Step | Hyp | Ref
| Expression |
1 | | smflimsuplem2.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
2 | | smflimsuplem2.p |
. . . . . 6
⊢
Ⅎ𝑚𝜑 |
3 | | eqid 2738 |
. . . . . 6
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
4 | | smflimsuplem2.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑛 ∈ 𝑍) |
5 | | smflimsuplem2.z |
. . . . . . . . . . . . 13
⊢ 𝑍 =
(ℤ≥‘𝑀) |
6 | 4, 5 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑛 ∈ (ℤ≥‘𝑀)) |
7 | | uzss 12605 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑛) ⊆
(ℤ≥‘𝑀)) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘𝑛) ⊆ (ℤ≥‘𝑀)) |
9 | 8, 5 | sseqtrrdi 3972 |
. . . . . . . . . 10
⊢ (𝜑 →
(ℤ≥‘𝑛) ⊆ 𝑍) |
10 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) →
(ℤ≥‘𝑛) ⊆ 𝑍) |
11 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ (ℤ≥‘𝑛)) |
12 | 10, 11 | sseldd 3922 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
13 | | smflimsuplem2.s |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ SAlg) |
14 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑆 ∈ SAlg) |
15 | | smflimsuplem2.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
16 | 15 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) |
17 | | eqid 2738 |
. . . . . . . . 9
⊢ dom
(𝐹‘𝑚) = dom (𝐹‘𝑚) |
18 | 14, 16, 17 | smff 44268 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
19 | 12, 18 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
20 | | iinss2 4987 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘𝑛) → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ⊆ dom (𝐹‘𝑚)) |
21 | 20 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ⊆ dom (𝐹‘𝑚)) |
22 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
23 | 21, 22 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑋 ∈ dom (𝐹‘𝑚)) |
24 | 19, 23 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
25 | | nfmpt1 5182 |
. . . . . . . . 9
⊢
Ⅎ𝑚(𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) |
26 | | nfmpt1 5182 |
. . . . . . . . 9
⊢
Ⅎ𝑚(𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) |
27 | | eluzelz 12592 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
28 | 6, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑛 ∈ ℤ) |
29 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) |
30 | 2, 24, 29 | fmptdf 6991 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)):(ℤ≥‘𝑛)⟶ℝ) |
31 | 30 | ffnd 6601 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) Fn (ℤ≥‘𝑛)) |
32 | | smflimsuplem2.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
33 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(ℤ≥‘𝑀) |
34 | | fvexd 6789 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
35 | 33, 2, 34 | mptfnd 42786 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) Fn (ℤ≥‘𝑀)) |
36 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) |
37 | | fvexd 6789 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
38 | 36, 37 | fvmpt2d 6888 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚) = ((𝐹‘𝑚)‘𝑋)) |
39 | 12, 5 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ (ℤ≥‘𝑀)) |
40 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) |
41 | 40 | fvmpt2 6886 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈
(ℤ≥‘𝑀) ∧ ((𝐹‘𝑚)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚) = ((𝐹‘𝑚)‘𝑋)) |
42 | 39, 37, 41 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚) = ((𝐹‘𝑚)‘𝑋)) |
43 | 38, 42 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚) = ((𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑚)) |
44 | 2, 25, 26, 28, 31, 32, 35, 28, 43 | limsupequz 43264 |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ (ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)))) |
45 | 5 | eqcomi 2747 |
. . . . . . . . . . 11
⊢
(ℤ≥‘𝑀) = 𝑍 |
46 | 45 | mpteq1i 5170 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) |
47 | 46 | fveq2i 6777 |
. . . . . . . . 9
⊢ (lim
sup‘(𝑚 ∈
(ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
48 | 47 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑀) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
49 | 44, 48 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
50 | | smflimsuplem2.r |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
51 | 50 | renepnfd 11026 |
. . . . . . 7
⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ≠ +∞) |
52 | 49, 51 | eqnetrd 3011 |
. . . . . 6
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) ≠ +∞) |
53 | 2, 3, 24, 52 | limsupubuzmpt 43260 |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ≤ 𝑦) |
54 | | uzid 12597 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
55 | | ne0i 4268 |
. . . . . . 7
⊢ (𝑛 ∈
(ℤ≥‘𝑛) → (ℤ≥‘𝑛) ≠ ∅) |
56 | 28, 54, 55 | 3syl 18 |
. . . . . 6
⊢ (𝜑 →
(ℤ≥‘𝑛) ≠ ∅) |
57 | 2, 56, 24 | supxrre3rnmpt 42969 |
. . . . 5
⊢ (𝜑 → (sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ ↔ ∃𝑦
∈ ℝ ∀𝑚
∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ≤ 𝑦)) |
58 | 53, 57 | mpbird 256 |
. . . 4
⊢ (𝜑 → sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ) |
59 | 1, 58 | jca 512 |
. . 3
⊢ (𝜑 → (𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ)) |
60 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) |
61 | 60 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦))) |
62 | 61 | rneqd 5847 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦))) |
63 | 62 | supeq1d 9205 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
)) |
64 | 63 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ)) |
65 | 64 | cbvrabv 3426 |
. . . . 5
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑦 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ} |
66 | 65 | eleq2i 2830 |
. . . 4
⊢ (𝑋 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ↔ 𝑋 ∈
{𝑦 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ}) |
67 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) |
68 | 67 | mpteq2dv 5176 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) |
69 | 68 | rneqd 5847 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) |
70 | 69 | supeq1d 9205 |
. . . . . 6
⊢ (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, <
)) |
71 | 70 | eleq1d 2823 |
. . . . 5
⊢ (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ)) |
72 | 71 | elrab 3624 |
. . . 4
⊢ (𝑋 ∈ {𝑦 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ} ↔ (𝑋 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ)) |
73 | 66, 72 | bitri 274 |
. . 3
⊢ (𝑋 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ↔ (𝑋 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ)) |
74 | 59, 73 | sylibr 233 |
. 2
⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
75 | | id 22 |
. . . . 5
⊢ (𝜑 → 𝜑) |
76 | | smflimsuplem2.h |
. . . . . . 7
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
77 | 76 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
)))) |
78 | | smflimsuplem2.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
79 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑍 |
80 | | nfrab1 3317 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥{𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
81 | 79, 80 | nfmpt 5181 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
82 | 78, 81 | nfcxfr 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐸 |
83 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑛 |
84 | 82, 83 | nffv 6784 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐸‘𝑛) |
85 | | fvex 6787 |
. . . . . . . 8
⊢ (𝐸‘𝑛) ∈ V |
86 | 84, 85 | mptexf 42781 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) ∈
V |
87 | 86 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) ∈
V) |
88 | 77, 87 | fvmpt2d 6888 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
89 | 75, 4, 88 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐻‘𝑛) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
90 | 89 | dmeqd 5814 |
. . 3
⊢ (𝜑 → dom (𝐻‘𝑛) = dom (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
91 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑦(𝐸‘𝑛) |
92 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑦sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
) |
93 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑥sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
) |
94 | 84, 91, 92, 93, 63 | cbvmptf 5183 |
. . . 4
⊢ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
)) |
95 | | xrltso 12875 |
. . . . . 6
⊢ < Or
ℝ* |
96 | 95 | supex 9222 |
. . . . 5
⊢ sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
V |
97 | 96 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐸‘𝑛)) → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
V) |
98 | 94, 97 | dmmptd 6578 |
. . 3
⊢ (𝜑 → dom (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝐸‘𝑛)) |
99 | | eqid 2738 |
. . . . 5
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
100 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝐹‘𝑚) ∈ V |
101 | 100 | dmex 7758 |
. . . . . . . 8
⊢ dom
(𝐹‘𝑚) ∈ V |
102 | 101 | rgenw 3076 |
. . . . . . 7
⊢
∀𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
103 | 102 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
104 | 56, 103 | iinexd 42682 |
. . . . 5
⊢ (𝜑 → ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
105 | 99, 104 | rabexd 5257 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ∈ V) |
106 | 78 | fvmpt2 6886 |
. . . 4
⊢ ((𝑛 ∈ 𝑍 ∧ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ∈ V) → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
107 | 4, 105, 106 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
108 | 90, 98, 107 | 3eqtrrd 2783 |
. 2
⊢ (𝜑 → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = dom (𝐻‘𝑛)) |
109 | 74, 108 | eleqtrd 2841 |
1
⊢ (𝜑 → 𝑋 ∈ dom (𝐻‘𝑛)) |