Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem2 Structured version   Visualization version   GIF version

Theorem smflimsuplem2 46943
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem2.p 𝑚𝜑
smflimsuplem2.m (𝜑𝑀 ∈ ℤ)
smflimsuplem2.z 𝑍 = (ℤ𝑀)
smflimsuplem2.s (𝜑𝑆 ∈ SAlg)
smflimsuplem2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem2.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem2.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem2.n (𝜑𝑛𝑍)
smflimsuplem2.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem2.x (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem2 (𝜑𝑋 ∈ dom (𝐻𝑛))
Distinct variable groups:   𝑥,𝐹   𝑚,𝑀   𝑚,𝑋   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem smflimsuplem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem2.x . . . 4 (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2 smflimsuplem2.p . . . . . 6 𝑚𝜑
3 eqid 2733 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
4 smflimsuplem2.n . . . . . . . . . . . . 13 (𝜑𝑛𝑍)
5 smflimsuplem2.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2843 . . . . . . . . . . . 12 (𝜑𝑛 ∈ (ℤ𝑀))
7 uzss 12761 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑 → (ℤ𝑛) ⊆ (ℤ𝑀))
98, 5sseqtrrdi 3972 . . . . . . . . . 10 (𝜑 → (ℤ𝑛) ⊆ 𝑍)
109adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ 𝑍)
11 simpr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛))
1210, 11sseldd 3931 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 smflimsuplem2.s . . . . . . . . . 10 (𝜑𝑆 ∈ SAlg)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
15 smflimsuplem2.f . . . . . . . . . 10 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1615ffvelcdmda 7023 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
17 eqid 2733 . . . . . . . . 9 dom (𝐹𝑚) = dom (𝐹𝑚)
1814, 16, 17smff 46854 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1912, 18syldan 591 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
20 iinss2 5008 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
2120adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
221adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2321, 22sseldd 3931 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑚))
2419, 23ffvelcdmd 7024 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
25 nfmpt1 5192 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
26 nfmpt1 5192 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
27 eluzelz 12748 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
286, 27syl 17 . . . . . . . . 9 (𝜑𝑛 ∈ ℤ)
29 eqid 2733 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
302, 24, 29fmptdf 7056 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)):(ℤ𝑛)⟶ℝ)
3130ffnd 6657 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑛))
32 smflimsuplem2.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
33 nfcv 2895 . . . . . . . . . 10 𝑚(ℤ𝑀)
34 fvexd 6843 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝐹𝑚)‘𝑋) ∈ V)
3533, 2, 34mptfnd 45363 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑀))
3629a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
37 fvexd 6843 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
3836, 37fvmpt2d 6948 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
3912, 5eleqtrdi 2843 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑀))
40 eqid 2733 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
4140fvmpt2 6946 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑀) ∧ ((𝐹𝑚)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4239, 37, 41syl2anc 584 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4338, 42eqtr4d 2771 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚))
442, 25, 26, 28, 31, 32, 35, 28, 43limsupequz 45845 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))))
455eqcomi 2742 . . . . . . . . . . 11 (ℤ𝑀) = 𝑍
4645mpteq1i 5184 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
4746fveq2i 6831 . . . . . . . . 9 (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
4847a1i 11 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
4944, 48eqtrd 2768 . . . . . . 7 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
50 smflimsuplem2.r . . . . . . . 8 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
5150renepnfd 11170 . . . . . . 7 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
5249, 51eqnetrd 2996 . . . . . 6 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
532, 3, 24, 52limsupubuzmpt 45841 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
54 uzid 12753 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
55 ne0i 4290 . . . . . . 7 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
5628, 54, 553syl 18 . . . . . 6 (𝜑 → (ℤ𝑛) ≠ ∅)
572, 56, 24supxrre3rnmpt 45551 . . . . 5 (𝜑 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
5853, 57mpbird 257 . . . 4 (𝜑 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
591, 58jca 511 . . 3 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
60 fveq2 6828 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6160mpteq2dv 5187 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6261rneqd 5882 . . . . . . . 8 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6362supeq1d 9337 . . . . . . 7 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
6463eleq1d 2818 . . . . . 6 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
6564cbvrabv 3406 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
6665eleq2i 2825 . . . 4 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
67 fveq2 6828 . . . . . . . . 9 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
6867mpteq2dv 5187 . . . . . . . 8 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
6968rneqd 5882 . . . . . . 7 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
7069supeq1d 9337 . . . . . 6 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
7170eleq1d 2818 . . . . 5 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7271elrab 3643 . . . 4 (𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7366, 72bitri 275 . . 3 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7459, 73sylibr 234 . 2 (𝜑𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
75 id 22 . . . . 5 (𝜑𝜑)
76 smflimsuplem2.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
7776a1i 11 . . . . . 6 (𝜑𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))))
78 smflimsuplem2.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
79 nfcv 2895 . . . . . . . . . . 11 𝑥𝑍
80 nfrab1 3416 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
8179, 80nfmpt 5191 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
8278, 81nfcxfr 2893 . . . . . . . . 9 𝑥𝐸
83 nfcv 2895 . . . . . . . . 9 𝑥𝑛
8482, 83nffv 6838 . . . . . . . 8 𝑥(𝐸𝑛)
85 fvex 6841 . . . . . . . 8 (𝐸𝑛) ∈ V
8684, 85mptexf 45358 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
8786a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
8877, 87fvmpt2d 6948 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
8975, 4, 88syl2anc 584 . . . 4 (𝜑 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
9089dmeqd 5849 . . 3 (𝜑 → dom (𝐻𝑛) = dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
91 nfcv 2895 . . . . 5 𝑦(𝐸𝑛)
92 nfcv 2895 . . . . 5 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
93 nfcv 2895 . . . . 5 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
9484, 91, 92, 93, 63cbvmptf 5193 . . . 4 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
95 xrltso 13042 . . . . . 6 < Or ℝ*
9695supex 9355 . . . . 5 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V
9796a1i 11 . . . 4 ((𝜑𝑦 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V)
9894, 97dmmptd 6631 . . 3 (𝜑 → dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛))
99 eqid 2733 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
100 fvex 6841 . . . . . . . . 9 (𝐹𝑚) ∈ V
101100dmex 7845 . . . . . . . 8 dom (𝐹𝑚) ∈ V
102101rgenw 3052 . . . . . . 7 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
103102a1i 11 . . . . . 6 (𝜑 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10456, 103iinexd 45254 . . . . 5 (𝜑 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10599, 104rabexd 5280 . . . 4 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10678fvmpt2 6946 . . . 4 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1074, 105, 106syl2anc 584 . . 3 (𝜑 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10890, 98, 1073eqtrrd 2773 . 2 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = dom (𝐻𝑛))
10974, 108eleqtrd 2835 1 (𝜑𝑋 ∈ dom (𝐻𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  wss 3898  c0 4282   ciin 4942   class class class wbr 5093  cmpt 5174  dom cdm 5619  ran crn 5620  wf 6482  cfv 6486  supcsup 9331  cr 11012  +∞cpnf 11150  *cxr 11152   < clt 11153  cle 11154  cz 12475  cuz 12738  lim supclsp 15379  SAlgcsalg 46430  SMblFncsmblfn 46817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-ioo 13251  df-ico 13253  df-fz 13410  df-fl 13698  df-ceil 13699  df-limsup 15380  df-smblfn 46818
This theorem is referenced by:  smflimsuplem7  46948
  Copyright terms: Public domain W3C validator