Step | Hyp | Ref
| Expression |
1 | | txtube.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Comp) |
2 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = 〈𝑥, 𝐴〉 → (𝑦 ∈ (𝑢 × 𝑣) ↔ 〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣))) |
3 | 2 | anbi1d 629 |
. . . . . . 7
⊢ (𝑦 = 〈𝑥, 𝐴〉 → ((𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
4 | 3 | 2rexbidv 3228 |
. . . . . 6
⊢ (𝑦 = 〈𝑥, 𝐴〉 → (∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
5 | | txtube.w |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (𝑅 ×t 𝑆)) |
6 | | txtube.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ Top) |
7 | | eltx 22627 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Comp ∧ 𝑆 ∈ Top) → (𝑈 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
8 | 1, 6, 7 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
9 | 5, 8 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈)) |
10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈)) |
11 | | txtube.u |
. . . . . . . 8
⊢ (𝜑 → (𝑋 × {𝐴}) ⊆ 𝑈) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑋 × {𝐴}) ⊆ 𝑈) |
13 | | id 22 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋) |
14 | | txtube.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑌) |
15 | | snidg 4592 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑌 → 𝐴 ∈ {𝐴}) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
17 | | opelxpi 5617 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ {𝐴}) → 〈𝑥, 𝐴〉 ∈ (𝑋 × {𝐴})) |
18 | 13, 16, 17 | syl2anr 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝑥, 𝐴〉 ∈ (𝑋 × {𝐴})) |
19 | 12, 18 | sseldd 3918 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝑥, 𝐴〉 ∈ 𝑈) |
20 | 4, 10, 19 | rspcdva 3554 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑆 (〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈)) |
21 | | opelxp 5616 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣) ↔ (𝑥 ∈ 𝑢 ∧ 𝐴 ∈ 𝑣)) |
22 | 21 | anbi1i 623 |
. . . . . . . . 9
⊢
((〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ ((𝑥 ∈ 𝑢 ∧ 𝐴 ∈ 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈)) |
23 | | anass 468 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝑢 ∧ 𝐴 ∈ 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (𝑥 ∈ 𝑢 ∧ (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
24 | 22, 23 | bitri 274 |
. . . . . . . 8
⊢
((〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (𝑥 ∈ 𝑢 ∧ (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
25 | 24 | rexbii 3177 |
. . . . . . 7
⊢
(∃𝑣 ∈
𝑆 (〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ ∃𝑣 ∈ 𝑆 (𝑥 ∈ 𝑢 ∧ (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
26 | | r19.42v 3276 |
. . . . . . 7
⊢
(∃𝑣 ∈
𝑆 (𝑥 ∈ 𝑢 ∧ (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈)) ↔ (𝑥 ∈ 𝑢 ∧ ∃𝑣 ∈ 𝑆 (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
27 | 25, 26 | bitri 274 |
. . . . . 6
⊢
(∃𝑣 ∈
𝑆 (〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (𝑥 ∈ 𝑢 ∧ ∃𝑣 ∈ 𝑆 (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
28 | 27 | rexbii 3177 |
. . . . 5
⊢
(∃𝑢 ∈
𝑅 ∃𝑣 ∈ 𝑆 (〈𝑥, 𝐴〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ ∃𝑢 ∈ 𝑅 (𝑥 ∈ 𝑢 ∧ ∃𝑣 ∈ 𝑆 (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
29 | 20, 28 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑢 ∈ 𝑅 (𝑥 ∈ 𝑢 ∧ ∃𝑣 ∈ 𝑆 (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
30 | 29 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑅 (𝑥 ∈ 𝑢 ∧ ∃𝑣 ∈ 𝑆 (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) |
31 | | txtube.x |
. . . 4
⊢ 𝑋 = ∪
𝑅 |
32 | | eleq2 2827 |
. . . . 5
⊢ (𝑣 = (𝑓‘𝑢) → (𝐴 ∈ 𝑣 ↔ 𝐴 ∈ (𝑓‘𝑢))) |
33 | | xpeq2 5601 |
. . . . . 6
⊢ (𝑣 = (𝑓‘𝑢) → (𝑢 × 𝑣) = (𝑢 × (𝑓‘𝑢))) |
34 | 33 | sseq1d 3948 |
. . . . 5
⊢ (𝑣 = (𝑓‘𝑢) → ((𝑢 × 𝑣) ⊆ 𝑈 ↔ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)) |
35 | 32, 34 | anbi12d 630 |
. . . 4
⊢ (𝑣 = (𝑓‘𝑢) → ((𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈) ↔ (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈))) |
36 | 31, 35 | cmpcovf 22450 |
. . 3
⊢ ((𝑅 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑅 (𝑥 ∈ 𝑢 ∧ ∃𝑣 ∈ 𝑆 (𝐴 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ 𝑈))) → ∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = ∪ 𝑡 ∧ ∃𝑓(𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) |
37 | 1, 30, 36 | syl2anc 583 |
. 2
⊢ (𝜑 → ∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = ∪ 𝑡 ∧ ∃𝑓(𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) |
38 | | rint0 4918 |
. . . . . . . . . 10
⊢ (ran
𝑓 = ∅ → (𝑌 ∩ ∩ ran 𝑓) = 𝑌) |
39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 = ∅) → (𝑌 ∩ ∩ ran
𝑓) = 𝑌) |
40 | | txtube.y |
. . . . . . . . . . . 12
⊢ 𝑌 = ∪
𝑆 |
41 | 40 | topopn 21963 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Top → 𝑌 ∈ 𝑆) |
42 | 6, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
43 | 42 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 = ∅) → 𝑌 ∈ 𝑆) |
44 | 39, 43 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 = ∅) → (𝑌 ∩ ∩ ran
𝑓) ∈ 𝑆) |
45 | 6 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → 𝑆 ∈ Top) |
46 | | simprrl 777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝑓:𝑡⟶𝑆) |
47 | 46 | frnd 6592 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → ran 𝑓 ⊆ 𝑆) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ran 𝑓 ⊆ 𝑆) |
49 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ran 𝑓 ≠ ∅) |
50 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) |
51 | 50 | elin2d 4129 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝑡 ∈ Fin) |
52 | 46 | ffnd 6585 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝑓 Fn 𝑡) |
53 | | dffn4 6678 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn 𝑡 ↔ 𝑓:𝑡–onto→ran 𝑓) |
54 | 52, 53 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝑓:𝑡–onto→ran 𝑓) |
55 | | fofi 9035 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ Fin ∧ 𝑓:𝑡–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
56 | 51, 54, 55 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → ran 𝑓 ∈ Fin) |
57 | 56 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ran 𝑓 ∈ Fin) |
58 | | fiinopn 21958 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ Top → ((ran 𝑓 ⊆ 𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin) → ∩ ran 𝑓 ∈ 𝑆)) |
59 | 58 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ Top ∧ (ran 𝑓 ⊆ 𝑆 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin)) → ∩ ran 𝑓 ∈ 𝑆) |
60 | 45, 48, 49, 57, 59 | syl13anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ∩ ran 𝑓 ∈ 𝑆) |
61 | | elssuni 4868 |
. . . . . . . . . . . 12
⊢ (∩ ran 𝑓 ∈ 𝑆 → ∩ ran
𝑓 ⊆ ∪ 𝑆) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ∩ ran 𝑓 ⊆ ∪ 𝑆) |
63 | 62, 40 | sseqtrrdi 3968 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → ∩ ran 𝑓 ⊆ 𝑌) |
64 | | sseqin2 4146 |
. . . . . . . . . 10
⊢ (∩ ran 𝑓 ⊆ 𝑌 ↔ (𝑌 ∩ ∩ ran
𝑓) = ∩ ran 𝑓) |
65 | 63, 64 | sylib 217 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → (𝑌 ∩ ∩ ran
𝑓) = ∩ ran 𝑓) |
66 | 65, 60 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) ∧ ran 𝑓 ≠ ∅) → (𝑌 ∩ ∩ ran
𝑓) ∈ 𝑆) |
67 | 44, 66 | pm2.61dane 3031 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → (𝑌 ∩ ∩ ran
𝑓) ∈ 𝑆) |
68 | 14 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝐴 ∈ 𝑌) |
69 | | simprrr 778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)) |
70 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈) → 𝐴 ∈ (𝑓‘𝑢)) |
71 | 70 | ralimi 3086 |
. . . . . . . . . . 11
⊢
(∀𝑢 ∈
𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈) → ∀𝑢 ∈ 𝑡 𝐴 ∈ (𝑓‘𝑢)) |
72 | 69, 71 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → ∀𝑢 ∈ 𝑡 𝐴 ∈ (𝑓‘𝑢)) |
73 | | eliin 4926 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑌 → (𝐴 ∈ ∩
𝑢 ∈ 𝑡 (𝑓‘𝑢) ↔ ∀𝑢 ∈ 𝑡 𝐴 ∈ (𝑓‘𝑢))) |
74 | 68, 73 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → (𝐴 ∈ ∩
𝑢 ∈ 𝑡 (𝑓‘𝑢) ↔ ∀𝑢 ∈ 𝑡 𝐴 ∈ (𝑓‘𝑢))) |
75 | 72, 74 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝐴 ∈ ∩
𝑢 ∈ 𝑡 (𝑓‘𝑢)) |
76 | | fniinfv 6828 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑡 → ∩
𝑢 ∈ 𝑡 (𝑓‘𝑢) = ∩ ran 𝑓) |
77 | 52, 76 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → ∩ 𝑢 ∈ 𝑡 (𝑓‘𝑢) = ∩ ran 𝑓) |
78 | 75, 77 | eleqtrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝐴 ∈ ∩ ran
𝑓) |
79 | 68, 78 | elind 4124 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝐴 ∈ (𝑌 ∩ ∩ ran
𝑓)) |
80 | | simprl 767 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝑋 = ∪ 𝑡) |
81 | | uniiun 4984 |
. . . . . . . . . . 11
⊢ ∪ 𝑡 =
∪ 𝑢 ∈ 𝑡 𝑢 |
82 | 80, 81 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → 𝑋 = ∪ 𝑢 ∈ 𝑡 𝑢) |
83 | 82 | xpeq1d 5609 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → (𝑋 × (𝑌 ∩ ∩ ran
𝑓)) = (∪ 𝑢 ∈ 𝑡 𝑢 × (𝑌 ∩ ∩ ran
𝑓))) |
84 | | xpiundir 5649 |
. . . . . . . . 9
⊢ (∪ 𝑢 ∈ 𝑡 𝑢 × (𝑌 ∩ ∩ ran
𝑓)) = ∪ 𝑢 ∈ 𝑡 (𝑢 × (𝑌 ∩ ∩ ran
𝑓)) |
85 | 83, 84 | eqtrdi 2795 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → (𝑋 × (𝑌 ∩ ∩ ran
𝑓)) = ∪ 𝑢 ∈ 𝑡 (𝑢 × (𝑌 ∩ ∩ ran
𝑓))) |
86 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈) → (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈) |
87 | 86 | ralimi 3086 |
. . . . . . . . . . 11
⊢
(∀𝑢 ∈
𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈) → ∀𝑢 ∈ 𝑡 (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈) |
88 | 69, 87 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → ∀𝑢 ∈ 𝑡 (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈) |
89 | | inss2 4160 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∩ ∩ ran 𝑓) ⊆ ∩ ran
𝑓 |
90 | 76 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡) → ∩
𝑢 ∈ 𝑡 (𝑓‘𝑢) = ∩ ran 𝑓) |
91 | | iinss2 4983 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑡 → ∩
𝑢 ∈ 𝑡 (𝑓‘𝑢) ⊆ (𝑓‘𝑢)) |
92 | 91 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡) → ∩
𝑢 ∈ 𝑡 (𝑓‘𝑢) ⊆ (𝑓‘𝑢)) |
93 | 90, 92 | eqsstrrd 3956 |
. . . . . . . . . . . . 13
⊢ ((𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡) → ∩ ran
𝑓 ⊆ (𝑓‘𝑢)) |
94 | 89, 93 | sstrid 3928 |
. . . . . . . . . . . 12
⊢ ((𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡) → (𝑌 ∩ ∩ ran
𝑓) ⊆ (𝑓‘𝑢)) |
95 | | xpss2 5600 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∩ ∩ ran 𝑓) ⊆ (𝑓‘𝑢) → (𝑢 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ (𝑢 × (𝑓‘𝑢))) |
96 | | sstr2 3924 |
. . . . . . . . . . . 12
⊢ ((𝑢 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ (𝑢 × (𝑓‘𝑢)) → ((𝑢 × (𝑓‘𝑢)) ⊆ 𝑈 → (𝑢 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈)) |
97 | 94, 95, 96 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡) → ((𝑢 × (𝑓‘𝑢)) ⊆ 𝑈 → (𝑢 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈)) |
98 | 97 | ralimdva 3102 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑡 → (∀𝑢 ∈ 𝑡 (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈 → ∀𝑢 ∈ 𝑡 (𝑢 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈)) |
99 | 52, 88, 98 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → ∀𝑢 ∈ 𝑡 (𝑢 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈) |
100 | | iunss 4971 |
. . . . . . . . 9
⊢ (∪ 𝑢 ∈ 𝑡 (𝑢 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈 ↔ ∀𝑢 ∈ 𝑡 (𝑢 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈) |
101 | 99, 100 | sylibr 233 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → ∪ 𝑢 ∈ 𝑡 (𝑢 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈) |
102 | 85, 101 | eqsstrd 3955 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → (𝑋 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈) |
103 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑢 = (𝑌 ∩ ∩ ran
𝑓) → (𝐴 ∈ 𝑢 ↔ 𝐴 ∈ (𝑌 ∩ ∩ ran
𝑓))) |
104 | | xpeq2 5601 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑌 ∩ ∩ ran
𝑓) → (𝑋 × 𝑢) = (𝑋 × (𝑌 ∩ ∩ ran
𝑓))) |
105 | 104 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑢 = (𝑌 ∩ ∩ ran
𝑓) → ((𝑋 × 𝑢) ⊆ 𝑈 ↔ (𝑋 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈)) |
106 | 103, 105 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑢 = (𝑌 ∩ ∩ ran
𝑓) → ((𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈) ↔ (𝐴 ∈ (𝑌 ∩ ∩ ran
𝑓) ∧ (𝑋 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈))) |
107 | 106 | rspcev 3552 |
. . . . . . 7
⊢ (((𝑌 ∩ ∩ ran 𝑓) ∈ 𝑆 ∧ (𝐴 ∈ (𝑌 ∩ ∩ ran
𝑓) ∧ (𝑋 × (𝑌 ∩ ∩ ran
𝑓)) ⊆ 𝑈)) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)) |
108 | 67, 79, 102, 107 | syl12anc 833 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)))) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)) |
109 | 108 | expr 456 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ 𝑋 = ∪ 𝑡) → ((𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈))) |
110 | 109 | exlimdv 1937 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ 𝑋 = ∪ 𝑡) → (∃𝑓(𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈)) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈))) |
111 | 110 | expimpd 453 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) → ((𝑋 = ∪ 𝑡 ∧ ∃𝑓(𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈))) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈))) |
112 | 111 | rexlimdva 3212 |
. 2
⊢ (𝜑 → (∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = ∪ 𝑡 ∧ ∃𝑓(𝑓:𝑡⟶𝑆 ∧ ∀𝑢 ∈ 𝑡 (𝐴 ∈ (𝑓‘𝑢) ∧ (𝑢 × (𝑓‘𝑢)) ⊆ 𝑈))) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈))) |
113 | 37, 112 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)) |