Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiininclem Structured version   Visualization version   GIF version

Theorem meaiininclem 42775
Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiininclem.m (𝜑𝑀 ∈ Meas)
meaiininclem.n (𝜑𝑁 ∈ ℤ)
meaiininclem.z 𝑍 = (ℤ𝑁)
meaiininclem.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiininclem.i ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
meaiininclem.k (𝜑𝐾 ∈ (ℤ𝑁))
meaiininclem.r (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
meaiininclem.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
meaiininclem.g 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
meaiininclem.f 𝐹 = 𝑛𝑍 (𝐺𝑛)
Assertion
Ref Expression
meaiininclem (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem meaiininclem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiininclem.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (ℤ𝑁))
2 uzss 12268 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
31, 2syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4 meaiininclem.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑁)
53, 4sseqtrrdi 4020 . . . . . . . . . . . 12 (𝜑 → (ℤ𝐾) ⊆ 𝑍)
65adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝑍)
7 simpr 487 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛 ∈ (ℤ𝐾))
86, 7sseldd 3970 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛𝑍)
9 meaiininclem.g . . . . . . . . . . . 12 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
109a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))))
11 meaiininclem.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ Meas)
12 eqid 2823 . . . . . . . . . . . . . . 15 dom 𝑀 = dom 𝑀
1311, 12dmmeasal 42741 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1413adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom 𝑀 ∈ SAlg)
151, 4eleqtrrdi 2926 . . . . . . . . . . . . . . 15 (𝜑𝐾𝑍)
16 meaiininclem.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍⟶dom 𝑀)
1716ffvelrnda 6853 . . . . . . . . . . . . . . 15 ((𝜑𝐾𝑍) → (𝐸𝐾) ∈ dom 𝑀)
1815, 17mpdan 685 . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝐾) ∈ dom 𝑀)
1918adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝐾) ∈ dom 𝑀)
2016ffvelrnda 6853 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
21 saldifcl2 42618 . . . . . . . . . . . . 13 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀 ∧ (𝐸𝑛) ∈ dom 𝑀) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2214, 19, 20, 21syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2322elexd 3516 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ V)
2410, 23fvmpt2d 6783 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
258, 24syldan 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
2625fveq2d 6676 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))))
2711adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑀 ∈ Meas)
2818adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝐾) ∈ dom 𝑀)
29 meaiininclem.r . . . . . . . . . 10 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
3029adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℝ)
318, 20syldan 593 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ∈ dom 𝑀)
32 simpl 485 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝜑)
3332, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (ℤ𝐾) ⊆ 𝑍)
34 elfzouz 13045 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐾..^𝑛) → 𝑚 ∈ (ℤ𝐾))
3534adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚 ∈ (ℤ𝐾))
3633, 35sseldd 3970 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚𝑍)
37 eleq1w 2897 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛𝑍𝑚𝑍))
3837anbi2d 630 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛𝑍) ↔ (𝜑𝑚𝑍)))
39 fvoveq1 7181 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑚 + 1)))
40 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
4139, 40sseq12d 4002 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛) ↔ (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚)))
4238, 41imbi12d 347 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛)) ↔ ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))))
43 meaiininclem.i . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
4442, 43chvarvv 2005 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4532, 36, 44syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4645adantlr 713 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝐾)) ∧ 𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
477, 46ssdec 41361 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ⊆ (𝐸𝐾))
4827, 28, 30, 31, 47meadif 42768 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
4926, 48eqtrd 2858 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
5049oveq2d 7174 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))) = ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))))
5129recnd 10671 . . . . . . . 8 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5251adantr 483 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5327, 28, 30, 47, 31meassre 42766 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℝ)
5453recnd 10671 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℂ)
5552, 54nncand 11004 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))) = (𝑀‘(𝐸𝑛)))
5650, 55eqtr2d 2859 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))))
5756mpteq2dva 5163 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))))
58 nfv 1915 . . . . 5 𝑛𝜑
59 eqid 2823 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
601eluzelzd 41650 . . . . 5 (𝜑𝐾 ∈ ℤ)
61 difssd 4111 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ (𝐸𝐾))
6224, 61eqsstrd 4007 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐸𝐾))
638, 62syldan 593 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ⊆ (𝐸𝐾))
6422, 9fmptd 6880 . . . . . . . . 9 (𝜑𝐺:𝑍⟶dom 𝑀)
6564ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ dom 𝑀)
668, 65syldan 593 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ∈ dom 𝑀)
6727, 28, 30, 63, 66meassre 42766 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℝ)
6867recnd 10671 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℂ)
69 meaiininclem.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
7043sscond 4120 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
7140difeq2d 4101 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐸𝐾) ∖ (𝐸𝑛)) = ((𝐸𝐾) ∖ (𝐸𝑚)))
7271cbvmptv 5171 . . . . . . . . . . . 12 (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))) = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
739, 72eqtri 2846 . . . . . . . . . . 11 𝐺 = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
74 fveq2 6672 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝐸𝑚) = (𝐸‘(𝑛 + 1)))
7574difeq2d 4101 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝐸𝐾) ∖ (𝐸𝑚)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
764peano2uzs 12305 . . . . . . . . . . . 12 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
7776adantl 484 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑛 + 1) ∈ 𝑍)
78 fvex 6685 . . . . . . . . . . . . 13 (𝐸𝐾) ∈ V
7978difexi 5234 . . . . . . . . . . . 12 ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V
8079a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V)
8173, 75, 77, 80fvmptd3 6793 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺‘(𝑛 + 1)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
8224, 81sseq12d 4002 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)) ↔ ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1)))))
8370, 82mpbird 259 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)))
8411adantr 483 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
8584, 12, 65, 19, 62meassle 42752 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑀‘(𝐺𝑛)) ≤ (𝑀‘(𝐸𝐾)))
86 eqid 2823 . . . . . . . 8 (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛)))
8711, 69, 4, 64, 83, 29, 85, 86meaiuninc2 42771 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
88 eqid 2823 . . . . . . . 8 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛)))
894, 86, 15, 88climresmpt 41947 . . . . . . 7 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛))))
9087, 89mpbird 259 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
91 meaiininclem.f . . . . . . . . 9 𝐹 = 𝑛𝑍 (𝐺𝑛)
9291eqcomi 2832 . . . . . . . 8 𝑛𝑍 (𝐺𝑛) = 𝐹
9392fveq2i 6675 . . . . . . 7 (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹)
9493a1i 11 . . . . . 6 (𝜑 → (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹))
9590, 94breqtrd 5094 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀𝐹))
9658, 59, 60, 51, 68, 95climsubc1mpt 41950 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
9757, 96eqbrtrd 5090 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
98 eqid 2823 . . . 4 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
99 eqid 2823 . . . 4 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛)))
1004, 98, 15, 99climresmpt 41947 . . 3 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
10197, 100mpbid 234 . 2 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
102 meaiininclem.s . . . 4 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
103102a1i 11 . . 3 (𝜑𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))))
104 eqidd 2824 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))))
1054uzct 41332 . . . . . . . . . 10 𝑍 ≼ ω
106105a1i 11 . . . . . . . . 9 (𝜑𝑍 ≼ ω)
10713, 106, 65saliuncl 42614 . . . . . . . 8 (𝜑 𝑛𝑍 (𝐺𝑛) ∈ dom 𝑀)
10891, 107eqeltrid 2919 . . . . . . 7 (𝜑𝐹 ∈ dom 𝑀)
109 saldifcl2 42618 . . . . . . . 8 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀𝐹 ∈ dom 𝑀) → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
11013, 18, 108, 109syl3anc 1367 . . . . . . 7 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
111 disjdif 4423 . . . . . . . 8 (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅
112111a1i 11 . . . . . . 7 (𝜑 → (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅)
11362iunssd 4976 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐺𝑛) ⊆ (𝐸𝐾))
11491, 113eqsstrid 4017 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸𝐾))
11511, 18, 29, 114, 108meassre 42766 . . . . . . 7 (𝜑 → (𝑀𝐹) ∈ ℝ)
116 difssd 4111 . . . . . . . 8 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ (𝐸𝐾))
11711, 18, 29, 116, 110meassre 42766 . . . . . . 7 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℝ)
11811, 12, 108, 110, 112, 115, 117meadjunre 42765 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))))
119 undif 4432 . . . . . . . 8 (𝐹 ⊆ (𝐸𝐾) ↔ (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
120114, 119sylib 220 . . . . . . 7 (𝜑 → (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
121120fveq2d 6676 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
122104, 118, 1213eqtr3d 2866 . . . . 5 (𝜑 → ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
123115recnd 10671 . . . . . 6 (𝜑 → (𝑀𝐹) ∈ ℂ)
124117recnd 10671 . . . . . 6 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℂ)
12551, 123, 124subaddd 11017 . . . . 5 (𝜑 → (((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)) ↔ ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾))))
126122, 125mpbird 259 . . . 4 (𝜑 → ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)))
127 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
128 simplr 767 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍)
129 eldifi 4105 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) → 𝑥 ∈ (𝐸𝐾))
130129ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
131 simpr 487 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ (𝐸𝑛))
132130, 131eldifd 3949 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
133 rspe 3306 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
134128, 132, 133syl2anc 586 . . . . . . . . . . . . . 14 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
135 eliun 4925 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
136134, 135sylibr 236 . . . . . . . . . . . . 13 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
137136adantlll 716 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
13891a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐹 = 𝑛𝑍 (𝐺𝑛))
13924iuneq2dv 4945 . . . . . . . . . . . . . . 15 (𝜑 𝑛𝑍 (𝐺𝑛) = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
140138, 139eqtrd 2858 . . . . . . . . . . . . . 14 (𝜑𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
141140eqcomd 2829 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
142141ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
143137, 142eleqtrd 2917 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥𝐹)
144 elndif 4107 . . . . . . . . . . 11 (𝑥𝐹 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
145143, 144syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
146127, 145condan 816 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
147146ralrimiva 3184 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
148 vex 3499 . . . . . . . . 9 𝑥 ∈ V
149 eliin 4926 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛)))
150148, 149ax-mp 5 . . . . . . . 8 (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
151147, 150sylibr 236 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → 𝑥 𝑛𝑍 (𝐸𝑛))
152151ssd 41351 . . . . . 6 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ 𝑛𝑍 (𝐸𝑛))
153 ssid 3991 . . . . . . . . . . . 12 (𝐸𝐾) ⊆ (𝐸𝐾)
154153a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐸𝐾) ⊆ (𝐸𝐾))
155 fveq2 6672 . . . . . . . . . . . . 13 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
156155sseq1d 4000 . . . . . . . . . . . 12 (𝑛 = 𝐾 → ((𝐸𝑛) ⊆ (𝐸𝐾) ↔ (𝐸𝐾) ⊆ (𝐸𝐾)))
157156rspcev 3625 . . . . . . . . . . 11 ((𝐾𝑍 ∧ (𝐸𝐾) ⊆ (𝐸𝐾)) → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
15815, 154, 157syl2anc 586 . . . . . . . . . 10 (𝜑 → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
159 iinss 4982 . . . . . . . . . 10 (∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
160158, 159syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
161160adantr 483 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
162 simpr 487 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 𝑛𝑍 (𝐸𝑛))
163161, 162sseldd 3970 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
164 nfcv 2979 . . . . . . . . . . . . 13 𝑛𝑥
165 nfii1 4956 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 (𝐸𝑛)
166164, 165nfel 2994 . . . . . . . . . . . 12 𝑛 𝑥 𝑛𝑍 (𝐸𝑛)
167 iinss2 4983 . . . . . . . . . . . . . . . 16 (𝑛𝑍 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
168167adantl 484 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
169 simpl 485 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 (𝐸𝑛))
170168, 169sseldd 3970 . . . . . . . . . . . . . 14 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
171 elndif 4107 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐸𝑛) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
172170, 171syl 17 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
173172ex 415 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 (𝐸𝑛) → (𝑛𝑍 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))))
174166, 173ralrimi 3218 . . . . . . . . . . 11 (𝑥 𝑛𝑍 (𝐸𝑛) → ∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
175 ralnex 3238 . . . . . . . . . . 11 (∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
176174, 175sylib 220 . . . . . . . . . 10 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
177176, 135sylnibr 331 . . . . . . . . 9 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
178177adantl 484 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
179140adantr 483 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
180178, 179neleqtrrd 2937 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥𝐹)
181163, 180eldifd 3949 . . . . . 6 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
182152, 181eqelssd 3990 . . . . 5 (𝜑 → ((𝐸𝐾) ∖ 𝐹) = 𝑛𝑍 (𝐸𝑛))
183182fveq2d 6676 . . . 4 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) = (𝑀 𝑛𝑍 (𝐸𝑛)))
184126, 183eqtr2d 2859 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
185103, 184breq12d 5081 . 2 (𝜑 → (𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
186101, 185mpbird 259 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293   ciun 4921   ciin 4922   class class class wbr 5068  cmpt 5148  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  ωcom 7582  cdom 8509  cc 10537  cr 10538  1c1 10540   + caddc 10542  cmin 10872  cz 11984  cuz 12246  ..^cfzo 13036  cli 14843  SAlgcsalg 42600  Meascmea 42738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-salg 42601  df-sumge0 42652  df-mea 42739
This theorem is referenced by:  meaiininc  42776
  Copyright terms: Public domain W3C validator