Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem2 Structured version   Visualization version   GIF version

Theorem smflimsuplem2 46817
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem2.p 𝑚𝜑
smflimsuplem2.m (𝜑𝑀 ∈ ℤ)
smflimsuplem2.z 𝑍 = (ℤ𝑀)
smflimsuplem2.s (𝜑𝑆 ∈ SAlg)
smflimsuplem2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem2.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem2.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem2.n (𝜑𝑛𝑍)
smflimsuplem2.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem2.x (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem2 (𝜑𝑋 ∈ dom (𝐻𝑛))
Distinct variable groups:   𝑥,𝐹   𝑚,𝑀   𝑚,𝑋   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem smflimsuplem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem2.x . . . 4 (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2 smflimsuplem2.p . . . . . 6 𝑚𝜑
3 eqid 2736 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
4 smflimsuplem2.n . . . . . . . . . . . . 13 (𝜑𝑛𝑍)
5 smflimsuplem2.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2845 . . . . . . . . . . . 12 (𝜑𝑛 ∈ (ℤ𝑀))
7 uzss 12880 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑 → (ℤ𝑛) ⊆ (ℤ𝑀))
98, 5sseqtrrdi 4005 . . . . . . . . . 10 (𝜑 → (ℤ𝑛) ⊆ 𝑍)
109adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ 𝑍)
11 simpr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛))
1210, 11sseldd 3964 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 smflimsuplem2.s . . . . . . . . . 10 (𝜑𝑆 ∈ SAlg)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
15 smflimsuplem2.f . . . . . . . . . 10 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1615ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
17 eqid 2736 . . . . . . . . 9 dom (𝐹𝑚) = dom (𝐹𝑚)
1814, 16, 17smff 46728 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1912, 18syldan 591 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
20 iinss2 5038 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
2120adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
221adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2321, 22sseldd 3964 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑚))
2419, 23ffvelcdmd 7080 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
25 nfmpt1 5225 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
26 nfmpt1 5225 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
27 eluzelz 12867 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
286, 27syl 17 . . . . . . . . 9 (𝜑𝑛 ∈ ℤ)
29 eqid 2736 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
302, 24, 29fmptdf 7112 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)):(ℤ𝑛)⟶ℝ)
3130ffnd 6712 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑛))
32 smflimsuplem2.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
33 nfcv 2899 . . . . . . . . . 10 𝑚(ℤ𝑀)
34 fvexd 6896 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝐹𝑚)‘𝑋) ∈ V)
3533, 2, 34mptfnd 45233 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑀))
3629a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
37 fvexd 6896 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
3836, 37fvmpt2d 7004 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
3912, 5eleqtrdi 2845 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑀))
40 eqid 2736 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
4140fvmpt2 7002 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑀) ∧ ((𝐹𝑚)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4239, 37, 41syl2anc 584 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4338, 42eqtr4d 2774 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚))
442, 25, 26, 28, 31, 32, 35, 28, 43limsupequz 45719 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))))
455eqcomi 2745 . . . . . . . . . . 11 (ℤ𝑀) = 𝑍
4645mpteq1i 5216 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
4746fveq2i 6884 . . . . . . . . 9 (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
4847a1i 11 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
4944, 48eqtrd 2771 . . . . . . 7 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
50 smflimsuplem2.r . . . . . . . 8 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
5150renepnfd 11291 . . . . . . 7 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
5249, 51eqnetrd 3000 . . . . . 6 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
532, 3, 24, 52limsupubuzmpt 45715 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
54 uzid 12872 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
55 ne0i 4321 . . . . . . 7 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
5628, 54, 553syl 18 . . . . . 6 (𝜑 → (ℤ𝑛) ≠ ∅)
572, 56, 24supxrre3rnmpt 45423 . . . . 5 (𝜑 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
5853, 57mpbird 257 . . . 4 (𝜑 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
591, 58jca 511 . . 3 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
60 fveq2 6881 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6160mpteq2dv 5220 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6261rneqd 5923 . . . . . . . 8 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6362supeq1d 9463 . . . . . . 7 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
6463eleq1d 2820 . . . . . 6 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
6564cbvrabv 3431 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
6665eleq2i 2827 . . . 4 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
67 fveq2 6881 . . . . . . . . 9 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
6867mpteq2dv 5220 . . . . . . . 8 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
6968rneqd 5923 . . . . . . 7 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
7069supeq1d 9463 . . . . . 6 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
7170eleq1d 2820 . . . . 5 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7271elrab 3676 . . . 4 (𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7366, 72bitri 275 . . 3 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7459, 73sylibr 234 . 2 (𝜑𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
75 id 22 . . . . 5 (𝜑𝜑)
76 smflimsuplem2.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
7776a1i 11 . . . . . 6 (𝜑𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))))
78 smflimsuplem2.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
79 nfcv 2899 . . . . . . . . . . 11 𝑥𝑍
80 nfrab1 3441 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
8179, 80nfmpt 5224 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
8278, 81nfcxfr 2897 . . . . . . . . 9 𝑥𝐸
83 nfcv 2899 . . . . . . . . 9 𝑥𝑛
8482, 83nffv 6891 . . . . . . . 8 𝑥(𝐸𝑛)
85 fvex 6894 . . . . . . . 8 (𝐸𝑛) ∈ V
8684, 85mptexf 45228 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
8786a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
8877, 87fvmpt2d 7004 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
8975, 4, 88syl2anc 584 . . . 4 (𝜑 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
9089dmeqd 5890 . . 3 (𝜑 → dom (𝐻𝑛) = dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
91 nfcv 2899 . . . . 5 𝑦(𝐸𝑛)
92 nfcv 2899 . . . . 5 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
93 nfcv 2899 . . . . 5 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
9484, 91, 92, 93, 63cbvmptf 5226 . . . 4 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
95 xrltso 13162 . . . . . 6 < Or ℝ*
9695supex 9481 . . . . 5 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V
9796a1i 11 . . . 4 ((𝜑𝑦 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V)
9894, 97dmmptd 6688 . . 3 (𝜑 → dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛))
99 eqid 2736 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
100 fvex 6894 . . . . . . . . 9 (𝐹𝑚) ∈ V
101100dmex 7910 . . . . . . . 8 dom (𝐹𝑚) ∈ V
102101rgenw 3056 . . . . . . 7 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
103102a1i 11 . . . . . 6 (𝜑 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10456, 103iinexd 45124 . . . . 5 (𝜑 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10599, 104rabexd 5315 . . . 4 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10678fvmpt2 7002 . . . 4 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1074, 105, 106syl2anc 584 . . 3 (𝜑 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10890, 98, 1073eqtrrd 2776 . 2 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = dom (𝐻𝑛))
10974, 108eleqtrd 2837 1 (𝜑𝑋 ∈ dom (𝐻𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  wss 3931  c0 4313   ciin 4973   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  wf 6532  cfv 6536  supcsup 9457  cr 11133  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cz 12593  cuz 12857  lim supclsp 15491  SAlgcsalg 46304  SMblFncsmblfn 46691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-ioo 13371  df-ico 13373  df-fz 13530  df-fl 13814  df-ceil 13815  df-limsup 15492  df-smblfn 46692
This theorem is referenced by:  smflimsuplem7  46822
  Copyright terms: Public domain W3C validator