Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooiinicc Structured version   Visualization version   GIF version

Theorem iooiinicc 45582
Description: A closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iooiinicc.a (𝜑𝐴 ∈ ℝ)
iooiinicc.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iooiinicc (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem iooiinicc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooiinicc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ)
3 iooiinicc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
43adantr 480 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ)
5 1nn 12131 . . . . . . . . 9 1 ∈ ℕ
6 ioossre 13302 . . . . . . . . 9 ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆ ℝ
7 oveq2 7349 . . . . . . . . . . . . 13 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
87oveq2d 7357 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1)))
97oveq2d 7357 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1)))
108, 9oveq12d 7359 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))))
1110sseq1d 3961 . . . . . . . . . 10 (𝑛 = 1 → (((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆ ℝ))
1211rspcev 3572 . . . . . . . . 9 ((1 ∈ ℕ ∧ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
135, 6, 12mp2an 692 . . . . . . . 8 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
14 iinss 5000 . . . . . . . 8 (∃𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
1513, 14ax-mp 5 . . . . . . 7 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
1615a1i 11 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
17 simpr 484 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
1816, 17sseldd 3930 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ)
19 nfv 1915 . . . . . . . 8 𝑛𝜑
20 nfcv 2894 . . . . . . . . 9 𝑛𝑥
21 nfii1 4974 . . . . . . . . 9 𝑛 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))
2220, 21nfel 2909 . . . . . . . 8 𝑛 𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))
2319, 22nfan 1900 . . . . . . 7 𝑛(𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
24 simpll 766 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑)
25 iinss2 5001 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
2625adantl 481 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
27 simpl 482 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
2826, 27sseldd 3930 . . . . . . . . . 10 ((𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
2928adantll 714 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
30 simpr 484 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
311adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
3231adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
33 elioore 13270 . . . . . . . . . . . . 13 (𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ)
3433adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
35 nnrecre 12162 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
3635adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
3734, 36readdcld 11136 . . . . . . . . . . 11 ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ)
3837adantll 714 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ)
3935adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
4031, 39resubcld 11540 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ)
4140rexrd 11157 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
4241adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
433adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
4443, 39readdcld 11136 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
4544rexrd 11157 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
4645adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
47 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
48 ioogtlb 45535 . . . . . . . . . . . 12 (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴 − (1 / 𝑛)) < 𝑥)
4942, 46, 47, 48syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝑥)
5035adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5134adantll 714 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
5232, 50, 51ltsubaddd 11708 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) < 𝑥𝐴 < (𝑥 + (1 / 𝑛))))
5349, 52mpbid 232 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝑥 + (1 / 𝑛)))
5432, 38, 53ltled 11256 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛)))
5524, 29, 30, 54syl21anc 837 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛)))
5655ex 412 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝑥 + (1 / 𝑛))))
5723, 56ralrimi 3230 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛)))
582rexrd 11157 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ*)
5923, 58, 18xrralrecnnle 45421 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴𝑥 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛))))
6057, 59mpbird 257 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴𝑥)
6144adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
62 iooltub 45550 . . . . . . . . . . 11 (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛)))
6342, 46, 47, 62syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛)))
6451, 61, 63ltled 11256 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6524, 29, 30, 64syl21anc 837 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6665ex 412 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6723, 66ralrimi 3230 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6818rexrd 11157 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*)
6923, 68, 4xrralrecnnle 45421 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑥𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))))
7067, 69mpbird 257 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥𝐵)
712, 4, 18, 60, 70eliccd 45544 . . . 4 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴[,]𝐵))
7271ralrimiva 3124 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵))
73 dfss3 3918 . . 3 ( 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵) ↔ ∀𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵))
7472, 73sylibr 234 . 2 (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵))
75 1rp 12889 . . . . . . . . 9 1 ∈ ℝ+
7675a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
77 nnrp 12897 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7876, 77rpdivcld 12946 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7978adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
8031, 79ltsubrpd 12961 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
8143, 79ltaddrpd 12962 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
82 iccssioo 13310 . . . . 5 ((((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ ((𝐴 − (1 / 𝑛)) < 𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8341, 45, 80, 81, 82syl22anc 838 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8483ralrimiva 3124 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
85 ssiin 4999 . . 3 ((𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8684, 85sylibr 234 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8774, 86eqssd 3947 1 (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897   ciin 4937   class class class wbr 5086  (class class class)co 7341  cr 11000  1c1 11002   + caddc 11004  *cxr 11140   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  cn 12120  +crp 12885  (,)cioo 13240  [,]cicc 13243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-ioo 13244  df-icc 13247  df-fl 13691
This theorem is referenced by:  iccvonmbllem  46716
  Copyright terms: Public domain W3C validator