Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiininclem Structured version   Visualization version   GIF version

Theorem meaiininclem 46501
Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiininclem.m (𝜑𝑀 ∈ Meas)
meaiininclem.n (𝜑𝑁 ∈ ℤ)
meaiininclem.z 𝑍 = (ℤ𝑁)
meaiininclem.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiininclem.i ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
meaiininclem.k (𝜑𝐾 ∈ (ℤ𝑁))
meaiininclem.r (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
meaiininclem.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
meaiininclem.g 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
meaiininclem.f 𝐹 = 𝑛𝑍 (𝐺𝑛)
Assertion
Ref Expression
meaiininclem (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem meaiininclem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiininclem.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (ℤ𝑁))
2 uzss 12901 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
31, 2syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑁))
4 meaiininclem.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑁)
53, 4sseqtrrdi 4025 . . . . . . . . . . . 12 (𝜑 → (ℤ𝐾) ⊆ 𝑍)
65adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝑍)
7 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛 ∈ (ℤ𝐾))
86, 7sseldd 3984 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑛𝑍)
9 meaiininclem.g . . . . . . . . . . . 12 𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛)))
109a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))))
11 meaiininclem.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ Meas)
12 eqid 2737 . . . . . . . . . . . . . . 15 dom 𝑀 = dom 𝑀
1311, 12dmmeasal 46467 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1413adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom 𝑀 ∈ SAlg)
151, 4eleqtrrdi 2852 . . . . . . . . . . . . . . 15 (𝜑𝐾𝑍)
16 meaiininclem.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍⟶dom 𝑀)
1716ffvelcdmda 7104 . . . . . . . . . . . . . . 15 ((𝜑𝐾𝑍) → (𝐸𝐾) ∈ dom 𝑀)
1815, 17mpdan 687 . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝐾) ∈ dom 𝑀)
1918adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝐾) ∈ dom 𝑀)
2016ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
21 saldifcl2 46343 . . . . . . . . . . . . 13 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀 ∧ (𝐸𝑛) ∈ dom 𝑀) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2214, 19, 20, 21syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ dom 𝑀)
2322elexd 3504 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ∈ V)
2410, 23fvmpt2d 7029 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
258, 24syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) = ((𝐸𝐾) ∖ (𝐸𝑛)))
2625fveq2d 6910 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))))
2711adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → 𝑀 ∈ Meas)
2818adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝐾) ∈ dom 𝑀)
29 meaiininclem.r . . . . . . . . . 10 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℝ)
3029adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℝ)
318, 20syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ∈ dom 𝑀)
32 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝜑)
3332, 5syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (ℤ𝐾) ⊆ 𝑍)
34 elfzouz 13703 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐾..^𝑛) → 𝑚 ∈ (ℤ𝐾))
3534adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚 ∈ (ℤ𝐾))
3633, 35sseldd 3984 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → 𝑚𝑍)
37 eleq1w 2824 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛𝑍𝑚𝑍))
3837anbi2d 630 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛𝑍) ↔ (𝜑𝑚𝑍)))
39 fvoveq1 7454 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑚 + 1)))
40 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
4139, 40sseq12d 4017 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛) ↔ (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚)))
4238, 41imbi12d 344 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛)) ↔ ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))))
43 meaiininclem.i . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
4442, 43chvarvv 1998 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4532, 36, 44syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
4645adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝐾)) ∧ 𝑚 ∈ (𝐾..^𝑛)) → (𝐸‘(𝑚 + 1)) ⊆ (𝐸𝑚))
477, 46ssdec 45093 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐸𝑛) ⊆ (𝐸𝐾))
4827, 28, 30, 31, 47meadif 46494 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘((𝐸𝐾) ∖ (𝐸𝑛))) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
4926, 48eqtrd 2777 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛))))
5049oveq2d 7447 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))) = ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))))
5129recnd 11289 . . . . . . . 8 (𝜑 → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5251adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝐾)) ∈ ℂ)
5327, 28, 30, 47, 31meassre 46492 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℝ)
5453recnd 11289 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) ∈ ℂ)
5552, 54nncand 11625 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑀‘(𝐸𝐾)) − ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐸𝑛)))) = (𝑀‘(𝐸𝑛)))
5650, 55eqtr2d 2778 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛))))
5756mpteq2dva 5242 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))))
58 nfv 1914 . . . . 5 𝑛𝜑
59 eqid 2737 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
601eluzelzd 45386 . . . . 5 (𝜑𝐾 ∈ ℤ)
61 difssd 4137 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ (𝐸𝐾))
6224, 61eqsstrd 4018 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐸𝐾))
638, 62syldan 591 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ⊆ (𝐸𝐾))
6422, 9fmptd 7134 . . . . . . . . 9 (𝜑𝐺:𝑍⟶dom 𝑀)
6564ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ dom 𝑀)
668, 65syldan 591 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝐺𝑛) ∈ dom 𝑀)
6727, 28, 30, 63, 66meassre 46492 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℝ)
6867recnd 11289 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → (𝑀‘(𝐺𝑛)) ∈ ℂ)
69 meaiininclem.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
7043sscond 4146 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
7140difeq2d 4126 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐸𝐾) ∖ (𝐸𝑛)) = ((𝐸𝐾) ∖ (𝐸𝑚)))
7271cbvmptv 5255 . . . . . . . . . . . 12 (𝑛𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑛))) = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
739, 72eqtri 2765 . . . . . . . . . . 11 𝐺 = (𝑚𝑍 ↦ ((𝐸𝐾) ∖ (𝐸𝑚)))
74 fveq2 6906 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝐸𝑚) = (𝐸‘(𝑛 + 1)))
7574difeq2d 4126 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝐸𝐾) ∖ (𝐸𝑚)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
764peano2uzs 12944 . . . . . . . . . . . 12 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
7776adantl 481 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑛 + 1) ∈ 𝑍)
78 fvex 6919 . . . . . . . . . . . . 13 (𝐸𝐾) ∈ V
7978difexi 5330 . . . . . . . . . . . 12 ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V
8079a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))) ∈ V)
8173, 75, 77, 80fvmptd3 7039 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐺‘(𝑛 + 1)) = ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1))))
8224, 81sseq12d 4017 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)) ↔ ((𝐸𝐾) ∖ (𝐸𝑛)) ⊆ ((𝐸𝐾) ∖ (𝐸‘(𝑛 + 1)))))
8370, 82mpbird 257 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐺𝑛) ⊆ (𝐺‘(𝑛 + 1)))
8411adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
8584, 12, 65, 19, 62meassle 46478 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑀‘(𝐺𝑛)) ≤ (𝑀‘(𝐸𝐾)))
86 eqid 2737 . . . . . . . 8 (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛)))
8711, 69, 4, 64, 83, 29, 85, 86meaiuninc2 46497 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
88 eqid 2737 . . . . . . . 8 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛)))
894, 86, 15, 88climresmpt 45674 . . . . . . 7 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛))))
9087, 89mpbird 257 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀 𝑛𝑍 (𝐺𝑛)))
91 meaiininclem.f . . . . . . . . 9 𝐹 = 𝑛𝑍 (𝐺𝑛)
9291eqcomi 2746 . . . . . . . 8 𝑛𝑍 (𝐺𝑛) = 𝐹
9392fveq2i 6909 . . . . . . 7 (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹)
9493a1i 11 . . . . . 6 (𝜑 → (𝑀 𝑛𝑍 (𝐺𝑛)) = (𝑀𝐹))
9590, 94breqtrd 5169 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐺𝑛))) ⇝ (𝑀𝐹))
9658, 59, 60, 51, 68, 95climsubc1mpt 45677 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ ((𝑀‘(𝐸𝐾)) − (𝑀‘(𝐺𝑛)))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
9757, 96eqbrtrd 5165 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
98 eqid 2737 . . . 4 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
99 eqid 2737 . . . 4 (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) = (𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛)))
1004, 98, 15, 99climresmpt 45674 . . 3 (𝜑 → ((𝑛 ∈ (ℤ𝐾) ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
10197, 100mpbid 232 . 2 (𝜑 → (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
102 meaiininclem.s . . . 4 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
103102a1i 11 . . 3 (𝜑𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))))
104 eqidd 2738 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))))
1054uzct 45068 . . . . . . . . . 10 𝑍 ≼ ω
106105a1i 11 . . . . . . . . 9 (𝜑𝑍 ≼ ω)
10713, 106, 65saliuncl 46338 . . . . . . . 8 (𝜑 𝑛𝑍 (𝐺𝑛) ∈ dom 𝑀)
10891, 107eqeltrid 2845 . . . . . . 7 (𝜑𝐹 ∈ dom 𝑀)
109 saldifcl2 46343 . . . . . . . 8 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝐾) ∈ dom 𝑀𝐹 ∈ dom 𝑀) → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
11013, 18, 108, 109syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ∈ dom 𝑀)
111 disjdif 4472 . . . . . . . 8 (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅
112111a1i 11 . . . . . . 7 (𝜑 → (𝐹 ∩ ((𝐸𝐾) ∖ 𝐹)) = ∅)
11362iunssd 5050 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐺𝑛) ⊆ (𝐸𝐾))
11491, 113eqsstrid 4022 . . . . . . . 8 (𝜑𝐹 ⊆ (𝐸𝐾))
11511, 18, 29, 114, 108meassre 46492 . . . . . . 7 (𝜑 → (𝑀𝐹) ∈ ℝ)
116 difssd 4137 . . . . . . . 8 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ (𝐸𝐾))
11711, 18, 29, 116, 110meassre 46492 . . . . . . 7 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℝ)
11811, 12, 108, 110, 112, 115, 117meadjunre 46491 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))))
119 undif 4482 . . . . . . . 8 (𝐹 ⊆ (𝐸𝐾) ↔ (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
120114, 119sylib 218 . . . . . . 7 (𝜑 → (𝐹 ∪ ((𝐸𝐾) ∖ 𝐹)) = (𝐸𝐾))
121120fveq2d 6910 . . . . . 6 (𝜑 → (𝑀‘(𝐹 ∪ ((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
122104, 118, 1213eqtr3d 2785 . . . . 5 (𝜑 → ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾)))
123115recnd 11289 . . . . . 6 (𝜑 → (𝑀𝐹) ∈ ℂ)
124117recnd 11289 . . . . . 6 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) ∈ ℂ)
12551, 123, 124subaddd 11638 . . . . 5 (𝜑 → (((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)) ↔ ((𝑀𝐹) + (𝑀‘((𝐸𝐾) ∖ 𝐹))) = (𝑀‘(𝐸𝐾))))
126122, 125mpbird 257 . . . 4 (𝜑 → ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)) = (𝑀‘((𝐸𝐾) ∖ 𝐹)))
127 simpllr 776 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
128 simplr 769 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍)
129 eldifi 4131 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) → 𝑥 ∈ (𝐸𝐾))
130129ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
131 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ (𝐸𝑛))
132130, 131eldifd 3962 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
133 rspe 3249 . . . . . . . . . . . . . . 15 ((𝑛𝑍𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
134128, 132, 133syl2anc 584 . . . . . . . . . . . . . 14 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
135 eliun 4995 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
136134, 135sylibr 234 . . . . . . . . . . . . 13 (((𝑥 ∈ ((𝐸𝐾) ∖ 𝐹) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
137136adantlll 718 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
13891a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐹 = 𝑛𝑍 (𝐺𝑛))
13924iuneq2dv 5016 . . . . . . . . . . . . . . 15 (𝜑 𝑛𝑍 (𝐺𝑛) = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
140138, 139eqtrd 2777 . . . . . . . . . . . . . 14 (𝜑𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
141140eqcomd 2743 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
142141ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)) = 𝐹)
143137, 142eleqtrd 2843 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → 𝑥𝐹)
144 elndif 4133 . . . . . . . . . . 11 (𝑥𝐹 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
145143, 144syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) ∧ ¬ 𝑥 ∈ (𝐸𝑛)) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
146127, 145condan 818 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
147146ralrimiva 3146 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
148 vex 3484 . . . . . . . . 9 𝑥 ∈ V
149 eliin 4996 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛)))
150148, 149ax-mp 5 . . . . . . . 8 (𝑥 𝑛𝑍 (𝐸𝑛) ↔ ∀𝑛𝑍 𝑥 ∈ (𝐸𝑛))
151147, 150sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐸𝐾) ∖ 𝐹)) → 𝑥 𝑛𝑍 (𝐸𝑛))
152151ssd 45085 . . . . . 6 (𝜑 → ((𝐸𝐾) ∖ 𝐹) ⊆ 𝑛𝑍 (𝐸𝑛))
153 ssid 4006 . . . . . . . . . . . 12 (𝐸𝐾) ⊆ (𝐸𝐾)
154153a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐸𝐾) ⊆ (𝐸𝐾))
155 fveq2 6906 . . . . . . . . . . . . 13 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
156155sseq1d 4015 . . . . . . . . . . . 12 (𝑛 = 𝐾 → ((𝐸𝑛) ⊆ (𝐸𝐾) ↔ (𝐸𝐾) ⊆ (𝐸𝐾)))
157156rspcev 3622 . . . . . . . . . . 11 ((𝐾𝑍 ∧ (𝐸𝐾) ⊆ (𝐸𝐾)) → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
15815, 154, 157syl2anc 584 . . . . . . . . . 10 (𝜑 → ∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
159 iinss 5056 . . . . . . . . . 10 (∃𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
160158, 159syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
161160adantr 480 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝐾))
162 simpr 484 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 𝑛𝑍 (𝐸𝑛))
163161, 162sseldd 3984 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ (𝐸𝐾))
164 nfcv 2905 . . . . . . . . . . . . 13 𝑛𝑥
165 nfii1 5029 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 (𝐸𝑛)
166164, 165nfel 2920 . . . . . . . . . . . 12 𝑛 𝑥 𝑛𝑍 (𝐸𝑛)
167 iinss2 5057 . . . . . . . . . . . . . . . 16 (𝑛𝑍 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
168167adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑛𝑍 (𝐸𝑛) ⊆ (𝐸𝑛))
169 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 (𝐸𝑛))
170168, 169sseldd 3984 . . . . . . . . . . . . . 14 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ (𝐸𝑛))
171 elndif 4133 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐸𝑛) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
172170, 171syl 17 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 (𝐸𝑛) ∧ 𝑛𝑍) → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
173172ex 412 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 (𝐸𝑛) → (𝑛𝑍 → ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛))))
174166, 173ralrimi 3257 . . . . . . . . . . 11 (𝑥 𝑛𝑍 (𝐸𝑛) → ∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
175 ralnex 3072 . . . . . . . . . . 11 (∀𝑛𝑍 ¬ 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)) ↔ ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
176174, 175sylib 218 . . . . . . . . . 10 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ ∃𝑛𝑍 𝑥 ∈ ((𝐸𝐾) ∖ (𝐸𝑛)))
177176, 135sylnibr 329 . . . . . . . . 9 (𝑥 𝑛𝑍 (𝐸𝑛) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
178177adantl 481 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
179140adantr 480 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝐹 = 𝑛𝑍 ((𝐸𝐾) ∖ (𝐸𝑛)))
180178, 179neleqtrrd 2864 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → ¬ 𝑥𝐹)
181163, 180eldifd 3962 . . . . . 6 ((𝜑𝑥 𝑛𝑍 (𝐸𝑛)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝐹))
182152, 181eqelssd 4005 . . . . 5 (𝜑 → ((𝐸𝐾) ∖ 𝐹) = 𝑛𝑍 (𝐸𝑛))
183182fveq2d 6910 . . . 4 (𝜑 → (𝑀‘((𝐸𝐾) ∖ 𝐹)) = (𝑀 𝑛𝑍 (𝐸𝑛)))
184126, 183eqtr2d 2778 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) = ((𝑀‘(𝐸𝐾)) − (𝑀𝐹)))
185103, 184breq12d 5156 . 2 (𝜑 → (𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)) ↔ (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) ⇝ ((𝑀‘(𝐸𝐾)) − (𝑀𝐹))))
186101, 185mpbird 257 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333   ciun 4991   ciin 4992   class class class wbr 5143  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  ωcom 7887  cdom 8983  cc 11153  cr 11154  1c1 11156   + caddc 11158  cmin 11492  cz 12613  cuz 12878  ..^cfzo 13694  cli 15520  SAlgcsalg 46323  Meascmea 46464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-xadd 13155  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-salg 46324  df-sumge0 46378  df-mea 46465
This theorem is referenced by:  meaiininc  46502
  Copyright terms: Public domain W3C validator