MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtube Structured version   Visualization version   GIF version

Theorem txtube 23648
Description: The "tube lemma". If 𝑋 is compact and there is an open set 𝑈 containing the line 𝑋 × {𝐴}, then there is a "tube" 𝑋 × 𝑢 for some neighborhood 𝑢 of 𝐴 which is entirely contained within 𝑈. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
txtube.x 𝑋 = 𝑅
txtube.y 𝑌 = 𝑆
txtube.r (𝜑𝑅 ∈ Comp)
txtube.s (𝜑𝑆 ∈ Top)
txtube.w (𝜑𝑈 ∈ (𝑅 ×t 𝑆))
txtube.u (𝜑 → (𝑋 × {𝐴}) ⊆ 𝑈)
txtube.a (𝜑𝐴𝑌)
Assertion
Ref Expression
txtube (𝜑 → ∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑅   𝑢,𝑆   𝑢,𝑌   𝜑,𝑢   𝑢,𝑈   𝑢,𝑋

Proof of Theorem txtube
Dummy variables 𝑡 𝑓 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txtube.r . . 3 (𝜑𝑅 ∈ Comp)
2 eleq1 2829 . . . . . . . 8 (𝑦 = ⟨𝑥, 𝐴⟩ → (𝑦 ∈ (𝑢 × 𝑣) ↔ ⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣)))
32anbi1d 631 . . . . . . 7 (𝑦 = ⟨𝑥, 𝐴⟩ → ((𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
432rexbidv 3222 . . . . . 6 (𝑦 = ⟨𝑥, 𝐴⟩ → (∃𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ ∃𝑢𝑅𝑣𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
5 txtube.w . . . . . . . 8 (𝜑𝑈 ∈ (𝑅 ×t 𝑆))
6 txtube.s . . . . . . . . 9 (𝜑𝑆 ∈ Top)
7 eltx 23576 . . . . . . . . 9 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Top) → (𝑈 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑈𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
81, 6, 7syl2anc 584 . . . . . . . 8 (𝜑 → (𝑈 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑈𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
95, 8mpbid 232 . . . . . . 7 (𝜑 → ∀𝑦𝑈𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈))
109adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑈𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈))
11 txtube.u . . . . . . . 8 (𝜑 → (𝑋 × {𝐴}) ⊆ 𝑈)
1211adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑋 × {𝐴}) ⊆ 𝑈)
13 id 22 . . . . . . . 8 (𝑥𝑋𝑥𝑋)
14 txtube.a . . . . . . . . 9 (𝜑𝐴𝑌)
15 snidg 4660 . . . . . . . . 9 (𝐴𝑌𝐴 ∈ {𝐴})
1614, 15syl 17 . . . . . . . 8 (𝜑𝐴 ∈ {𝐴})
17 opelxpi 5722 . . . . . . . 8 ((𝑥𝑋𝐴 ∈ {𝐴}) → ⟨𝑥, 𝐴⟩ ∈ (𝑋 × {𝐴}))
1813, 16, 17syl2anr 597 . . . . . . 7 ((𝜑𝑥𝑋) → ⟨𝑥, 𝐴⟩ ∈ (𝑋 × {𝐴}))
1912, 18sseldd 3984 . . . . . 6 ((𝜑𝑥𝑋) → ⟨𝑥, 𝐴⟩ ∈ 𝑈)
204, 10, 19rspcdva 3623 . . . . 5 ((𝜑𝑥𝑋) → ∃𝑢𝑅𝑣𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈))
21 opelxp 5721 . . . . . . . . . 10 (⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣) ↔ (𝑥𝑢𝐴𝑣))
2221anbi1i 624 . . . . . . . . 9 ((⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ ((𝑥𝑢𝐴𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈))
23 anass 468 . . . . . . . . 9 (((𝑥𝑢𝐴𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (𝑥𝑢 ∧ (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
2422, 23bitri 275 . . . . . . . 8 ((⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (𝑥𝑢 ∧ (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
2524rexbii 3094 . . . . . . 7 (∃𝑣𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ ∃𝑣𝑆 (𝑥𝑢 ∧ (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
26 r19.42v 3191 . . . . . . 7 (∃𝑣𝑆 (𝑥𝑢 ∧ (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)) ↔ (𝑥𝑢 ∧ ∃𝑣𝑆 (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
2725, 26bitri 275 . . . . . 6 (∃𝑣𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (𝑥𝑢 ∧ ∃𝑣𝑆 (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
2827rexbii 3094 . . . . 5 (∃𝑢𝑅𝑣𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ ∃𝑢𝑅 (𝑥𝑢 ∧ ∃𝑣𝑆 (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
2920, 28sylib 218 . . . 4 ((𝜑𝑥𝑋) → ∃𝑢𝑅 (𝑥𝑢 ∧ ∃𝑣𝑆 (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
3029ralrimiva 3146 . . 3 (𝜑 → ∀𝑥𝑋𝑢𝑅 (𝑥𝑢 ∧ ∃𝑣𝑆 (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)))
31 txtube.x . . . 4 𝑋 = 𝑅
32 eleq2 2830 . . . . 5 (𝑣 = (𝑓𝑢) → (𝐴𝑣𝐴 ∈ (𝑓𝑢)))
33 xpeq2 5706 . . . . . 6 (𝑣 = (𝑓𝑢) → (𝑢 × 𝑣) = (𝑢 × (𝑓𝑢)))
3433sseq1d 4015 . . . . 5 (𝑣 = (𝑓𝑢) → ((𝑢 × 𝑣) ⊆ 𝑈 ↔ (𝑢 × (𝑓𝑢)) ⊆ 𝑈))
3532, 34anbi12d 632 . . . 4 (𝑣 = (𝑓𝑢) → ((𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))
3631, 35cmpcovf 23399 . . 3 ((𝑅 ∈ Comp ∧ ∀𝑥𝑋𝑢𝑅 (𝑥𝑢 ∧ ∃𝑣𝑆 (𝐴𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) → ∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = 𝑡 ∧ ∃𝑓(𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈))))
371, 30, 36syl2anc 584 . 2 (𝜑 → ∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = 𝑡 ∧ ∃𝑓(𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈))))
38 rint0 4988 . . . . . . . . . 10 (ran 𝑓 = ∅ → (𝑌 ran 𝑓) = 𝑌)
3938adantl 481 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 = ∅) → (𝑌 ran 𝑓) = 𝑌)
40 txtube.y . . . . . . . . . . . 12 𝑌 = 𝑆
4140topopn 22912 . . . . . . . . . . 11 (𝑆 ∈ Top → 𝑌𝑆)
426, 41syl 17 . . . . . . . . . 10 (𝜑𝑌𝑆)
4342ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 = ∅) → 𝑌𝑆)
4439, 43eqeltrd 2841 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 = ∅) → (𝑌 ran 𝑓) ∈ 𝑆)
456ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → 𝑆 ∈ Top)
46 simprrl 781 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝑓:𝑡𝑆)
4746frnd 6744 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → ran 𝑓𝑆)
4847adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ran 𝑓𝑆)
49 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ran 𝑓 ≠ ∅)
50 simplr 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝑡 ∈ (𝒫 𝑅 ∩ Fin))
5150elin2d 4205 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝑡 ∈ Fin)
5246ffnd 6737 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝑓 Fn 𝑡)
53 dffn4 6826 . . . . . . . . . . . . . . . 16 (𝑓 Fn 𝑡𝑓:𝑡onto→ran 𝑓)
5452, 53sylib 218 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝑓:𝑡onto→ran 𝑓)
55 fofi 9351 . . . . . . . . . . . . . . 15 ((𝑡 ∈ Fin ∧ 𝑓:𝑡onto→ran 𝑓) → ran 𝑓 ∈ Fin)
5651, 54, 55syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → ran 𝑓 ∈ Fin)
5756adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ran 𝑓 ∈ Fin)
58 fiinopn 22907 . . . . . . . . . . . . . 14 (𝑆 ∈ Top → ((ran 𝑓𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin) → ran 𝑓𝑆))
5958imp 406 . . . . . . . . . . . . 13 ((𝑆 ∈ Top ∧ (ran 𝑓𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin)) → ran 𝑓𝑆)
6045, 48, 49, 57, 59syl13anc 1374 . . . . . . . . . . . 12 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ran 𝑓𝑆)
61 elssuni 4937 . . . . . . . . . . . 12 ( ran 𝑓𝑆 ran 𝑓 𝑆)
6260, 61syl 17 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ran 𝑓 𝑆)
6362, 40sseqtrrdi 4025 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ran 𝑓𝑌)
64 sseqin2 4223 . . . . . . . . . 10 ( ran 𝑓𝑌 ↔ (𝑌 ran 𝑓) = ran 𝑓)
6563, 64sylib 218 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → (𝑌 ran 𝑓) = ran 𝑓)
6665, 60eqeltrd 2841 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → (𝑌 ran 𝑓) ∈ 𝑆)
6744, 66pm2.61dane 3029 . . . . . . 7 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → (𝑌 ran 𝑓) ∈ 𝑆)
6814ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝐴𝑌)
69 simprrr 782 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈))
70 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈) → 𝐴 ∈ (𝑓𝑢))
7170ralimi 3083 . . . . . . . . . . 11 (∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈) → ∀𝑢𝑡 𝐴 ∈ (𝑓𝑢))
7269, 71syl 17 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → ∀𝑢𝑡 𝐴 ∈ (𝑓𝑢))
73 eliin 4996 . . . . . . . . . . 11 (𝐴𝑌 → (𝐴 𝑢𝑡 (𝑓𝑢) ↔ ∀𝑢𝑡 𝐴 ∈ (𝑓𝑢)))
7468, 73syl 17 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → (𝐴 𝑢𝑡 (𝑓𝑢) ↔ ∀𝑢𝑡 𝐴 ∈ (𝑓𝑢)))
7572, 74mpbird 257 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝐴 𝑢𝑡 (𝑓𝑢))
76 fniinfv 6987 . . . . . . . . . 10 (𝑓 Fn 𝑡 𝑢𝑡 (𝑓𝑢) = ran 𝑓)
7752, 76syl 17 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝑢𝑡 (𝑓𝑢) = ran 𝑓)
7875, 77eleqtrd 2843 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝐴 ran 𝑓)
7968, 78elind 4200 . . . . . . 7 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝐴 ∈ (𝑌 ran 𝑓))
80 simprl 771 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝑋 = 𝑡)
81 uniiun 5058 . . . . . . . . . . 11 𝑡 = 𝑢𝑡 𝑢
8280, 81eqtrdi 2793 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝑋 = 𝑢𝑡 𝑢)
8382xpeq1d 5714 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → (𝑋 × (𝑌 ran 𝑓)) = ( 𝑢𝑡 𝑢 × (𝑌 ran 𝑓)))
84 xpiundir 5757 . . . . . . . . 9 ( 𝑢𝑡 𝑢 × (𝑌 ran 𝑓)) = 𝑢𝑡 (𝑢 × (𝑌 ran 𝑓))
8583, 84eqtrdi 2793 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → (𝑋 × (𝑌 ran 𝑓)) = 𝑢𝑡 (𝑢 × (𝑌 ran 𝑓)))
86 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈) → (𝑢 × (𝑓𝑢)) ⊆ 𝑈)
8786ralimi 3083 . . . . . . . . . . 11 (∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈) → ∀𝑢𝑡 (𝑢 × (𝑓𝑢)) ⊆ 𝑈)
8869, 87syl 17 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → ∀𝑢𝑡 (𝑢 × (𝑓𝑢)) ⊆ 𝑈)
89 inss2 4238 . . . . . . . . . . . . 13 (𝑌 ran 𝑓) ⊆ ran 𝑓
9076adantr 480 . . . . . . . . . . . . . 14 ((𝑓 Fn 𝑡𝑢𝑡) → 𝑢𝑡 (𝑓𝑢) = ran 𝑓)
91 iinss2 5057 . . . . . . . . . . . . . . 15 (𝑢𝑡 𝑢𝑡 (𝑓𝑢) ⊆ (𝑓𝑢))
9291adantl 481 . . . . . . . . . . . . . 14 ((𝑓 Fn 𝑡𝑢𝑡) → 𝑢𝑡 (𝑓𝑢) ⊆ (𝑓𝑢))
9390, 92eqsstrrd 4019 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑡𝑢𝑡) → ran 𝑓 ⊆ (𝑓𝑢))
9489, 93sstrid 3995 . . . . . . . . . . . 12 ((𝑓 Fn 𝑡𝑢𝑡) → (𝑌 ran 𝑓) ⊆ (𝑓𝑢))
95 xpss2 5705 . . . . . . . . . . . 12 ((𝑌 ran 𝑓) ⊆ (𝑓𝑢) → (𝑢 × (𝑌 ran 𝑓)) ⊆ (𝑢 × (𝑓𝑢)))
96 sstr2 3990 . . . . . . . . . . . 12 ((𝑢 × (𝑌 ran 𝑓)) ⊆ (𝑢 × (𝑓𝑢)) → ((𝑢 × (𝑓𝑢)) ⊆ 𝑈 → (𝑢 × (𝑌 ran 𝑓)) ⊆ 𝑈))
9794, 95, 963syl 18 . . . . . . . . . . 11 ((𝑓 Fn 𝑡𝑢𝑡) → ((𝑢 × (𝑓𝑢)) ⊆ 𝑈 → (𝑢 × (𝑌 ran 𝑓)) ⊆ 𝑈))
9897ralimdva 3167 . . . . . . . . . 10 (𝑓 Fn 𝑡 → (∀𝑢𝑡 (𝑢 × (𝑓𝑢)) ⊆ 𝑈 → ∀𝑢𝑡 (𝑢 × (𝑌 ran 𝑓)) ⊆ 𝑈))
9952, 88, 98sylc 65 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → ∀𝑢𝑡 (𝑢 × (𝑌 ran 𝑓)) ⊆ 𝑈)
100 iunss 5045 . . . . . . . . 9 ( 𝑢𝑡 (𝑢 × (𝑌 ran 𝑓)) ⊆ 𝑈 ↔ ∀𝑢𝑡 (𝑢 × (𝑌 ran 𝑓)) ⊆ 𝑈)
10199, 100sylibr 234 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → 𝑢𝑡 (𝑢 × (𝑌 ran 𝑓)) ⊆ 𝑈)
10285, 101eqsstrd 4018 . . . . . . 7 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → (𝑋 × (𝑌 ran 𝑓)) ⊆ 𝑈)
103 eleq2 2830 . . . . . . . . 9 (𝑢 = (𝑌 ran 𝑓) → (𝐴𝑢𝐴 ∈ (𝑌 ran 𝑓)))
104 xpeq2 5706 . . . . . . . . . 10 (𝑢 = (𝑌 ran 𝑓) → (𝑋 × 𝑢) = (𝑋 × (𝑌 ran 𝑓)))
105104sseq1d 4015 . . . . . . . . 9 (𝑢 = (𝑌 ran 𝑓) → ((𝑋 × 𝑢) ⊆ 𝑈 ↔ (𝑋 × (𝑌 ran 𝑓)) ⊆ 𝑈))
106103, 105anbi12d 632 . . . . . . . 8 (𝑢 = (𝑌 ran 𝑓) → ((𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈) ↔ (𝐴 ∈ (𝑌 ran 𝑓) ∧ (𝑋 × (𝑌 ran 𝑓)) ⊆ 𝑈)))
107106rspcev 3622 . . . . . . 7 (((𝑌 ran 𝑓) ∈ 𝑆 ∧ (𝐴 ∈ (𝑌 ran 𝑓) ∧ (𝑋 × (𝑌 ran 𝑓)) ⊆ 𝑈)) → ∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈))
10867, 79, 102, 107syl12anc 837 . . . . . 6 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)))) → ∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈))
109108expr 456 . . . . 5 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ 𝑋 = 𝑡) → ((𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)) → ∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)))
110109exlimdv 1933 . . . 4 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ 𝑋 = 𝑡) → (∃𝑓(𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈)) → ∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)))
111110expimpd 453 . . 3 ((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) → ((𝑋 = 𝑡 ∧ ∃𝑓(𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈))) → ∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)))
112111rexlimdva 3155 . 2 (𝜑 → (∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = 𝑡 ∧ ∃𝑓(𝑓:𝑡𝑆 ∧ ∀𝑢𝑡 (𝐴 ∈ (𝑓𝑢) ∧ (𝑢 × (𝑓𝑢)) ⊆ 𝑈))) → ∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)))
11337, 112mpd 15 1 (𝜑 → ∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626  cop 4632   cuni 4907   cint 4946   ciun 4991   ciin 4992   × cxp 5683  ran crn 5686   Fn wfn 6556  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  Fincfn 8985  Topctop 22899  Compccmp 23394   ×t ctx 23568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-1o 8506  df-2o 8507  df-en 8986  df-dom 8987  df-fin 8989  df-topgen 17488  df-top 22900  df-cmp 23395  df-tx 23570
This theorem is referenced by:  txcmplem1  23649  xkoinjcn  23695  cvmlift2lem12  35319
  Copyright terms: Public domain W3C validator