| Step | Hyp | Ref
| Expression |
| 1 | | smflimsuplem2.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
| 2 | | smflimsuplem2.p |
. . . . . 6
⊢
Ⅎ𝑚𝜑 |
| 3 | | eqid 2736 |
. . . . . 6
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
| 4 | | smflimsuplem2.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑛 ∈ 𝑍) |
| 5 | | smflimsuplem2.z |
. . . . . . . . . . . . 13
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 6 | 4, 5 | eleqtrdi 2845 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 7 | | uzss 12880 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑛) ⊆
(ℤ≥‘𝑀)) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘𝑛) ⊆ (ℤ≥‘𝑀)) |
| 9 | 8, 5 | sseqtrrdi 4005 |
. . . . . . . . . 10
⊢ (𝜑 →
(ℤ≥‘𝑛) ⊆ 𝑍) |
| 10 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) →
(ℤ≥‘𝑛) ⊆ 𝑍) |
| 11 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ (ℤ≥‘𝑛)) |
| 12 | 10, 11 | sseldd 3964 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
| 13 | | smflimsuplem2.s |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 15 | | smflimsuplem2.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| 16 | 15 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) |
| 17 | | eqid 2736 |
. . . . . . . . 9
⊢ dom
(𝐹‘𝑚) = dom (𝐹‘𝑚) |
| 18 | 14, 16, 17 | smff 46728 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
| 19 | 12, 18 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
| 20 | | iinss2 5038 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘𝑛) → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ⊆ dom (𝐹‘𝑚)) |
| 21 | 20 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ⊆ dom (𝐹‘𝑚)) |
| 22 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
| 23 | 21, 22 | sseldd 3964 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑋 ∈ dom (𝐹‘𝑚)) |
| 24 | 19, 23 | ffvelcdmd 7080 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
| 25 | | nfmpt1 5225 |
. . . . . . . . 9
⊢
Ⅎ𝑚(𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) |
| 26 | | nfmpt1 5225 |
. . . . . . . . 9
⊢
Ⅎ𝑚(𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) |
| 27 | | eluzelz 12867 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
| 28 | 6, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑛 ∈ ℤ) |
| 29 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) |
| 30 | 2, 24, 29 | fmptdf 7112 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)):(ℤ≥‘𝑛)⟶ℝ) |
| 31 | 30 | ffnd 6712 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) Fn (ℤ≥‘𝑛)) |
| 32 | | smflimsuplem2.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 33 | | nfcv 2899 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(ℤ≥‘𝑀) |
| 34 | | fvexd 6896 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
| 35 | 33, 2, 34 | mptfnd 45233 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) Fn (ℤ≥‘𝑀)) |
| 36 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) |
| 37 | | fvexd 6896 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
| 38 | 36, 37 | fvmpt2d 7004 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚) = ((𝐹‘𝑚)‘𝑋)) |
| 39 | 12, 5 | eleqtrdi 2845 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ (ℤ≥‘𝑀)) |
| 40 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) |
| 41 | 40 | fvmpt2 7002 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈
(ℤ≥‘𝑀) ∧ ((𝐹‘𝑚)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚) = ((𝐹‘𝑚)‘𝑋)) |
| 42 | 39, 37, 41 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚) = ((𝐹‘𝑚)‘𝑋)) |
| 43 | 38, 42 | eqtr4d 2774 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚) = ((𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚)) |
| 44 | 2, 25, 26, 28, 31, 32, 35, 28, 43 | limsupequz 45719 |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 45 | 5 | eqcomi 2745 |
. . . . . . . . . . 11
⊢
(ℤ≥‘𝑀) = 𝑍 |
| 46 | 45 | mpteq1i 5216 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) |
| 47 | 46 | fveq2i 6884 |
. . . . . . . . 9
⊢ (lim
sup‘(𝑚 ∈
(ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
| 48 | 47 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 49 | 44, 48 | eqtrd 2771 |
. . . . . . 7
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 50 | | smflimsuplem2.r |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
| 51 | 50 | renepnfd 11291 |
. . . . . . 7
⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ≠ +∞) |
| 52 | 49, 51 | eqnetrd 3000 |
. . . . . 6
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) ≠ +∞) |
| 53 | 2, 3, 24, 52 | limsupubuzmpt 45715 |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ≤ 𝑦) |
| 54 | | uzid 12872 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
| 55 | | ne0i 4321 |
. . . . . . 7
⊢ (𝑛 ∈
(ℤ≥‘𝑛) → (ℤ≥‘𝑛) ≠ ∅) |
| 56 | 28, 54, 55 | 3syl 18 |
. . . . . 6
⊢ (𝜑 →
(ℤ≥‘𝑛) ≠ ∅) |
| 57 | 2, 56, 24 | supxrre3rnmpt 45423 |
. . . . 5
⊢ (𝜑 → (sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ ↔ ∃𝑦
∈ ℝ ∀𝑚
∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ≤ 𝑦)) |
| 58 | 53, 57 | mpbird 257 |
. . . 4
⊢ (𝜑 → sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ) |
| 59 | 1, 58 | jca 511 |
. . 3
⊢ (𝜑 → (𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ)) |
| 60 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) |
| 61 | 60 | mpteq2dv 5220 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦))) |
| 62 | 61 | rneqd 5923 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦))) |
| 63 | 62 | supeq1d 9463 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
)) |
| 64 | 63 | eleq1d 2820 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ)) |
| 65 | 64 | cbvrabv 3431 |
. . . . 5
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑦 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ} |
| 66 | 65 | eleq2i 2827 |
. . . 4
⊢ (𝑋 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ↔ 𝑋 ∈
{𝑦 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ}) |
| 67 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) |
| 68 | 67 | mpteq2dv 5220 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) |
| 69 | 68 | rneqd 5923 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) |
| 70 | 69 | supeq1d 9463 |
. . . . . 6
⊢ (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, <
)) |
| 71 | 70 | eleq1d 2820 |
. . . . 5
⊢ (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ)) |
| 72 | 71 | elrab 3676 |
. . . 4
⊢ (𝑋 ∈ {𝑦 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ} ↔ (𝑋 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ)) |
| 73 | 66, 72 | bitri 275 |
. . 3
⊢ (𝑋 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ↔ (𝑋 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ)) |
| 74 | 59, 73 | sylibr 234 |
. 2
⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
| 75 | | id 22 |
. . . . 5
⊢ (𝜑 → 𝜑) |
| 76 | | smflimsuplem2.h |
. . . . . . 7
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
| 77 | 76 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
)))) |
| 78 | | smflimsuplem2.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
| 79 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑍 |
| 80 | | nfrab1 3441 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥{𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
| 81 | 79, 80 | nfmpt 5224 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
| 82 | 78, 81 | nfcxfr 2897 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐸 |
| 83 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑛 |
| 84 | 82, 83 | nffv 6891 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐸‘𝑛) |
| 85 | | fvex 6894 |
. . . . . . . 8
⊢ (𝐸‘𝑛) ∈ V |
| 86 | 84, 85 | mptexf 45228 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) ∈
V |
| 87 | 86 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) ∈
V) |
| 88 | 77, 87 | fvmpt2d 7004 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
| 89 | 75, 4, 88 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐻‘𝑛) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
| 90 | 89 | dmeqd 5890 |
. . 3
⊢ (𝜑 → dom (𝐻‘𝑛) = dom (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
| 91 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑦(𝐸‘𝑛) |
| 92 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑦sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
) |
| 93 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑥sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
) |
| 94 | 84, 91, 92, 93, 63 | cbvmptf 5226 |
. . . 4
⊢ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
)) |
| 95 | | xrltso 13162 |
. . . . . 6
⊢ < Or
ℝ* |
| 96 | 95 | supex 9481 |
. . . . 5
⊢ sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
V |
| 97 | 96 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐸‘𝑛)) → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
V) |
| 98 | 94, 97 | dmmptd 6688 |
. . 3
⊢ (𝜑 → dom (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝐸‘𝑛)) |
| 99 | | eqid 2736 |
. . . . 5
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
| 100 | | fvex 6894 |
. . . . . . . . 9
⊢ (𝐹‘𝑚) ∈ V |
| 101 | 100 | dmex 7910 |
. . . . . . . 8
⊢ dom
(𝐹‘𝑚) ∈ V |
| 102 | 101 | rgenw 3056 |
. . . . . . 7
⊢
∀𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
| 103 | 102 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
| 104 | 56, 103 | iinexd 45124 |
. . . . 5
⊢ (𝜑 → ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
| 105 | 99, 104 | rabexd 5315 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ∈ V) |
| 106 | 78 | fvmpt2 7002 |
. . . 4
⊢ ((𝑛 ∈ 𝑍 ∧ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ∈ V) → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
| 107 | 4, 105, 106 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
| 108 | 90, 98, 107 | 3eqtrrd 2776 |
. 2
⊢ (𝜑 → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = dom (𝐻‘𝑛)) |
| 109 | 74, 108 | eleqtrd 2837 |
1
⊢ (𝜑 → 𝑋 ∈ dom (𝐻‘𝑛)) |