Step | Hyp | Ref
| Expression |
1 | | smflimsuplem2.x |
. . . 4
β’ (π β π β β©
π β
(β€β₯βπ)dom (πΉβπ)) |
2 | | smflimsuplem2.p |
. . . . . 6
β’
β²ππ |
3 | | eqid 2732 |
. . . . . 6
β’
(β€β₯βπ) = (β€β₯βπ) |
4 | | smflimsuplem2.n |
. . . . . . . . . . . . 13
β’ (π β π β π) |
5 | | smflimsuplem2.z |
. . . . . . . . . . . . 13
β’ π =
(β€β₯βπ) |
6 | 4, 5 | eleqtrdi 2843 |
. . . . . . . . . . . 12
β’ (π β π β (β€β₯βπ)) |
7 | | uzss 12841 |
. . . . . . . . . . . 12
β’ (π β
(β€β₯βπ) β (β€β₯βπ) β
(β€β₯βπ)) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . 11
β’ (π β
(β€β₯βπ) β (β€β₯βπ)) |
9 | 8, 5 | sseqtrrdi 4032 |
. . . . . . . . . 10
β’ (π β
(β€β₯βπ) β π) |
10 | 9 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (β€β₯βπ)) β
(β€β₯βπ) β π) |
11 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π β (β€β₯βπ)) β π β (β€β₯βπ)) |
12 | 10, 11 | sseldd 3982 |
. . . . . . . 8
β’ ((π β§ π β (β€β₯βπ)) β π β π) |
13 | | smflimsuplem2.s |
. . . . . . . . . 10
β’ (π β π β SAlg) |
14 | 13 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β π) β π β SAlg) |
15 | | smflimsuplem2.f |
. . . . . . . . . 10
β’ (π β πΉ:πβΆ(SMblFnβπ)) |
16 | 15 | ffvelcdmda 7083 |
. . . . . . . . 9
β’ ((π β§ π β π) β (πΉβπ) β (SMblFnβπ)) |
17 | | eqid 2732 |
. . . . . . . . 9
β’ dom
(πΉβπ) = dom (πΉβπ) |
18 | 14, 16, 17 | smff 45434 |
. . . . . . . 8
β’ ((π β§ π β π) β (πΉβπ):dom (πΉβπ)βΆβ) |
19 | 12, 18 | syldan 591 |
. . . . . . 7
β’ ((π β§ π β (β€β₯βπ)) β (πΉβπ):dom (πΉβπ)βΆβ) |
20 | | iinss2 5059 |
. . . . . . . . 9
β’ (π β
(β€β₯βπ) β β©
π β
(β€β₯βπ)dom (πΉβπ) β dom (πΉβπ)) |
21 | 20 | adantl 482 |
. . . . . . . 8
β’ ((π β§ π β (β€β₯βπ)) β β© π β (β€β₯βπ)dom (πΉβπ) β dom (πΉβπ)) |
22 | 1 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β (β€β₯βπ)) β π β β©
π β
(β€β₯βπ)dom (πΉβπ)) |
23 | 21, 22 | sseldd 3982 |
. . . . . . 7
β’ ((π β§ π β (β€β₯βπ)) β π β dom (πΉβπ)) |
24 | 19, 23 | ffvelcdmd 7084 |
. . . . . 6
β’ ((π β§ π β (β€β₯βπ)) β ((πΉβπ)βπ) β β) |
25 | | nfmpt1 5255 |
. . . . . . . . 9
β’
β²π(π β (β€β₯βπ) β¦ ((πΉβπ)βπ)) |
26 | | nfmpt1 5255 |
. . . . . . . . 9
β’
β²π(π β (β€β₯βπ) β¦ ((πΉβπ)βπ)) |
27 | | eluzelz 12828 |
. . . . . . . . . 10
β’ (π β
(β€β₯βπ) β π β β€) |
28 | 6, 27 | syl 17 |
. . . . . . . . 9
β’ (π β π β β€) |
29 | | eqid 2732 |
. . . . . . . . . . 11
β’ (π β
(β€β₯βπ) β¦ ((πΉβπ)βπ)) = (π β (β€β₯βπ) β¦ ((πΉβπ)βπ)) |
30 | 2, 24, 29 | fmptdf 7113 |
. . . . . . . . . 10
β’ (π β (π β (β€β₯βπ) β¦ ((πΉβπ)βπ)):(β€β₯βπ)βΆβ) |
31 | 30 | ffnd 6715 |
. . . . . . . . 9
β’ (π β (π β (β€β₯βπ) β¦ ((πΉβπ)βπ)) Fn (β€β₯βπ)) |
32 | | smflimsuplem2.m |
. . . . . . . . 9
β’ (π β π β β€) |
33 | | nfcv 2903 |
. . . . . . . . . 10
β’
β²π(β€β₯βπ) |
34 | | fvexd 6903 |
. . . . . . . . . 10
β’ ((π β§ π β (β€β₯βπ)) β ((πΉβπ)βπ) β V) |
35 | 33, 2, 34 | mptfnd 43930 |
. . . . . . . . 9
β’ (π β (π β (β€β₯βπ) β¦ ((πΉβπ)βπ)) Fn (β€β₯βπ)) |
36 | 29 | a1i 11 |
. . . . . . . . . . 11
β’ (π β (π β (β€β₯βπ) β¦ ((πΉβπ)βπ)) = (π β (β€β₯βπ) β¦ ((πΉβπ)βπ))) |
37 | | fvexd 6903 |
. . . . . . . . . . 11
β’ ((π β§ π β (β€β₯βπ)) β ((πΉβπ)βπ) β V) |
38 | 36, 37 | fvmpt2d 7008 |
. . . . . . . . . 10
β’ ((π β§ π β (β€β₯βπ)) β ((π β (β€β₯βπ) β¦ ((πΉβπ)βπ))βπ) = ((πΉβπ)βπ)) |
39 | 12, 5 | eleqtrdi 2843 |
. . . . . . . . . . 11
β’ ((π β§ π β (β€β₯βπ)) β π β (β€β₯βπ)) |
40 | | eqid 2732 |
. . . . . . . . . . . 12
β’ (π β
(β€β₯βπ) β¦ ((πΉβπ)βπ)) = (π β (β€β₯βπ) β¦ ((πΉβπ)βπ)) |
41 | 40 | fvmpt2 7006 |
. . . . . . . . . . 11
β’ ((π β
(β€β₯βπ) β§ ((πΉβπ)βπ) β V) β ((π β (β€β₯βπ) β¦ ((πΉβπ)βπ))βπ) = ((πΉβπ)βπ)) |
42 | 39, 37, 41 | syl2anc 584 |
. . . . . . . . . 10
β’ ((π β§ π β (β€β₯βπ)) β ((π β (β€β₯βπ) β¦ ((πΉβπ)βπ))βπ) = ((πΉβπ)βπ)) |
43 | 38, 42 | eqtr4d 2775 |
. . . . . . . . 9
β’ ((π β§ π β (β€β₯βπ)) β ((π β (β€β₯βπ) β¦ ((πΉβπ)βπ))βπ) = ((π β (β€β₯βπ) β¦ ((πΉβπ)βπ))βπ)) |
44 | 2, 25, 26, 28, 31, 32, 35, 28, 43 | limsupequz 44425 |
. . . . . . . 8
β’ (π β (lim supβ(π β
(β€β₯βπ) β¦ ((πΉβπ)βπ))) = (lim supβ(π β (β€β₯βπ) β¦ ((πΉβπ)βπ)))) |
45 | 5 | eqcomi 2741 |
. . . . . . . . . . 11
β’
(β€β₯βπ) = π |
46 | 45 | mpteq1i 5243 |
. . . . . . . . . 10
β’ (π β
(β€β₯βπ) β¦ ((πΉβπ)βπ)) = (π β π β¦ ((πΉβπ)βπ)) |
47 | 46 | fveq2i 6891 |
. . . . . . . . 9
β’ (lim
supβ(π β
(β€β₯βπ) β¦ ((πΉβπ)βπ))) = (lim supβ(π β π β¦ ((πΉβπ)βπ))) |
48 | 47 | a1i 11 |
. . . . . . . 8
β’ (π β (lim supβ(π β
(β€β₯βπ) β¦ ((πΉβπ)βπ))) = (lim supβ(π β π β¦ ((πΉβπ)βπ)))) |
49 | 44, 48 | eqtrd 2772 |
. . . . . . 7
β’ (π β (lim supβ(π β
(β€β₯βπ) β¦ ((πΉβπ)βπ))) = (lim supβ(π β π β¦ ((πΉβπ)βπ)))) |
50 | | smflimsuplem2.r |
. . . . . . . 8
β’ (π β (lim supβ(π β π β¦ ((πΉβπ)βπ))) β β) |
51 | 50 | renepnfd 11261 |
. . . . . . 7
β’ (π β (lim supβ(π β π β¦ ((πΉβπ)βπ))) β +β) |
52 | 49, 51 | eqnetrd 3008 |
. . . . . 6
β’ (π β (lim supβ(π β
(β€β₯βπ) β¦ ((πΉβπ)βπ))) β +β) |
53 | 2, 3, 24, 52 | limsupubuzmpt 44421 |
. . . . 5
β’ (π β βπ¦ β β βπ β (β€β₯βπ)((πΉβπ)βπ) β€ π¦) |
54 | | uzid 12833 |
. . . . . . 7
β’ (π β β€ β π β
(β€β₯βπ)) |
55 | | ne0i 4333 |
. . . . . . 7
β’ (π β
(β€β₯βπ) β (β€β₯βπ) β β
) |
56 | 28, 54, 55 | 3syl 18 |
. . . . . 6
β’ (π β
(β€β₯βπ) β β
) |
57 | 2, 56, 24 | supxrre3rnmpt 44125 |
. . . . 5
β’ (π β (sup(ran (π β
(β€β₯βπ) β¦ ((πΉβπ)βπ)), β*, < ) β
β β βπ¦
β β βπ
β (β€β₯βπ)((πΉβπ)βπ) β€ π¦)) |
58 | 53, 57 | mpbird 256 |
. . . 4
β’ (π β sup(ran (π β
(β€β₯βπ) β¦ ((πΉβπ)βπ)), β*, < ) β
β) |
59 | 1, 58 | jca 512 |
. . 3
β’ (π β (π β β©
π β
(β€β₯βπ)dom (πΉβπ) β§ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ)), β*, < ) β
β)) |
60 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π₯ = π¦ β ((πΉβπ)βπ₯) = ((πΉβπ)βπ¦)) |
61 | 60 | mpteq2dv 5249 |
. . . . . . . . 9
β’ (π₯ = π¦ β (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)) = (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦))) |
62 | 61 | rneqd 5935 |
. . . . . . . 8
β’ (π₯ = π¦ β ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)) = ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦))) |
63 | 62 | supeq1d 9437 |
. . . . . . 7
β’ (π₯ = π¦ β sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) = sup(ran
(π β
(β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, <
)) |
64 | 63 | eleq1d 2818 |
. . . . . 6
β’ (π₯ = π¦ β (sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β β sup(ran (π
β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, < ) β
β)) |
65 | 64 | cbvrabv 3442 |
. . . . 5
β’ {π₯ β β© π β (β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β} = {π¦ β
β© π β (β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, < ) β
β} |
66 | 65 | eleq2i 2825 |
. . . 4
β’ (π β {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β} β π β
{π¦ β β© π β (β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, < ) β
β}) |
67 | | fveq2 6888 |
. . . . . . . . 9
β’ (π¦ = π β ((πΉβπ)βπ¦) = ((πΉβπ)βπ)) |
68 | 67 | mpteq2dv 5249 |
. . . . . . . 8
β’ (π¦ = π β (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)) = (π β (β€β₯βπ) β¦ ((πΉβπ)βπ))) |
69 | 68 | rneqd 5935 |
. . . . . . 7
β’ (π¦ = π β ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)) = ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ))) |
70 | 69 | supeq1d 9437 |
. . . . . 6
β’ (π¦ = π β sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, < ) = sup(ran
(π β
(β€β₯βπ) β¦ ((πΉβπ)βπ)), β*, <
)) |
71 | 70 | eleq1d 2818 |
. . . . 5
β’ (π¦ = π β (sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, < ) β
β β sup(ran (π
β (β€β₯βπ) β¦ ((πΉβπ)βπ)), β*, < ) β
β)) |
72 | 71 | elrab 3682 |
. . . 4
β’ (π β {π¦ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, < ) β
β} β (π β
β© π β (β€β₯βπ)dom (πΉβπ) β§ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ)), β*, < ) β
β)) |
73 | 66, 72 | bitri 274 |
. . 3
β’ (π β {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β} β (π β
β© π β (β€β₯βπ)dom (πΉβπ) β§ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ)), β*, < ) β
β)) |
74 | 59, 73 | sylibr 233 |
. 2
β’ (π β π β {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β}) |
75 | | id 22 |
. . . . 5
β’ (π β π) |
76 | | smflimsuplem2.h |
. . . . . . 7
β’ π» = (π β π β¦ (π₯ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, <
))) |
77 | 76 | a1i 11 |
. . . . . 6
β’ (π β π» = (π β π β¦ (π₯ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, <
)))) |
78 | | smflimsuplem2.e |
. . . . . . . . . 10
β’ πΈ = (π β π β¦ {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β}) |
79 | | nfcv 2903 |
. . . . . . . . . . 11
β’
β²π₯π |
80 | | nfrab1 3451 |
. . . . . . . . . . 11
β’
β²π₯{π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β} |
81 | 79, 80 | nfmpt 5254 |
. . . . . . . . . 10
β’
β²π₯(π β π β¦ {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β}) |
82 | 78, 81 | nfcxfr 2901 |
. . . . . . . . 9
β’
β²π₯πΈ |
83 | | nfcv 2903 |
. . . . . . . . 9
β’
β²π₯π |
84 | 82, 83 | nffv 6898 |
. . . . . . . 8
β’
β²π₯(πΈβπ) |
85 | | fvex 6901 |
. . . . . . . 8
β’ (πΈβπ) β V |
86 | 84, 85 | mptexf 43925 |
. . . . . . 7
β’ (π₯ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < )) β
V |
87 | 86 | a1i 11 |
. . . . . 6
β’ ((π β§ π β π) β (π₯ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < )) β
V) |
88 | 77, 87 | fvmpt2d 7008 |
. . . . 5
β’ ((π β§ π β π) β (π»βπ) = (π₯ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, <
))) |
89 | 75, 4, 88 | syl2anc 584 |
. . . 4
β’ (π β (π»βπ) = (π₯ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, <
))) |
90 | 89 | dmeqd 5903 |
. . 3
β’ (π β dom (π»βπ) = dom (π₯ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, <
))) |
91 | | nfcv 2903 |
. . . . 5
β’
β²π¦(πΈβπ) |
92 | | nfcv 2903 |
. . . . 5
β’
β²π¦sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, <
) |
93 | | nfcv 2903 |
. . . . 5
β’
β²π₯sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, <
) |
94 | 84, 91, 92, 93, 63 | cbvmptf 5256 |
. . . 4
β’ (π₯ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < )) = (π¦ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, <
)) |
95 | | xrltso 13116 |
. . . . . 6
β’ < Or
β* |
96 | 95 | supex 9454 |
. . . . 5
β’ sup(ran
(π β
(β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, < ) β
V |
97 | 96 | a1i 11 |
. . . 4
β’ ((π β§ π¦ β (πΈβπ)) β sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ¦)), β*, < ) β
V) |
98 | 94, 97 | dmmptd 6692 |
. . 3
β’ (π β dom (π₯ β (πΈβπ) β¦ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < )) = (πΈβπ)) |
99 | | eqid 2732 |
. . . . 5
β’ {π₯ β β© π β (β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β} = {π₯ β
β© π β (β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β} |
100 | | fvex 6901 |
. . . . . . . . 9
β’ (πΉβπ) β V |
101 | 100 | dmex 7898 |
. . . . . . . 8
β’ dom
(πΉβπ) β V |
102 | 101 | rgenw 3065 |
. . . . . . 7
β’
βπ β
(β€β₯βπ)dom (πΉβπ) β V |
103 | 102 | a1i 11 |
. . . . . 6
β’ (π β βπ β (β€β₯βπ)dom (πΉβπ) β V) |
104 | 56, 103 | iinexd 43807 |
. . . . 5
β’ (π β β© π β (β€β₯βπ)dom (πΉβπ) β V) |
105 | 99, 104 | rabexd 5332 |
. . . 4
β’ (π β {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β} β V) |
106 | 78 | fvmpt2 7006 |
. . . 4
β’ ((π β π β§ {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β} β V) β (πΈβπ) = {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β}) |
107 | 4, 105, 106 | syl2anc 584 |
. . 3
β’ (π β (πΈβπ) = {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β}) |
108 | 90, 98, 107 | 3eqtrrd 2777 |
. 2
β’ (π β {π₯ β β©
π β
(β€β₯βπ)dom (πΉβπ) β£ sup(ran (π β (β€β₯βπ) β¦ ((πΉβπ)βπ₯)), β*, < ) β
β} = dom (π»βπ)) |
109 | 74, 108 | eleqtrd 2835 |
1
β’ (π β π β dom (π»βπ)) |