Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem2 Structured version   Visualization version   GIF version

Theorem smflimsuplem2 46858
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem2.p 𝑚𝜑
smflimsuplem2.m (𝜑𝑀 ∈ ℤ)
smflimsuplem2.z 𝑍 = (ℤ𝑀)
smflimsuplem2.s (𝜑𝑆 ∈ SAlg)
smflimsuplem2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem2.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem2.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem2.n (𝜑𝑛𝑍)
smflimsuplem2.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem2.x (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem2 (𝜑𝑋 ∈ dom (𝐻𝑛))
Distinct variable groups:   𝑥,𝐹   𝑚,𝑀   𝑚,𝑋   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem smflimsuplem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem2.x . . . 4 (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2 smflimsuplem2.p . . . . . 6 𝑚𝜑
3 eqid 2731 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
4 smflimsuplem2.n . . . . . . . . . . . . 13 (𝜑𝑛𝑍)
5 smflimsuplem2.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2841 . . . . . . . . . . . 12 (𝜑𝑛 ∈ (ℤ𝑀))
7 uzss 12752 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑 → (ℤ𝑛) ⊆ (ℤ𝑀))
98, 5sseqtrrdi 3976 . . . . . . . . . 10 (𝜑 → (ℤ𝑛) ⊆ 𝑍)
109adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ 𝑍)
11 simpr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛))
1210, 11sseldd 3935 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 smflimsuplem2.s . . . . . . . . . 10 (𝜑𝑆 ∈ SAlg)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
15 smflimsuplem2.f . . . . . . . . . 10 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1615ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
17 eqid 2731 . . . . . . . . 9 dom (𝐹𝑚) = dom (𝐹𝑚)
1814, 16, 17smff 46769 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1912, 18syldan 591 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
20 iinss2 5006 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
2120adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
221adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2321, 22sseldd 3935 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑚))
2419, 23ffvelcdmd 7018 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
25 nfmpt1 5190 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
26 nfmpt1 5190 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
27 eluzelz 12739 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
286, 27syl 17 . . . . . . . . 9 (𝜑𝑛 ∈ ℤ)
29 eqid 2731 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
302, 24, 29fmptdf 7050 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)):(ℤ𝑛)⟶ℝ)
3130ffnd 6652 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑛))
32 smflimsuplem2.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
33 nfcv 2894 . . . . . . . . . 10 𝑚(ℤ𝑀)
34 fvexd 6837 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝐹𝑚)‘𝑋) ∈ V)
3533, 2, 34mptfnd 45278 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑀))
3629a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
37 fvexd 6837 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
3836, 37fvmpt2d 6942 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
3912, 5eleqtrdi 2841 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑀))
40 eqid 2731 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
4140fvmpt2 6940 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑀) ∧ ((𝐹𝑚)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4239, 37, 41syl2anc 584 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4338, 42eqtr4d 2769 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚))
442, 25, 26, 28, 31, 32, 35, 28, 43limsupequz 45760 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))))
455eqcomi 2740 . . . . . . . . . . 11 (ℤ𝑀) = 𝑍
4645mpteq1i 5182 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
4746fveq2i 6825 . . . . . . . . 9 (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
4847a1i 11 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
4944, 48eqtrd 2766 . . . . . . 7 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
50 smflimsuplem2.r . . . . . . . 8 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
5150renepnfd 11160 . . . . . . 7 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
5249, 51eqnetrd 2995 . . . . . 6 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
532, 3, 24, 52limsupubuzmpt 45756 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
54 uzid 12744 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
55 ne0i 4291 . . . . . . 7 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
5628, 54, 553syl 18 . . . . . 6 (𝜑 → (ℤ𝑛) ≠ ∅)
572, 56, 24supxrre3rnmpt 45466 . . . . 5 (𝜑 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
5853, 57mpbird 257 . . . 4 (𝜑 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
591, 58jca 511 . . 3 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
60 fveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6160mpteq2dv 5185 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6261rneqd 5878 . . . . . . . 8 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6362supeq1d 9330 . . . . . . 7 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
6463eleq1d 2816 . . . . . 6 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
6564cbvrabv 3405 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
6665eleq2i 2823 . . . 4 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
67 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
6867mpteq2dv 5185 . . . . . . . 8 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
6968rneqd 5878 . . . . . . 7 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
7069supeq1d 9330 . . . . . 6 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
7170eleq1d 2816 . . . . 5 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7271elrab 3647 . . . 4 (𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7366, 72bitri 275 . . 3 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7459, 73sylibr 234 . 2 (𝜑𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
75 id 22 . . . . 5 (𝜑𝜑)
76 smflimsuplem2.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
7776a1i 11 . . . . . 6 (𝜑𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))))
78 smflimsuplem2.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
79 nfcv 2894 . . . . . . . . . . 11 𝑥𝑍
80 nfrab1 3415 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
8179, 80nfmpt 5189 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
8278, 81nfcxfr 2892 . . . . . . . . 9 𝑥𝐸
83 nfcv 2894 . . . . . . . . 9 𝑥𝑛
8482, 83nffv 6832 . . . . . . . 8 𝑥(𝐸𝑛)
85 fvex 6835 . . . . . . . 8 (𝐸𝑛) ∈ V
8684, 85mptexf 45273 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
8786a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
8877, 87fvmpt2d 6942 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
8975, 4, 88syl2anc 584 . . . 4 (𝜑 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
9089dmeqd 5845 . . 3 (𝜑 → dom (𝐻𝑛) = dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
91 nfcv 2894 . . . . 5 𝑦(𝐸𝑛)
92 nfcv 2894 . . . . 5 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
93 nfcv 2894 . . . . 5 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
9484, 91, 92, 93, 63cbvmptf 5191 . . . 4 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
95 xrltso 13037 . . . . . 6 < Or ℝ*
9695supex 9348 . . . . 5 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V
9796a1i 11 . . . 4 ((𝜑𝑦 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V)
9894, 97dmmptd 6626 . . 3 (𝜑 → dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛))
99 eqid 2731 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
100 fvex 6835 . . . . . . . . 9 (𝐹𝑚) ∈ V
101100dmex 7839 . . . . . . . 8 dom (𝐹𝑚) ∈ V
102101rgenw 3051 . . . . . . 7 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
103102a1i 11 . . . . . 6 (𝜑 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10456, 103iinexd 45169 . . . . 5 (𝜑 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10599, 104rabexd 5278 . . . 4 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10678fvmpt2 6940 . . . 4 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1074, 105, 106syl2anc 584 . . 3 (𝜑 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10890, 98, 1073eqtrrd 2771 . 2 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = dom (𝐻𝑛))
10974, 108eleqtrd 2833 1 (𝜑𝑋 ∈ dom (𝐻𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3902  c0 4283   ciin 4942   class class class wbr 5091  cmpt 5172  dom cdm 5616  ran crn 5617  wf 6477  cfv 6481  supcsup 9324  cr 11002  +∞cpnf 11140  *cxr 11142   < clt 11143  cle 11144  cz 12465  cuz 12729  lim supclsp 15374  SAlgcsalg 46345  SMblFncsmblfn 46732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-ioo 13246  df-ico 13248  df-fz 13405  df-fl 13693  df-ceil 13694  df-limsup 15375  df-smblfn 46733
This theorem is referenced by:  smflimsuplem7  46863
  Copyright terms: Public domain W3C validator