑍)
65adantr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝑍)
7 simpr 488 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛 ∈ (ℤ𝐾))
86, 7sseldd 3902 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛𝑍)
9 meaiininclem.g . . . . . . . . . . . 12 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
109a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))))
11 meaiininclem.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ Meas)
12 eqid 2737 . . . . . . . . . . . . . . 15 dom 𝑀 = dom 𝑀
1311, 12dmmeasal 43665 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1413adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom 𝑀 ∈ SAlg)
151, 4eleqtrrdi 2849 . . . . . . . . . . . . . . 15 (𝜑𝐾𝑍)
16 meaiininclem.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍⟶dom 𝑀)
1716ffvelrnda 6904 . . . . . . . . . . . . . . 15 ((𝜑𝐾𝑍) → (𝐸𝐾) ∈ dom 𝑀)
1815, 17mpdan 687 . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝐾) ∈ dom 𝑀)
1918adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝐾) ∈ dom 𝑀)
2016ffvelrnda 6904 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
21 saldifcl2 43542 . . . . . . . . . . . . 13 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀 ∧ (𝐸𝑛) ∈ dom 𝑀) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2214, 19, 20, 21syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2322elexd 3428 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ V)
2410, 23fvmpt2d 6831 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
258, 24syldan 594 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
2625fveq2d 6721 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))))
2711adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑀 ∈ Meas)
2818adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝐾) ∈ dom 𝑀)
29 meaiininclem.r . . . . . . . . . 10 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
3029adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℝ)
318, 20syldan 594 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ∈ dom 𝑀)
32 simpl 486 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝜑)
3332, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (ℤ𝐾) ⊆ 𝑍)
34 elfzouz 13247 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐾..^𝑛) → 𝑚 ∈ (ℤ𝐾))
3534adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚 ∈ (ℤ𝐾))
3633, 35sseldd 3902 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚𝑍)
37 eleq1w 2820 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛𝑍𝑚𝑍))
3837anbi2d 632 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛𝑍) ↔ (𝜑𝑚𝑍)))
39 fvoveq1 7236 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑚 + 1)))
40 fveq2 6717 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
4139, 40sseq12d 3934 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛) ↔ (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚)))
4238, 41imbi12d 348 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛)) ↔ ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))))
43 meaiininclem.i . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
4442, 43chvarvv 2007 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4532, 36, 44syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4645adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝐾)) ∧ 𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
477, 46ssdec 42311 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ⊆ (𝐸𝐾))
4827, 28, 30, 31, 47meadif 43692 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
4926, 48eqtrd 2777 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
5049oveq2d 7229 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))) = ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))))
5129recnd 10861 . . . . . . . 8 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5251adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5327, 28, 30, 47, 31meassre 43690 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℝ)
5453recnd 10861 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℂ)
5552, 54nncand 11194 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))) = (𝑀‘(𝐸𝑛)))
5650, 55eqtr2d 2778 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))))
5756mpteq2dva 5150 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))))
58 nfv 1922 . . . . 5 𝑛𝜑
59 eqid 2737 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
601eluzelzd 42587 . . . . 5 (𝜑𝐾 ∈ ℤ)
61 difssd 4047 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ (𝐸𝐾))
6224, 61eqsstrd 3939 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐸𝐾))
638, 62syldan 594 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ⊆ (𝐸𝐾))
6422, 9fmptd 6931 . . . . . . . . 9 (𝜑𝐺:𝑍⟶dom 𝑀)
6564ffvelrnda 6904 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ dom 𝑀)
668, 65syldan 594 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ∈ dom 𝑀)
6727, 28, 30, 63, 66meassre 43690 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℝ)
6867recnd 10861 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℂ)
69 meaiininclem.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
7043sscond 4056 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
7140difeq2d 4037 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐸𝐾) ∖ (𝐸𝑛)) = ((𝐸𝐾) ∖ (𝐸𝑚)))
7271cbvmptv 5158 . . . . . . . . . . . 12 (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))) = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
739, 72eqtri 2765 . . . . . . . . . . 11 𝐺 = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
74 fveq2 6717 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝐸𝑚) = (𝐸‘(𝑛 + 1)))
7574difeq2d 4037 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝐸𝐾) ∖ (𝐸𝑚)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
764peano2uzs 12498 . . . . . . . . . . . 12 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
7776adantl 485 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑛 + 1) ∈ 𝑍)
78 fvex 6730 . . . . . . . . . . . . 13 (𝐸𝐾) ∈ V
7978difexi 5221 . . . . . . . . . . . 12 ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V
8079a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V)
8173, 75, 77, 80fvmptd3 6841 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺‘(𝑛 + 1)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
8224, 81sseq12d 3934 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)) ↔ ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1)))))
8370, 82mpbird 260 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)))
8411adantr 484 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
8584, 12, 65, 19, 62meassle 43676 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑀‘(𝐺𝑛)) ≤ (𝑀‘(𝐸𝐾)))
86 eqid 2737 . . . . . . . 8 (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛)))
8711, 69, 4, 64, 83, 29, 85, 86meaiuninc2 43695 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
88 eqid 2737 . . . . . . . 8 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛)))
894, 86, 15, 88climresmpt 42875 . . . . . . 7 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛))))
9087, 89mpbird 260 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
91 meaiininclem.f . . . . . . . . 9 𝐹 = 𝑛𝑍 (𝐺𝑛)
9291eqcomi 2746 . . . . . . . 8 𝑛𝑍 (𝐺𝑛) = 𝐹
9392fveq2i 6720 . . . . . . 7 (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹)
9493a1i 11 . . . . . 6 (𝜑 → (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹))
9590, 94breqtrd 5079 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀𝐹))
9658, 59, 60, 51, 68, 95climsubc1mpt 42878 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
9757, 96eqbrtrd 5075 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
98 eqid 2737 . . . 4 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
99 eqid 2737 . . . 4 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛)))
1004, 98, 15, 99climresmpt 42875 . . 3 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
10197, 100mpbid 235 . 2 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
102 meaiininclem.s . . . 4 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
103102a1i 11 . . 3 (𝜑𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))))
104 eqidd 2738 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))))
1054uzct 42284 . . . . . . . . . 10 𝑍 ≼ ω
106105a1i 11 . . . . . . . . 9 (𝜑𝑍 ≼ ω)
10713, 106, 65saliuncl 43538 . . . . . . . 8 (𝜑 𝑛𝑍 (𝐺𝑛) ∈ dom 𝑀)
10891, 107eqeltrid 2842 . . . . . . 7 (𝜑𝐹 ∈ dom 𝑀)
109 saldifcl2 43542 . . . . . . . 8 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀𝐹 ∈ dom 𝑀) → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
11013, 18, 108, 109syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
111 disjdif 4386 . . . . . . . 8 (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅
112111a1i 11 . . . . . . 7 (𝜑 → (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅)
11362iunssd 4959 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐺𝑛) ⊆ (𝐸𝐾))
11491, 113eqsstrid 3949 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸𝐾))
11511, 18, 29, 114, 108meassre 43690 . . . . . . 7 (𝜑 → (𝑀𝐹) ∈ ℝ)
116 difssd 4047 . . . . . . . 8 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ (𝐸𝐾))
11711, 18, 29, 116, 110meassre 43690 . . . . . . 7 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℝ)
11811, 12, 108, 110, 112, 115, 117meadjunre 43689 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))))
119 undif 4396 . . . . . . . 8 (𝐹 ⊆ (𝐸𝐾) ↔ (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
120114, 119sylib 221 . . . . . . 7 (𝜑 → (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
121120fveq2d 6721 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
122104, 118, 1213eqtr3d 2785 . . . . 5 (𝜑 → ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
123115recnd 10861 . . . . . 6 (𝜑 → (𝑀𝐹) ∈ ℂ)
124117recnd 10861 . . . . . 6 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℂ)
12551, 123, 124subaddd 11207 . . . . 5 (𝜑 → (((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)) ↔ ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾))))
126122, 125mpbird 260 . . . 4 (𝜑 → ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)))
127 simpllr 776 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
128 simplr 769 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍)
129 eldifi 4041 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) → 𝑥 ∈ (𝐸𝐾))
130129ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
131 simpr 488 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ (𝐸𝑛))
132130, 131eldifd 3877 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
133 rspe 3223 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
134128, 132, 133syl2anc 587 . . . . . . . . . . . . . 14 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
135 eliun 4908 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
136134, 135sylibr 237 . . . . . . . . . . . . 13 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
137136adantlll 718 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
13891a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐹 = 𝑛𝑍 (𝐺𝑛))
13924iuneq2dv 4928 . . . . . . . . . . . . . . 15 (𝜑 𝑛𝑍 (𝐺𝑛) = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
140138, 139eqtrd 2777 . . . . . . . . . . . . . 14 (𝜑𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
141140eqcomd 2743 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
142141ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
143137, 142eleqtrd 2840 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥𝐹)
144 elndif 4043 . . . . . . . . . . 11 (𝑥𝐹 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
145143, 144syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
146127, 145condan 818 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
147146ralrimiva 3105 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
148 vex 3412 . . . . . . . . 9 𝑥 ∈ V
149 eliin 4909 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛)))
150148, 149ax-mp 5 . . . . . . . 8 (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
151147, 150sylibr 237 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → 𝑥 𝑛𝑍 (𝐸𝑛))
152151ssd 42303 . . . . . 6 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ 𝑛𝑍 (𝐸𝑛))
153 ssid 3923 . . . . . . . . . . . 12 (𝐸𝐾) ⊆ (𝐸𝐾)
154153a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐸𝐾) ⊆ (𝐸𝐾))
155 fveq2 6717 . . . . . . . . . . . . 13 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
156155sseq1d 3932 . . . . . . . . . . . 12 (𝑛 = 𝐾 → ((𝐸𝑛) ⊆ (𝐸𝐾) ↔ (𝐸𝐾) ⊆ (𝐸𝐾)))
157156rspcev 3537 . . . . . . . . . . 11 ((𝐾𝑍 ∧ (𝐸𝐾) ⊆ (𝐸𝐾)) → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
15815, 154, 157syl2anc 587 . . . . . . . . . 10 (𝜑 → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
159 iinss 4965 . . . . . . . . . 10 (∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
160158, 159syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
161160adantr 484 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
162 simpr 488 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 𝑛𝑍 (𝐸𝑛))
163161, 162sseldd 3902 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
164 nfcv 2904 . . . . . . . . . . . . 13 𝑛𝑥
165 nfii1 4939 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 (𝐸𝑛)
166164, 165nfel 2918 . . . . . . . . . . . 12 𝑛 𝑥 𝑛𝑍 (𝐸𝑛)
167 iinss2 4966 . . . . . . . . . . . . . . . 16 (𝑛𝑍 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
168167adantl 485 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
169 simpl 486 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 (𝐸𝑛))
170168, 169sseldd 3902 . . . . . . . . . . . . . 14 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
171 elndif 4043 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐸𝑛) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
172170, 171syl 17 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
173172ex 416 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 (𝐸𝑛) → (𝑛𝑍 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))))
174166, 173ralrimi 3137 . . . . . . . . . . 11 (𝑥 𝑛𝑍 (𝐸𝑛) → ∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
175 ralnex 3158 . . . . . . . . . . 11 (∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
176174, 175sylib 221 . . . . . . . . . 10 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
177176, 135sylnibr 332 . . . . . . . . 9 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
178177adantl 485 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
179140adantr 484 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
180178, 179neleqtrrd 2860 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥𝐹)
181163, 180eldifd 3877 . . . . . 6 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
182152, 181eqelssd 3922 . . . . 5 (𝜑 → ((𝐸𝐾) ∖ 𝐹) = 𝑛𝑍 (𝐸𝑛))
183182fveq2d 6721 . . . 4 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) = (𝑀 𝑛𝑍 (𝐸𝑛)))
184126, 183eqtr2d 2778 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
185103, 184breq12d 5066 . 2 (𝜑 → (𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
186101, 185mpbird 260 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408  cdif 3863  cun 3864  cin 3865  wss 3866  c0 4237   ciun 4904   ciin 4905   class class class wbr 5053  cmpt 5135  dom cdm 5551  wf 6376  cfv 6380  (class class class)co 7213  ωcom 7644  cdom 8624  cc 10727  cr 10728  1c1 10730   + caddc 10732  cmin 11062  cz 12176  cuz 12438  ..^cfzo 13238  cli 15045  SAlgcsalg 43524  Meascmea 43662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-oi 9126  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-xadd 12705  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-salg 43525  df-sumge0 43576  df-mea 43663
This theorem is referenced by:  meaiininc  43700
  Copyright terms: Public domain W3C validator