Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem2 Structured version   Visualization version   GIF version

Theorem smflimsuplem2 46132
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem2.p β„²π‘šπœ‘
smflimsuplem2.m (πœ‘ β†’ 𝑀 ∈ β„€)
smflimsuplem2.z 𝑍 = (β„€β‰₯β€˜π‘€)
smflimsuplem2.s (πœ‘ β†’ 𝑆 ∈ SAlg)
smflimsuplem2.f (πœ‘ β†’ 𝐹:π‘βŸΆ(SMblFnβ€˜π‘†))
smflimsuplem2.e 𝐸 = (𝑛 ∈ 𝑍 ↦ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
smflimsuplem2.h 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
smflimsuplem2.n (πœ‘ β†’ 𝑛 ∈ 𝑍)
smflimsuplem2.r (πœ‘ β†’ (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) ∈ ℝ)
smflimsuplem2.x (πœ‘ β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
Assertion
Ref Expression
smflimsuplem2 (πœ‘ β†’ 𝑋 ∈ dom (π»β€˜π‘›))
Distinct variable groups:   π‘₯,𝐹   π‘š,𝑀   π‘š,𝑋   π‘š,𝑍,𝑛,π‘₯
Allowed substitution hints:   πœ‘(π‘₯,π‘š,𝑛)   𝑆(π‘₯,π‘š,𝑛)   𝐸(π‘₯,π‘š,𝑛)   𝐹(π‘š,𝑛)   𝐻(π‘₯,π‘š,𝑛)   𝑀(π‘₯,𝑛)   𝑋(π‘₯,𝑛)

Proof of Theorem smflimsuplem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem2.x . . . 4 (πœ‘ β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
2 smflimsuplem2.p . . . . . 6 β„²π‘šπœ‘
3 eqid 2727 . . . . . 6 (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘›)
4 smflimsuplem2.n . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑛 ∈ 𝑍)
5 smflimsuplem2.z . . . . . . . . . . . . 13 𝑍 = (β„€β‰₯β€˜π‘€)
64, 5eleqtrdi 2838 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
7 uzss 12867 . . . . . . . . . . . 12 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (β„€β‰₯β€˜π‘›) βŠ† (β„€β‰₯β€˜π‘€))
86, 7syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (β„€β‰₯β€˜π‘›) βŠ† (β„€β‰₯β€˜π‘€))
98, 5sseqtrrdi 4029 . . . . . . . . . 10 (πœ‘ β†’ (β„€β‰₯β€˜π‘›) βŠ† 𝑍)
109adantr 480 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ (β„€β‰₯β€˜π‘›) βŠ† 𝑍)
11 simpr 484 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ (β„€β‰₯β€˜π‘›))
1210, 11sseldd 3979 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ 𝑍)
13 smflimsuplem2.s . . . . . . . . . 10 (πœ‘ β†’ 𝑆 ∈ SAlg)
1413adantr 480 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ 𝑆 ∈ SAlg)
15 smflimsuplem2.f . . . . . . . . . 10 (πœ‘ β†’ 𝐹:π‘βŸΆ(SMblFnβ€˜π‘†))
1615ffvelcdmda 7088 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š) ∈ (SMblFnβ€˜π‘†))
17 eqid 2727 . . . . . . . . 9 dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘š)
1814, 16, 17smff 46043 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š):dom (πΉβ€˜π‘š)βŸΆβ„)
1912, 18syldan 590 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ (πΉβ€˜π‘š):dom (πΉβ€˜π‘š)βŸΆβ„)
20 iinss2 5054 . . . . . . . . 9 (π‘š ∈ (β„€β‰₯β€˜π‘›) β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) βŠ† dom (πΉβ€˜π‘š))
2120adantl 481 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) βŠ† dom (πΉβ€˜π‘š))
221adantr 480 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
2321, 22sseldd 3979 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ 𝑋 ∈ dom (πΉβ€˜π‘š))
2419, 23ffvelcdmd 7089 . . . . . 6 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ ℝ)
25 nfmpt1 5250 . . . . . . . . 9 β„²π‘š(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
26 nfmpt1 5250 . . . . . . . . 9 β„²π‘š(π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
27 eluzelz 12854 . . . . . . . . . 10 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑛 ∈ β„€)
286, 27syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑛 ∈ β„€)
29 eqid 2727 . . . . . . . . . . 11 (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
302, 24, 29fmptdf 7121 . . . . . . . . . 10 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)):(β„€β‰₯β€˜π‘›)βŸΆβ„)
3130ffnd 6717 . . . . . . . . 9 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) Fn (β„€β‰₯β€˜π‘›))
32 smflimsuplem2.m . . . . . . . . 9 (πœ‘ β†’ 𝑀 ∈ β„€)
33 nfcv 2898 . . . . . . . . . 10 β„²π‘š(β„€β‰₯β€˜π‘€)
34 fvexd 6906 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘€)) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V)
3533, 2, 34mptfnd 44540 . . . . . . . . 9 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) Fn (β„€β‰₯β€˜π‘€))
3629a1i 11 . . . . . . . . . . 11 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
37 fvexd 6906 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V)
3836, 37fvmpt2d 7012 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š) = ((πΉβ€˜π‘š)β€˜π‘‹))
3912, 5eleqtrdi 2838 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ (β„€β‰₯β€˜π‘€))
40 eqid 2727 . . . . . . . . . . . 12 (π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) = (π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
4140fvmpt2 7010 . . . . . . . . . . 11 ((π‘š ∈ (β„€β‰₯β€˜π‘€) ∧ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V) β†’ ((π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š) = ((πΉβ€˜π‘š)β€˜π‘‹))
4239, 37, 41syl2anc 583 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š) = ((πΉβ€˜π‘š)β€˜π‘‹))
4338, 42eqtr4d 2770 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š) = ((π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))β€˜π‘š))
442, 25, 26, 28, 31, 32, 35, 28, 43limsupequz 45034 . . . . . . . 8 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
455eqcomi 2736 . . . . . . . . . . 11 (β„€β‰₯β€˜π‘€) = 𝑍
4645mpteq1i 5238 . . . . . . . . . 10 (π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)) = (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))
4746fveq2i 6894 . . . . . . . . 9 (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
4847a1i 11 . . . . . . . 8 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘€) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
4944, 48eqtrd 2767 . . . . . . 7 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
50 smflimsuplem2.r . . . . . . . 8 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) ∈ ℝ)
5150renepnfd 11287 . . . . . . 7 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) β‰  +∞)
5249, 51eqnetrd 3003 . . . . . 6 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) β‰  +∞)
532, 3, 24, 52limsupubuzmpt 45030 . . . . 5 (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)((πΉβ€˜π‘š)β€˜π‘‹) ≀ 𝑦)
54 uzid 12859 . . . . . . 7 (𝑛 ∈ β„€ β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘›))
55 ne0i 4330 . . . . . . 7 (𝑛 ∈ (β„€β‰₯β€˜π‘›) β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
5628, 54, 553syl 18 . . . . . 6 (πœ‘ β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
572, 56, 24supxrre3rnmpt 44734 . . . . 5 (πœ‘ β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ ↔ βˆƒπ‘¦ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)((πΉβ€˜π‘š)β€˜π‘‹) ≀ 𝑦))
5853, 57mpbird 257 . . . 4 (πœ‘ β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ)
591, 58jca 511 . . 3 (πœ‘ β†’ (𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∧ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ))
60 fveq2 6891 . . . . . . . . . 10 (π‘₯ = 𝑦 β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘¦))
6160mpteq2dv 5244 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)))
6261rneqd 5934 . . . . . . . 8 (π‘₯ = 𝑦 β†’ ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) = ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)))
6362supeq1d 9461 . . . . . . 7 (π‘₯ = 𝑦 β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ))
6463eleq1d 2813 . . . . . 6 (π‘₯ = 𝑦 β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ ↔ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ))
6564cbvrabv 3437 . . . . 5 {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} = {𝑦 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ}
6665eleq2i 2820 . . . 4 (𝑋 ∈ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ↔ 𝑋 ∈ {𝑦 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ})
67 fveq2 6891 . . . . . . . . 9 (𝑦 = 𝑋 β†’ ((πΉβ€˜π‘š)β€˜π‘¦) = ((πΉβ€˜π‘š)β€˜π‘‹))
6867mpteq2dv 5244 . . . . . . . 8 (𝑦 = 𝑋 β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
6968rneqd 5934 . . . . . . 7 (𝑦 = 𝑋 β†’ ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
7069supeq1d 9461 . . . . . 6 (𝑦 = 𝑋 β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ))
7170eleq1d 2813 . . . . 5 (𝑦 = 𝑋 β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ))
7271elrab 3680 . . . 4 (𝑋 ∈ {𝑦 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∧ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ))
7366, 72bitri 275 . . 3 (𝑋 ∈ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∧ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ))
7459, 73sylibr 233 . 2 (πœ‘ β†’ 𝑋 ∈ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
75 id 22 . . . . 5 (πœ‘ β†’ πœ‘)
76 smflimsuplem2.h . . . . . . 7 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
7776a1i 11 . . . . . 6 (πœ‘ β†’ 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ))))
78 smflimsuplem2.e . . . . . . . . . 10 𝐸 = (𝑛 ∈ 𝑍 ↦ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
79 nfcv 2898 . . . . . . . . . . 11 β„²π‘₯𝑍
80 nfrab1 3446 . . . . . . . . . . 11 β„²π‘₯{π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ}
8179, 80nfmpt 5249 . . . . . . . . . 10 β„²π‘₯(𝑛 ∈ 𝑍 ↦ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
8278, 81nfcxfr 2896 . . . . . . . . 9 β„²π‘₯𝐸
83 nfcv 2898 . . . . . . . . 9 β„²π‘₯𝑛
8482, 83nffv 6901 . . . . . . . 8 β„²π‘₯(πΈβ€˜π‘›)
85 fvex 6904 . . . . . . . 8 (πΈβ€˜π‘›) ∈ V
8684, 85mptexf 44535 . . . . . . 7 (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) ∈ V
8786a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) ∈ V)
8877, 87fvmpt2d 7012 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (π»β€˜π‘›) = (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
8975, 4, 88syl2anc 583 . . . 4 (πœ‘ β†’ (π»β€˜π‘›) = (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
9089dmeqd 5902 . . 3 (πœ‘ β†’ dom (π»β€˜π‘›) = dom (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
91 nfcv 2898 . . . . 5 Ⅎ𝑦(πΈβ€˜π‘›)
92 nfcv 2898 . . . . 5 Ⅎ𝑦sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )
93 nfcv 2898 . . . . 5 β„²π‘₯sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < )
9484, 91, 92, 93, 63cbvmptf 5251 . . . 4 (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) = (𝑦 ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ))
95 xrltso 13144 . . . . . 6 < Or ℝ*
9695supex 9478 . . . . 5 sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ V
9796a1i 11 . . . 4 ((πœ‘ ∧ 𝑦 ∈ (πΈβ€˜π‘›)) β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ V)
9894, 97dmmptd 6694 . . 3 (πœ‘ β†’ dom (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) = (πΈβ€˜π‘›))
99 eqid 2727 . . . . 5 {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ}
100 fvex 6904 . . . . . . . . 9 (πΉβ€˜π‘š) ∈ V
101100dmex 7911 . . . . . . . 8 dom (πΉβ€˜π‘š) ∈ V
102101rgenw 3060 . . . . . . 7 βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V
103102a1i 11 . . . . . 6 (πœ‘ β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V)
10456, 103iinexd 44422 . . . . 5 (πœ‘ β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V)
10599, 104rabexd 5329 . . . 4 (πœ‘ β†’ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ∈ V)
10678fvmpt2 7010 . . . 4 ((𝑛 ∈ 𝑍 ∧ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ∈ V) β†’ (πΈβ€˜π‘›) = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
1074, 105, 106syl2anc 583 . . 3 (πœ‘ β†’ (πΈβ€˜π‘›) = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
10890, 98, 1073eqtrrd 2772 . 2 (πœ‘ β†’ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} = dom (π»β€˜π‘›))
10974, 108eleqtrd 2830 1 (πœ‘ β†’ 𝑋 ∈ dom (π»β€˜π‘›))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534  β„²wnf 1778   ∈ wcel 2099   β‰  wne 2935  βˆ€wral 3056  βˆƒwrex 3065  {crab 3427  Vcvv 3469   βŠ† wss 3944  βˆ…c0 4318  βˆ© ciin 4992   class class class wbr 5142   ↦ cmpt 5225  dom cdm 5672  ran crn 5673  βŸΆwf 6538  β€˜cfv 6542  supcsup 9455  β„cr 11129  +∞cpnf 11267  β„*cxr 11269   < clt 11270   ≀ cle 11271  β„€cz 12580  β„€β‰₯cuz 12844  lim supclsp 15438  SAlgcsalg 45619  SMblFncsmblfn 46006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-ioo 13352  df-ico 13354  df-fz 13509  df-fl 13781  df-ceil 13782  df-limsup 15439  df-smblfn 46007
This theorem is referenced by:  smflimsuplem7  46137
  Copyright terms: Public domain W3C validator