Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem2 Structured version   Visualization version   GIF version

Theorem smflimsuplem2 46826
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem2.p 𝑚𝜑
smflimsuplem2.m (𝜑𝑀 ∈ ℤ)
smflimsuplem2.z 𝑍 = (ℤ𝑀)
smflimsuplem2.s (𝜑𝑆 ∈ SAlg)
smflimsuplem2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem2.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem2.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem2.n (𝜑𝑛𝑍)
smflimsuplem2.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem2.x (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem2 (𝜑𝑋 ∈ dom (𝐻𝑛))
Distinct variable groups:   𝑥,𝐹   𝑚,𝑀   𝑚,𝑋   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem smflimsuplem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem2.x . . . 4 (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2 smflimsuplem2.p . . . . . 6 𝑚𝜑
3 eqid 2730 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
4 smflimsuplem2.n . . . . . . . . . . . . 13 (𝜑𝑛𝑍)
5 smflimsuplem2.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2839 . . . . . . . . . . . 12 (𝜑𝑛 ∈ (ℤ𝑀))
7 uzss 12823 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑 → (ℤ𝑛) ⊆ (ℤ𝑀))
98, 5sseqtrrdi 3991 . . . . . . . . . 10 (𝜑 → (ℤ𝑛) ⊆ 𝑍)
109adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ 𝑍)
11 simpr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛))
1210, 11sseldd 3950 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 smflimsuplem2.s . . . . . . . . . 10 (𝜑𝑆 ∈ SAlg)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
15 smflimsuplem2.f . . . . . . . . . 10 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1615ffvelcdmda 7059 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
17 eqid 2730 . . . . . . . . 9 dom (𝐹𝑚) = dom (𝐹𝑚)
1814, 16, 17smff 46737 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1912, 18syldan 591 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
20 iinss2 5024 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
2120adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
221adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2321, 22sseldd 3950 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑚))
2419, 23ffvelcdmd 7060 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
25 nfmpt1 5209 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
26 nfmpt1 5209 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
27 eluzelz 12810 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
286, 27syl 17 . . . . . . . . 9 (𝜑𝑛 ∈ ℤ)
29 eqid 2730 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
302, 24, 29fmptdf 7092 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)):(ℤ𝑛)⟶ℝ)
3130ffnd 6692 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑛))
32 smflimsuplem2.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
33 nfcv 2892 . . . . . . . . . 10 𝑚(ℤ𝑀)
34 fvexd 6876 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝐹𝑚)‘𝑋) ∈ V)
3533, 2, 34mptfnd 45243 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑀))
3629a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
37 fvexd 6876 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
3836, 37fvmpt2d 6984 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
3912, 5eleqtrdi 2839 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑀))
40 eqid 2730 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
4140fvmpt2 6982 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑀) ∧ ((𝐹𝑚)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4239, 37, 41syl2anc 584 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4338, 42eqtr4d 2768 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚))
442, 25, 26, 28, 31, 32, 35, 28, 43limsupequz 45728 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))))
455eqcomi 2739 . . . . . . . . . . 11 (ℤ𝑀) = 𝑍
4645mpteq1i 5201 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
4746fveq2i 6864 . . . . . . . . 9 (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
4847a1i 11 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
4944, 48eqtrd 2765 . . . . . . 7 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
50 smflimsuplem2.r . . . . . . . 8 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
5150renepnfd 11232 . . . . . . 7 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
5249, 51eqnetrd 2993 . . . . . 6 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
532, 3, 24, 52limsupubuzmpt 45724 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
54 uzid 12815 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
55 ne0i 4307 . . . . . . 7 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
5628, 54, 553syl 18 . . . . . 6 (𝜑 → (ℤ𝑛) ≠ ∅)
572, 56, 24supxrre3rnmpt 45432 . . . . 5 (𝜑 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
5853, 57mpbird 257 . . . 4 (𝜑 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
591, 58jca 511 . . 3 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
60 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6160mpteq2dv 5204 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6261rneqd 5905 . . . . . . . 8 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6362supeq1d 9404 . . . . . . 7 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
6463eleq1d 2814 . . . . . 6 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
6564cbvrabv 3419 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
6665eleq2i 2821 . . . 4 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
67 fveq2 6861 . . . . . . . . 9 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
6867mpteq2dv 5204 . . . . . . . 8 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
6968rneqd 5905 . . . . . . 7 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
7069supeq1d 9404 . . . . . 6 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
7170eleq1d 2814 . . . . 5 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7271elrab 3662 . . . 4 (𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7366, 72bitri 275 . . 3 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7459, 73sylibr 234 . 2 (𝜑𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
75 id 22 . . . . 5 (𝜑𝜑)
76 smflimsuplem2.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
7776a1i 11 . . . . . 6 (𝜑𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))))
78 smflimsuplem2.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
79 nfcv 2892 . . . . . . . . . . 11 𝑥𝑍
80 nfrab1 3429 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
8179, 80nfmpt 5208 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
8278, 81nfcxfr 2890 . . . . . . . . 9 𝑥𝐸
83 nfcv 2892 . . . . . . . . 9 𝑥𝑛
8482, 83nffv 6871 . . . . . . . 8 𝑥(𝐸𝑛)
85 fvex 6874 . . . . . . . 8 (𝐸𝑛) ∈ V
8684, 85mptexf 45238 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
8786a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
8877, 87fvmpt2d 6984 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
8975, 4, 88syl2anc 584 . . . 4 (𝜑 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
9089dmeqd 5872 . . 3 (𝜑 → dom (𝐻𝑛) = dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
91 nfcv 2892 . . . . 5 𝑦(𝐸𝑛)
92 nfcv 2892 . . . . 5 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
93 nfcv 2892 . . . . 5 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
9484, 91, 92, 93, 63cbvmptf 5210 . . . 4 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
95 xrltso 13108 . . . . . 6 < Or ℝ*
9695supex 9422 . . . . 5 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V
9796a1i 11 . . . 4 ((𝜑𝑦 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V)
9894, 97dmmptd 6666 . . 3 (𝜑 → dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛))
99 eqid 2730 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
100 fvex 6874 . . . . . . . . 9 (𝐹𝑚) ∈ V
101100dmex 7888 . . . . . . . 8 dom (𝐹𝑚) ∈ V
102101rgenw 3049 . . . . . . 7 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
103102a1i 11 . . . . . 6 (𝜑 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10456, 103iinexd 45134 . . . . 5 (𝜑 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10599, 104rabexd 5298 . . . 4 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10678fvmpt2 6982 . . . 4 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1074, 105, 106syl2anc 584 . . 3 (𝜑 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10890, 98, 1073eqtrrd 2770 . 2 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = dom (𝐻𝑛))
10974, 108eleqtrd 2831 1 (𝜑𝑋 ∈ dom (𝐻𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299   ciin 4959   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  wf 6510  cfv 6514  supcsup 9398  cr 11074  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cz 12536  cuz 12800  lim supclsp 15443  SAlgcsalg 46313  SMblFncsmblfn 46700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-ioo 13317  df-ico 13319  df-fz 13476  df-fl 13761  df-ceil 13762  df-limsup 15444  df-smblfn 46701
This theorem is referenced by:  smflimsuplem7  46831
  Copyright terms: Public domain W3C validator