Step | Hyp | Ref
| Expression |
1 | | meaiininclem.k |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) |
2 | | uzss 12461 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈
(ℤ≥‘𝑁) → (ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑁)) |
3 | 1, 2 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑁)) |
4 | | meaiininclem.z |
. . . . . . . . . . . . 13
⊢ 𝑍 =
(ℤ≥‘𝑁) |
5 | 3, 4 | sseqtrrdi 3952 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆ 𝑍) |
6 | 5 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) →
(ℤ≥‘𝐾) ⊆ 𝑍) |
7 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → 𝑛 ∈ (ℤ≥‘𝐾)) |
8 | 6, 7 | sseldd 3902 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → 𝑛 ∈ 𝑍) |
9 | | meaiininclem.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
10 | 9 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))) |
11 | | meaiininclem.m |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ Meas) |
12 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ dom 𝑀 = dom 𝑀 |
13 | 11, 12 | dmmeasal 43665 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
14 | 13 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom 𝑀 ∈ SAlg) |
15 | 1, 4 | eleqtrrdi 2849 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ 𝑍) |
16 | | meaiininclem.e |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
17 | 16 | ffvelrnda 6904 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐸‘𝐾) ∈ dom 𝑀) |
18 | 15, 17 | mpdan 687 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸‘𝐾) ∈ dom 𝑀) |
19 | 18 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝐾) ∈ dom 𝑀) |
20 | 16 | ffvelrnda 6904 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ dom 𝑀) |
21 | | saldifcl2 43542 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑀 ∈ SAlg ∧ (𝐸‘𝐾) ∈ dom 𝑀 ∧ (𝐸‘𝑛) ∈ dom 𝑀) → ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) ∈ dom 𝑀) |
22 | 14, 19, 20, 21 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) ∈ dom 𝑀) |
23 | 22 | elexd 3428 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) ∈ V) |
24 | 10, 23 | fvmpt2d 6831 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) = ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
25 | 8, 24 | syldan 594 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑛) = ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
26 | 25 | fveq2d 6721 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘(𝐺‘𝑛)) = (𝑀‘((𝐸‘𝐾) ∖ (𝐸‘𝑛)))) |
27 | 11 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ Meas) |
28 | 18 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝐸‘𝐾) ∈ dom 𝑀) |
29 | | meaiininclem.r |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) |
30 | 29 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) |
31 | 8, 20 | syldan 594 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝐸‘𝑛) ∈ dom 𝑀) |
32 | | simpl 486 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (𝐾..^𝑛)) → 𝜑) |
33 | 32, 5 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (𝐾..^𝑛)) → (ℤ≥‘𝐾) ⊆ 𝑍) |
34 | | elfzouz 13247 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝐾..^𝑛) → 𝑚 ∈ (ℤ≥‘𝐾)) |
35 | 34 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (𝐾..^𝑛)) → 𝑚 ∈ (ℤ≥‘𝐾)) |
36 | 33, 35 | sseldd 3902 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (𝐾..^𝑛)) → 𝑚 ∈ 𝑍) |
37 | | eleq1w 2820 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝑛 ∈ 𝑍 ↔ 𝑚 ∈ 𝑍)) |
38 | 37 | anbi2d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑚 ∈ 𝑍))) |
39 | | fvoveq1 7236 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑚 + 1))) |
40 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝐸‘𝑛) = (𝐸‘𝑚)) |
41 | 39, 40 | sseq12d 3934 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛) ↔ (𝐸‘(𝑚 + 1)) ⊆ (𝐸‘𝑚))) |
42 | 38, 41 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) ↔ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸‘𝑚)))) |
43 | | meaiininclem.i |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
44 | 42, 43 | chvarvv 2007 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸‘𝑚)) |
45 | 32, 36, 44 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸‘𝑚)) |
46 | 45 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) ∧ 𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸‘𝑚)) |
47 | 7, 46 | ssdec 42311 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝐸‘𝑛) ⊆ (𝐸‘𝐾)) |
48 | 27, 28, 30, 31, 47 | meadif 43692 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘((𝐸‘𝐾) ∖ (𝐸‘𝑛))) = ((𝑀‘(𝐸‘𝐾)) − (𝑀‘(𝐸‘𝑛)))) |
49 | 26, 48 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘(𝐺‘𝑛)) = ((𝑀‘(𝐸‘𝐾)) − (𝑀‘(𝐸‘𝑛)))) |
50 | 49 | oveq2d 7229 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑀‘(𝐸‘𝐾)) − (𝑀‘(𝐺‘𝑛))) = ((𝑀‘(𝐸‘𝐾)) − ((𝑀‘(𝐸‘𝐾)) − (𝑀‘(𝐸‘𝑛))))) |
51 | 29 | recnd 10861 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℂ) |
52 | 51 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘(𝐸‘𝐾)) ∈ ℂ) |
53 | 27, 28, 30, 47, 31 | meassre 43690 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘(𝐸‘𝑛)) ∈ ℝ) |
54 | 53 | recnd 10861 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘(𝐸‘𝑛)) ∈ ℂ) |
55 | 52, 54 | nncand 11194 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑀‘(𝐸‘𝐾)) − ((𝑀‘(𝐸‘𝐾)) − (𝑀‘(𝐸‘𝑛)))) = (𝑀‘(𝐸‘𝑛))) |
56 | 50, 55 | eqtr2d 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘(𝐸‘𝑛)) = ((𝑀‘(𝐸‘𝐾)) − (𝑀‘(𝐺‘𝑛)))) |
57 | 56 | mpteq2dva 5150 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝐾) ↦ (𝑀‘(𝐸‘𝑛))) = (𝑛 ∈ (ℤ≥‘𝐾) ↦ ((𝑀‘(𝐸‘𝐾)) − (𝑀‘(𝐺‘𝑛))))) |
58 | | nfv 1922 |
. . . . 5
⊢
Ⅎ𝑛𝜑 |
59 | | eqid 2737 |
. . . . 5
⊢
(ℤ≥‘𝐾) = (ℤ≥‘𝐾) |
60 | 1 | eluzelzd 42587 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ℤ) |
61 | | difssd 4047 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) ⊆ (𝐸‘𝐾)) |
62 | 24, 61 | eqsstrd 3939 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ⊆ (𝐸‘𝐾)) |
63 | 8, 62 | syldan 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑛) ⊆ (𝐸‘𝐾)) |
64 | 22, 9 | fmptd 6931 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:𝑍⟶dom 𝑀) |
65 | 64 | ffvelrnda 6904 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ dom 𝑀) |
66 | 8, 65 | syldan 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑛) ∈ dom 𝑀) |
67 | 27, 28, 30, 63, 66 | meassre 43690 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘(𝐺‘𝑛)) ∈ ℝ) |
68 | 67 | recnd 10861 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (𝑀‘(𝐺‘𝑛)) ∈ ℂ) |
69 | | meaiininclem.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
70 | 43 | sscond 4056 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) ⊆ ((𝐸‘𝐾) ∖ (𝐸‘(𝑛 + 1)))) |
71 | 40 | difeq2d 4037 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) = ((𝐸‘𝐾) ∖ (𝐸‘𝑚))) |
72 | 71 | cbvmptv 5158 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑚))) |
73 | 9, 72 | eqtri 2765 |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑚))) |
74 | | fveq2 6717 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 + 1) → (𝐸‘𝑚) = (𝐸‘(𝑛 + 1))) |
75 | 74 | difeq2d 4037 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑛 + 1) → ((𝐸‘𝐾) ∖ (𝐸‘𝑚)) = ((𝐸‘𝐾) ∖ (𝐸‘(𝑛 + 1)))) |
76 | 4 | peano2uzs 12498 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 → (𝑛 + 1) ∈ 𝑍) |
77 | 76 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑛 + 1) ∈ 𝑍) |
78 | | fvex 6730 |
. . . . . . . . . . . . 13
⊢ (𝐸‘𝐾) ∈ V |
79 | 78 | difexi 5221 |
. . . . . . . . . . . 12
⊢ ((𝐸‘𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V |
80 | 79 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V) |
81 | 73, 75, 77, 80 | fvmptd3 6841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘(𝑛 + 1)) = ((𝐸‘𝐾) ∖ (𝐸‘(𝑛 + 1)))) |
82 | 24, 81 | sseq12d 3934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐺‘𝑛) ⊆ (𝐺‘(𝑛 + 1)) ↔ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) ⊆ ((𝐸‘𝐾) ∖ (𝐸‘(𝑛 + 1))))) |
83 | 70, 82 | mpbird 260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ⊆ (𝐺‘(𝑛 + 1))) |
84 | 11 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑀 ∈ Meas) |
85 | 84, 12, 65, 19, 62 | meassle 43676 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐺‘𝑛)) ≤ (𝑀‘(𝐸‘𝐾))) |
86 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐺‘𝑛))) = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐺‘𝑛))) |
87 | 11, 69, 4, 64, 83, 29, 85, 86 | meaiuninc2 43695 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐺‘𝑛))) ⇝ (𝑀‘∪
𝑛 ∈ 𝑍 (𝐺‘𝑛))) |
88 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘𝐾) ↦ (𝑀‘(𝐺‘𝑛))) = (𝑛 ∈ (ℤ≥‘𝐾) ↦ (𝑀‘(𝐺‘𝑛))) |
89 | 4, 86, 15, 88 | climresmpt 42875 |
. . . . . . 7
⊢ (𝜑 → ((𝑛 ∈ (ℤ≥‘𝐾) ↦ (𝑀‘(𝐺‘𝑛))) ⇝ (𝑀‘∪
𝑛 ∈ 𝑍 (𝐺‘𝑛)) ↔ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐺‘𝑛))) ⇝ (𝑀‘∪
𝑛 ∈ 𝑍 (𝐺‘𝑛)))) |
90 | 87, 89 | mpbird 260 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝐾) ↦ (𝑀‘(𝐺‘𝑛))) ⇝ (𝑀‘∪
𝑛 ∈ 𝑍 (𝐺‘𝑛))) |
91 | | meaiininclem.f |
. . . . . . . . 9
⊢ 𝐹 = ∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛) |
92 | 91 | eqcomi 2746 |
. . . . . . . 8
⊢ ∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛) = 𝐹 |
93 | 92 | fveq2i 6720 |
. . . . . . 7
⊢ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛)) = (𝑀‘𝐹) |
94 | 93 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑀‘∪
𝑛 ∈ 𝑍 (𝐺‘𝑛)) = (𝑀‘𝐹)) |
95 | 90, 94 | breqtrd 5079 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝐾) ↦ (𝑀‘(𝐺‘𝑛))) ⇝ (𝑀‘𝐹)) |
96 | 58, 59, 60, 51, 68, 95 | climsubc1mpt 42878 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝐾) ↦ ((𝑀‘(𝐸‘𝐾)) − (𝑀‘(𝐺‘𝑛)))) ⇝ ((𝑀‘(𝐸‘𝐾)) − (𝑀‘𝐹))) |
97 | 57, 96 | eqbrtrd 5075 |
. . 3
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝐾) ↦ (𝑀‘(𝐸‘𝑛))) ⇝ ((𝑀‘(𝐸‘𝐾)) − (𝑀‘𝐹))) |
98 | | eqid 2737 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
99 | | eqid 2737 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝐾) ↦ (𝑀‘(𝐸‘𝑛))) = (𝑛 ∈ (ℤ≥‘𝐾) ↦ (𝑀‘(𝐸‘𝑛))) |
100 | 4, 98, 15, 99 | climresmpt 42875 |
. . 3
⊢ (𝜑 → ((𝑛 ∈ (ℤ≥‘𝐾) ↦ (𝑀‘(𝐸‘𝑛))) ⇝ ((𝑀‘(𝐸‘𝐾)) − (𝑀‘𝐹)) ↔ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇝ ((𝑀‘(𝐸‘𝐾)) − (𝑀‘𝐹)))) |
101 | 97, 100 | mpbid 235 |
. 2
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇝ ((𝑀‘(𝐸‘𝐾)) − (𝑀‘𝐹))) |
102 | | meaiininclem.s |
. . . 4
⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
103 | 102 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛)))) |
104 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸‘𝐾) ∖ 𝐹))) = (𝑀‘(𝐹 ∪ ((𝐸‘𝐾) ∖ 𝐹)))) |
105 | 4 | uzct 42284 |
. . . . . . . . . 10
⊢ 𝑍 ≼
ω |
106 | 105 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ≼ ω) |
107 | 13, 106, 65 | saliuncl 43538 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛) ∈ dom 𝑀) |
108 | 91, 107 | eqeltrid 2842 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ dom 𝑀) |
109 | | saldifcl2 43542 |
. . . . . . . 8
⊢ ((dom
𝑀 ∈ SAlg ∧ (𝐸‘𝐾) ∈ dom 𝑀 ∧ 𝐹 ∈ dom 𝑀) → ((𝐸‘𝐾) ∖ 𝐹) ∈ dom 𝑀) |
110 | 13, 18, 108, 109 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((𝐸‘𝐾) ∖ 𝐹) ∈ dom 𝑀) |
111 | | disjdif 4386 |
. . . . . . . 8
⊢ (𝐹 ∩ ((𝐸‘𝐾) ∖ 𝐹)) = ∅ |
112 | 111 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∩ ((𝐸‘𝐾) ∖ 𝐹)) = ∅) |
113 | 62 | iunssd 4959 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛) ⊆ (𝐸‘𝐾)) |
114 | 91, 113 | eqsstrid 3949 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ⊆ (𝐸‘𝐾)) |
115 | 11, 18, 29, 114, 108 | meassre 43690 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝐹) ∈ ℝ) |
116 | | difssd 4047 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸‘𝐾) ∖ 𝐹) ⊆ (𝐸‘𝐾)) |
117 | 11, 18, 29, 116, 110 | meassre 43690 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘((𝐸‘𝐾) ∖ 𝐹)) ∈ ℝ) |
118 | 11, 12, 108, 110, 112, 115, 117 | meadjunre 43689 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸‘𝐾) ∖ 𝐹))) = ((𝑀‘𝐹) + (𝑀‘((𝐸‘𝐾) ∖ 𝐹)))) |
119 | | undif 4396 |
. . . . . . . 8
⊢ (𝐹 ⊆ (𝐸‘𝐾) ↔ (𝐹 ∪ ((𝐸‘𝐾) ∖ 𝐹)) = (𝐸‘𝐾)) |
120 | 114, 119 | sylib 221 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∪ ((𝐸‘𝐾) ∖ 𝐹)) = (𝐸‘𝐾)) |
121 | 120 | fveq2d 6721 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸‘𝐾) ∖ 𝐹))) = (𝑀‘(𝐸‘𝐾))) |
122 | 104, 118,
121 | 3eqtr3d 2785 |
. . . . 5
⊢ (𝜑 → ((𝑀‘𝐹) + (𝑀‘((𝐸‘𝐾) ∖ 𝐹))) = (𝑀‘(𝐸‘𝐾))) |
123 | 115 | recnd 10861 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐹) ∈ ℂ) |
124 | 117 | recnd 10861 |
. . . . . 6
⊢ (𝜑 → (𝑀‘((𝐸‘𝐾) ∖ 𝐹)) ∈ ℂ) |
125 | 51, 123, 124 | subaddd 11207 |
. . . . 5
⊢ (𝜑 → (((𝑀‘(𝐸‘𝐾)) − (𝑀‘𝐹)) = (𝑀‘((𝐸‘𝐾) ∖ 𝐹)) ↔ ((𝑀‘𝐹) + (𝑀‘((𝐸‘𝐾) ∖ 𝐹))) = (𝑀‘(𝐸‘𝐾)))) |
126 | 122, 125 | mpbird 260 |
. . . 4
⊢ (𝜑 → ((𝑀‘(𝐸‘𝐾)) − (𝑀‘𝐹)) = (𝑀‘((𝐸‘𝐾) ∖ 𝐹))) |
127 | | simpllr 776 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) |
128 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → 𝑛 ∈ 𝑍) |
129 | | eldifi 4041 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹) → 𝑥 ∈ (𝐸‘𝐾)) |
130 | 129 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → 𝑥 ∈ (𝐸‘𝐾)) |
131 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → ¬ 𝑥 ∈ (𝐸‘𝑛)) |
132 | 130, 131 | eldifd 3877 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
133 | | rspe 3223 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
134 | 128, 132,
133 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
135 | | eliun 4908 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) ↔ ∃𝑛 ∈ 𝑍 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
136 | 134, 135 | sylibr 237 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
137 | 136 | adantlll 718 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
138 | 91 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 = ∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛)) |
139 | 24 | iuneq2dv 4928 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛) = ∪ 𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
140 | 138, 139 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 = ∪ 𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
141 | 140 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) = 𝐹) |
142 | 141 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → ∪
𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) = 𝐹) |
143 | 137, 142 | eleqtrd 2840 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → 𝑥 ∈ 𝐹) |
144 | | elndif 4043 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) |
145 | 143, 144 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) ∧ 𝑛 ∈ 𝑍) ∧ ¬ 𝑥 ∈ (𝐸‘𝑛)) → ¬ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) |
146 | 127, 145 | condan 818 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ (𝐸‘𝑛)) |
147 | 146 | ralrimiva 3105 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) → ∀𝑛 ∈ 𝑍 𝑥 ∈ (𝐸‘𝑛)) |
148 | | vex 3412 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
149 | | eliin 4909 |
. . . . . . . . 9
⊢ (𝑥 ∈ V → (𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ↔ ∀𝑛 ∈ 𝑍 𝑥 ∈ (𝐸‘𝑛))) |
150 | 148, 149 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ↔ ∀𝑛 ∈ 𝑍 𝑥 ∈ (𝐸‘𝑛)) |
151 | 147, 150 | sylibr 237 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
152 | 151 | ssd 42303 |
. . . . . 6
⊢ (𝜑 → ((𝐸‘𝐾) ∖ 𝐹) ⊆ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
153 | | ssid 3923 |
. . . . . . . . . . . 12
⊢ (𝐸‘𝐾) ⊆ (𝐸‘𝐾) |
154 | 153 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸‘𝐾) ⊆ (𝐸‘𝐾)) |
155 | | fveq2 6717 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐾 → (𝐸‘𝑛) = (𝐸‘𝐾)) |
156 | 155 | sseq1d 3932 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐾 → ((𝐸‘𝑛) ⊆ (𝐸‘𝐾) ↔ (𝐸‘𝐾) ⊆ (𝐸‘𝐾))) |
157 | 156 | rspcev 3537 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑍 ∧ (𝐸‘𝐾) ⊆ (𝐸‘𝐾)) → ∃𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ (𝐸‘𝐾)) |
158 | 15, 154, 157 | syl2anc 587 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ (𝐸‘𝐾)) |
159 | | iinss 4965 |
. . . . . . . . . 10
⊢
(∃𝑛 ∈
𝑍 (𝐸‘𝑛) ⊆ (𝐸‘𝐾) → ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ (𝐸‘𝐾)) |
160 | 158, 159 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ (𝐸‘𝐾)) |
161 | 160 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) → ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ (𝐸‘𝐾)) |
162 | | simpr 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
163 | 161, 162 | sseldd 3902 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) → 𝑥 ∈ (𝐸‘𝐾)) |
164 | | nfcv 2904 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛𝑥 |
165 | | nfii1 4939 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) |
166 | 164, 165 | nfel 2918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) |
167 | | iinss2 4966 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑍 → ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ (𝐸‘𝑛)) |
168 | 167 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∧ 𝑛 ∈ 𝑍) → ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ (𝐸‘𝑛)) |
169 | | simpl 486 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
170 | 168, 169 | sseldd 3902 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ (𝐸‘𝑛)) |
171 | | elndif 4043 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝐸‘𝑛) → ¬ 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
172 | 170, 171 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∧ 𝑛 ∈ 𝑍) → ¬ 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
173 | 172 | ex 416 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) → (𝑛 ∈ 𝑍 → ¬ 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))) |
174 | 166, 173 | ralrimi 3137 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) → ∀𝑛 ∈ 𝑍 ¬ 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
175 | | ralnex 3158 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
𝑍 ¬ 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) ↔ ¬ ∃𝑛 ∈ 𝑍 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
176 | 174, 175 | sylib 221 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) → ¬ ∃𝑛 ∈ 𝑍 𝑥 ∈ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
177 | 176, 135 | sylnibr 332 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) → ¬ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
178 | 177 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) → ¬ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
179 | 140 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) → 𝐹 = ∪ 𝑛 ∈ 𝑍 ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) |
180 | 178, 179 | neleqtrrd 2860 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) → ¬ 𝑥 ∈ 𝐹) |
181 | 163, 180 | eldifd 3877 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) → 𝑥 ∈ ((𝐸‘𝐾) ∖ 𝐹)) |
182 | 152, 181 | eqelssd 3922 |
. . . . 5
⊢ (𝜑 → ((𝐸‘𝐾) ∖ 𝐹) = ∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
183 | 182 | fveq2d 6721 |
. . . 4
⊢ (𝜑 → (𝑀‘((𝐸‘𝐾) ∖ 𝐹)) = (𝑀‘∩
𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
184 | 126, 183 | eqtr2d 2778 |
. . 3
⊢ (𝜑 → (𝑀‘∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) = ((𝑀‘(𝐸‘𝐾)) − (𝑀‘𝐹))) |
185 | 103, 184 | breq12d 5066 |
. 2
⊢ (𝜑 → (𝑆 ⇝ (𝑀‘∩
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ↔ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇝ ((𝑀‘(𝐸‘𝐾)) − (𝑀‘𝐹)))) |
186 | 101, 185 | mpbird 260 |
1
⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩
𝑛 ∈ 𝑍 (𝐸‘𝑛))) |