Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem2 Structured version   Visualization version   GIF version

Theorem smflimsuplem2 46268
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem2.p β„²π‘šπœ‘
smflimsuplem2.m (πœ‘ β†’ 𝑀 ∈ β„€)
smflimsuplem2.z 𝑍 = (β„€β‰₯β€˜π‘€)
smflimsuplem2.s (πœ‘ β†’ 𝑆 ∈ SAlg)
smflimsuplem2.f (πœ‘ β†’ 𝐹:π‘βŸΆ(SMblFnβ€˜π‘†))
smflimsuplem2.e 𝐸 = (𝑛 ∈ 𝑍 ↦ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
smflimsuplem2.h 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
smflimsuplem2.n (πœ‘ β†’ 𝑛 ∈ 𝑍)
smflimsuplem2.r (πœ‘ β†’ (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) ∈ ℝ)
smflimsuplem2.x (πœ‘ β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
Assertion
Ref Expression
smflimsuplem2 (πœ‘ β†’ 𝑋 ∈ dom (π»β€˜π‘›))
Distinct variable groups:   π‘₯,𝐹   π‘š,𝑀   π‘š,𝑋   π‘š,𝑍,𝑛,π‘₯
Allowed substitution hints:   πœ‘(π‘₯,π‘š,𝑛)   𝑆(π‘₯,π‘š,𝑛)   𝐸(π‘₯,π‘š,𝑛)   𝐹(π‘š,𝑛)   𝐻(π‘₯,π‘š,𝑛)   𝑀(π‘₯,𝑛)   𝑋(π‘₯,𝑛)

Proof of Theorem smflimsuplem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem2.x . . . 4 (πœ‘ β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
2 smflimsuplem2.p . . . . . 6 β„²π‘šπœ‘
3 eqid 2725 . . . . . 6 (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘›)
4 smflimsuplem2.n . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑛 ∈ 𝑍)
5 smflimsuplem2.z . . . . . . . . . . . . 13 𝑍 = (β„€β‰₯β€˜π‘€)
64, 5eleqtrdi 2835 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
7 uzss 12870 . . . . . . . . . . . 12 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (β„€β‰₯β€˜π‘›) βŠ† (β„€β‰₯β€˜π‘€))
86, 7syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (β„€β‰₯β€˜π‘›) βŠ† (β„€β‰₯β€˜π‘€))
98, 5sseqtrrdi 4025 . . . . . . . . . 10 (πœ‘ β†’ (β„€β‰₯β€˜π‘›) βŠ† 𝑍)
109adantr 479 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ (β„€β‰₯β€˜π‘›) βŠ† 𝑍)
11 simpr 483 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ (β„€β‰₯β€˜π‘›))
1210, 11sseldd 3974 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ 𝑍)
13 smflimsuplem2.s . . . . . . . . . 10 (πœ‘ β†’ 𝑆 ∈ SAlg)
1413adantr 479 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ 𝑆 ∈ SAlg)
15 smflimsuplem2.f . . . . . . . . . 10 (πœ‘ β†’ 𝐹:π‘βŸΆ(SMblFnβ€˜π‘†))
1615ffvelcdmda 7087 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š) ∈ (SMblFnβ€˜π‘†))
17 eqid 2725 . . . . . . . . 9 dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘š)
1814, 16, 17smff 46179 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š):dom (πΉβ€˜π‘š)βŸΆβ„)
1912, 18syldan 589 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ (πΉβ€˜π‘š):dom (πΉβ€˜π‘š)βŸΆβ„)
20 iinss2 5056 . . . . . . . . 9 (π‘š ∈ (β„€β‰₯β€˜π‘›) β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) βŠ† dom (πΉβ€˜π‘š))
2120adantl 480 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) βŠ† dom (πΉβ€˜π‘š))
221adantr 479 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
2321, 22sseldd 3974 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ 𝑋 ∈ dom (πΉβ€˜π‘š))
2419, 23ffvelcdmd 7088 . . . . . 6 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ ℝ)
25 nfmpt1 5252 . . . . . . . . 9 β„²π‘š(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
26 nfmpt1 5252 . . . . . . . . 9 β„²π‘š(π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
27 eluzelz 12857 . . . . . . . . . 10 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑛 ∈ β„€)
286, 27syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑛 ∈ β„€)
29 eqid 2725 . . . . . . . . . . 11 (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
302, 24, 29fmptdf 7120 . . . . . . . . . 10 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)):(β„€β‰₯β€˜π‘›)βŸΆβ„)
3130ffnd 6718 . . . . . . . . 9 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) Fn (β„€β‰₯β€˜π‘›))
32 smflimsuplem2.m . . . . . . . . 9 (πœ‘ β†’ 𝑀 ∈ β„€)
33 nfcv 2892 . . . . . . . . . 10 β„²π‘š(β„€β‰₯β€˜π‘€)
34 fvexd 6905 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘€)) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V)
3533, 2, 34mptfnd 44676 . . . . . . . . 9 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) Fn (β„€β‰₯β€˜π‘€))
3629a1i 11 . . . . . . . . . . 11 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
37 fvexd 6905 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V)
3836, 37fvmpt2d 7011 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š) = ((πΉβ€˜π‘š)β€˜π‘‹))
3912, 5eleqtrdi 2835 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ (β„€β‰₯β€˜π‘€))
40 eqid 2725 . . . . . . . . . . . 12 (π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) = (π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
4140fvmpt2 7009 . . . . . . . . . . 11 ((π‘š ∈ (β„€β‰₯β€˜π‘€) ∧ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V) β†’ ((π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š) = ((πΉβ€˜π‘š)β€˜π‘‹))
4239, 37, 41syl2anc 582 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š) = ((πΉβ€˜π‘š)β€˜π‘‹))
4338, 42eqtr4d 2768 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š) = ((π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š))
442, 25, 26, 28, 31, 32, 35, 28, 43limsupequz 45170 . . . . . . . 8 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
455eqcomi 2734 . . . . . . . . . . 11 (β„€β‰₯β€˜π‘€) = 𝑍
4645mpteq1i 5240 . . . . . . . . . 10 (π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) = (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
4746fveq2i 6893 . . . . . . . . 9 (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
4847a1i 11 . . . . . . . 8 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
4944, 48eqtrd 2765 . . . . . . 7 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
50 smflimsuplem2.r . . . . . . . 8 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) ∈ ℝ)
5150renepnfd 11290 . . . . . . 7 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) β‰  +∞)
5249, 51eqnetrd 2998 . . . . . 6 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) β‰  +∞)
532, 3, 24, 52limsupubuzmpt 45166 . . . . 5 (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)((πΉβ€˜π‘š)β€˜π‘‹) ≀ 𝑦)
54 uzid 12862 . . . . . . 7 (𝑛 ∈ β„€ β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘›))
55 ne0i 4331 . . . . . . 7 (𝑛 ∈ (β„€β‰₯β€˜π‘›) β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
5628, 54, 553syl 18 . . . . . 6 (πœ‘ β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
572, 56, 24supxrre3rnmpt 44870 . . . . 5 (πœ‘ β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ ↔ βˆƒπ‘¦ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)((πΉβ€˜π‘š)β€˜π‘‹) ≀ 𝑦))
5853, 57mpbird 256 . . . 4 (πœ‘ β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ)
591, 58jca 510 . . 3 (πœ‘ β†’ (𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∧ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ))
60 fveq2 6890 . . . . . . . . . 10 (π‘₯ = 𝑦 β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘¦))
6160mpteq2dv 5246 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)))
6261rneqd 5935 . . . . . . . 8 (π‘₯ = 𝑦 β†’ ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) = ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)))
6362supeq1d 9464 . . . . . . 7 (π‘₯ = 𝑦 β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ))
6463eleq1d 2810 . . . . . 6 (π‘₯ = 𝑦 β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ ↔ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ))
6564cbvrabv 3430 . . . . 5 {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} = {𝑦 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ}
6665eleq2i 2817 . . . 4 (𝑋 ∈ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ↔ 𝑋 ∈ {𝑦 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ})
67 fveq2 6890 . . . . . . . . 9 (𝑦 = 𝑋 β†’ ((πΉβ€˜π‘š)β€˜π‘¦) = ((πΉβ€˜π‘š)β€˜π‘‹))
6867mpteq2dv 5246 . . . . . . . 8 (𝑦 = 𝑋 β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
6968rneqd 5935 . . . . . . 7 (𝑦 = 𝑋 β†’ ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
7069supeq1d 9464 . . . . . 6 (𝑦 = 𝑋 β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ))
7170eleq1d 2810 . . . . 5 (𝑦 = 𝑋 β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ))
7271elrab 3676 . . . 4 (𝑋 ∈ {𝑦 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∧ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ))
7366, 72bitri 274 . . 3 (𝑋 ∈ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∧ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ))
7459, 73sylibr 233 . 2 (πœ‘ β†’ 𝑋 ∈ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
75 id 22 . . . . 5 (πœ‘ β†’ πœ‘)
76 smflimsuplem2.h . . . . . . 7 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
7776a1i 11 . . . . . 6 (πœ‘ β†’ 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ))))
78 smflimsuplem2.e . . . . . . . . . 10 𝐸 = (𝑛 ∈ 𝑍 ↦ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
79 nfcv 2892 . . . . . . . . . . 11 β„²π‘₯𝑍
80 nfrab1 3439 . . . . . . . . . . 11 β„²π‘₯{π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ}
8179, 80nfmpt 5251 . . . . . . . . . 10 β„²π‘₯(𝑛 ∈ 𝑍 ↦ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
8278, 81nfcxfr 2890 . . . . . . . . 9 β„²π‘₯𝐸
83 nfcv 2892 . . . . . . . . 9 β„²π‘₯𝑛
8482, 83nffv 6900 . . . . . . . 8 β„²π‘₯(πΈβ€˜π‘›)
85 fvex 6903 . . . . . . . 8 (πΈβ€˜π‘›) ∈ V
8684, 85mptexf 44671 . . . . . . 7 (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) ∈ V
8786a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) ∈ V)
8877, 87fvmpt2d 7011 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (π»β€˜π‘›) = (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
8975, 4, 88syl2anc 582 . . . 4 (πœ‘ β†’ (π»β€˜π‘›) = (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
9089dmeqd 5903 . . 3 (πœ‘ β†’ dom (π»β€˜π‘›) = dom (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
91 nfcv 2892 . . . . 5 Ⅎ𝑦(πΈβ€˜π‘›)
92 nfcv 2892 . . . . 5 Ⅎ𝑦sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )
93 nfcv 2892 . . . . 5 β„²π‘₯sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < )
9484, 91, 92, 93, 63cbvmptf 5253 . . . 4 (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) = (𝑦 ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ))
95 xrltso 13147 . . . . . 6 < Or ℝ*
9695supex 9481 . . . . 5 sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ V
9796a1i 11 . . . 4 ((πœ‘ ∧ 𝑦 ∈ (πΈβ€˜π‘›)) β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ V)
9894, 97dmmptd 6695 . . 3 (πœ‘ β†’ dom (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) = (πΈβ€˜π‘›))
99 eqid 2725 . . . . 5 {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ}
100 fvex 6903 . . . . . . . . 9 (πΉβ€˜π‘š) ∈ V
101100dmex 7911 . . . . . . . 8 dom (πΉβ€˜π‘š) ∈ V
102101rgenw 3055 . . . . . . 7 βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V
103102a1i 11 . . . . . 6 (πœ‘ β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V)
10456, 103iinexd 44560 . . . . 5 (πœ‘ β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V)
10599, 104rabexd 5331 . . . 4 (πœ‘ β†’ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ∈ V)
10678fvmpt2 7009 . . . 4 ((𝑛 ∈ 𝑍 ∧ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ∈ V) β†’ (πΈβ€˜π‘›) = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
1074, 105, 106syl2anc 582 . . 3 (πœ‘ β†’ (πΈβ€˜π‘›) = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
10890, 98, 1073eqtrrd 2770 . 2 (πœ‘ β†’ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} = dom (π»β€˜π‘›))
10974, 108eleqtrd 2827 1 (πœ‘ β†’ 𝑋 ∈ dom (π»β€˜π‘›))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533  β„²wnf 1777   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419  Vcvv 3463   βŠ† wss 3941  βˆ…c0 4319  βˆ© ciin 4993   class class class wbr 5144   ↦ cmpt 5227  dom cdm 5673  ran crn 5674  βŸΆwf 6539  β€˜cfv 6543  supcsup 9458  β„cr 11132  +∞cpnf 11270  β„*cxr 11272   < clt 11273   ≀ cle 11274  β„€cz 12583  β„€β‰₯cuz 12847  lim supclsp 15441  SAlgcsalg 45755  SMblFncsmblfn 46142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-inf 9461  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-q 12958  df-ioo 13355  df-ico 13357  df-fz 13512  df-fl 13784  df-ceil 13785  df-limsup 15442  df-smblfn 46143
This theorem is referenced by:  smflimsuplem7  46273
  Copyright terms: Public domain W3C validator