Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooiinicc Structured version   Visualization version   GIF version

Theorem iooiinicc 44028
Description: A closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iooiinicc.a (𝜑𝐴 ∈ ℝ)
iooiinicc.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iooiinicc (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem iooiinicc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooiinicc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
21adantr 481 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ)
3 iooiinicc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
43adantr 481 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ)
5 1nn 12205 . . . . . . . . 9 1 ∈ ℕ
6 ioossre 13367 . . . . . . . . 9 ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆ ℝ
7 oveq2 7401 . . . . . . . . . . . . 13 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
87oveq2d 7409 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1)))
97oveq2d 7409 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1)))
108, 9oveq12d 7411 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))))
1110sseq1d 4009 . . . . . . . . . 10 (𝑛 = 1 → (((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆ ℝ))
1211rspcev 3609 . . . . . . . . 9 ((1 ∈ ℕ ∧ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
135, 6, 12mp2an 690 . . . . . . . 8 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
14 iinss 5052 . . . . . . . 8 (∃𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
1513, 14ax-mp 5 . . . . . . 7 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
1615a1i 11 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
17 simpr 485 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
1816, 17sseldd 3979 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ)
19 nfv 1917 . . . . . . . 8 𝑛𝜑
20 nfcv 2902 . . . . . . . . 9 𝑛𝑥
21 nfii1 5025 . . . . . . . . 9 𝑛 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))
2220, 21nfel 2916 . . . . . . . 8 𝑛 𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))
2319, 22nfan 1902 . . . . . . 7 𝑛(𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
24 simpll 765 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑)
25 iinss2 5053 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
2625adantl 482 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
27 simpl 483 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
2826, 27sseldd 3979 . . . . . . . . . 10 ((𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
2928adantll 712 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
30 simpr 485 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
311adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
3231adantlr 713 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
33 elioore 13336 . . . . . . . . . . . . 13 (𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ)
3433adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
35 nnrecre 12236 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
3635adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
3734, 36readdcld 11225 . . . . . . . . . . 11 ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ)
3837adantll 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ)
3935adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
4031, 39resubcld 11624 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ)
4140rexrd 11246 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
4241adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
433adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
4443, 39readdcld 11225 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
4544rexrd 11246 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
4645adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
47 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
48 ioogtlb 43981 . . . . . . . . . . . 12 (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴 − (1 / 𝑛)) < 𝑥)
4942, 46, 47, 48syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝑥)
5035adantl 482 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5134adantll 712 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
5232, 50, 51ltsubaddd 11792 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) < 𝑥𝐴 < (𝑥 + (1 / 𝑛))))
5349, 52mpbid 231 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝑥 + (1 / 𝑛)))
5432, 38, 53ltled 11344 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛)))
5524, 29, 30, 54syl21anc 836 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛)))
5655ex 413 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝑥 + (1 / 𝑛))))
5723, 56ralrimi 3253 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛)))
582rexrd 11246 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ*)
5923, 58, 18xrralrecnnle 43866 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴𝑥 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛))))
6057, 59mpbird 256 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴𝑥)
6144adantlr 713 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
62 iooltub 43996 . . . . . . . . . . 11 (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛)))
6342, 46, 47, 62syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛)))
6451, 61, 63ltled 11344 . . . . . . . . 9 (((𝜑𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6524, 29, 30, 64syl21anc 836 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6665ex 413 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6723, 66ralrimi 3253 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6818rexrd 11246 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*)
6923, 68, 4xrralrecnnle 43866 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑥𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))))
7067, 69mpbird 256 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥𝐵)
712, 4, 18, 60, 70eliccd 43990 . . . 4 ((𝜑𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴[,]𝐵))
7271ralrimiva 3145 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵))
73 dfss3 3966 . . 3 ( 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵) ↔ ∀𝑥 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵))
7472, 73sylibr 233 . 2 (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵))
75 1rp 12960 . . . . . . . . 9 1 ∈ ℝ+
7675a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
77 nnrp 12967 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7876, 77rpdivcld 13015 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7978adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
8031, 79ltsubrpd 13030 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
8143, 79ltaddrpd 13031 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
82 iccssioo 13375 . . . . 5 ((((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ ((𝐴 − (1 / 𝑛)) < 𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8341, 45, 80, 81, 82syl22anc 837 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8483ralrimiva 3145 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
85 ssiin 5051 . . 3 ((𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8684, 85sylibr 233 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))))
8774, 86eqssd 3995 1 (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069  wss 3944   ciin 4991   class class class wbr 5141  (class class class)co 7393  cr 11091  1c1 11093   + caddc 11095  *cxr 11229   < clt 11230  cle 11231  cmin 11426   / cdiv 11853  cn 12194  +crp 12956  (,)cioo 13306  [,]cicc 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-n0 12455  df-z 12541  df-uz 12805  df-q 12915  df-rp 12957  df-ioo 13310  df-icc 13313  df-fl 13739
This theorem is referenced by:  iccvonmbllem  45167
  Copyright terms: Public domain W3C validator