Step | Hyp | Ref
| Expression |
1 | | iooiinicc.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | 1 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ) |
3 | | iooiinicc.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ) |
5 | | 1nn 11698 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
6 | | ioossre 12853 |
. . . . . . . . 9
⊢ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆
ℝ |
7 | | oveq2 7164 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (1 / 𝑛) = (1 / 1)) |
8 | 7 | oveq2d 7172 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1))) |
9 | 7 | oveq2d 7172 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1))) |
10 | 8, 9 | oveq12d 7174 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1)))) |
11 | 10 | sseq1d 3925 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ ((𝐴 − (1 / 1))(,)(𝐵 + (1 / 1))) ⊆
ℝ)) |
12 | 11 | rspcev 3543 |
. . . . . . . . 9
⊢ ((1
∈ ℕ ∧ ((𝐴
− (1 / 1))(,)(𝐵 + (1
/ 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ) |
13 | 5, 6, 12 | mp2an 691 |
. . . . . . . 8
⊢
∃𝑛 ∈
ℕ ((𝐴 − (1 /
𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ |
14 | | iinss 4948 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ ((𝐴 − (1 /
𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ) |
15 | 13, 14 | ax-mp 5 |
. . . . . . 7
⊢ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ |
16 | 15 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ) |
17 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
18 | 16, 17 | sseldd 3895 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ) |
19 | | nfv 1915 |
. . . . . . . 8
⊢
Ⅎ𝑛𝜑 |
20 | | nfcv 2919 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝑥 |
21 | | nfii1 4921 |
. . . . . . . . 9
⊢
Ⅎ𝑛∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) |
22 | 20, 21 | nfel 2933 |
. . . . . . . 8
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) |
23 | 19, 22 | nfan 1900 |
. . . . . . 7
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
24 | | simpll 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑) |
25 | | iinss2 4949 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
26 | 25 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
27 | | simpl 486 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
28 | 26, 27 | sseldd 3895 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
29 | 28 | adantll 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
30 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
31 | 1 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
32 | 31 | adantlr 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
33 | | elioore 12822 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ) |
34 | 33 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ) |
35 | | nnrecre 11729 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
36 | 35 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
37 | 34, 36 | readdcld 10721 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ) |
38 | 37 | adantll 713 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝑥 + (1 / 𝑛)) ∈ ℝ) |
39 | 35 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
40 | 31, 39 | resubcld 11119 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ) |
41 | 40 | rexrd 10742 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈
ℝ*) |
42 | 41 | adantlr 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈
ℝ*) |
43 | 3 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ) |
44 | 43, 39 | readdcld 10721 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ) |
45 | 44 | rexrd 10742 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
46 | 45 | adantlr 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
47 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
48 | | ioogtlb 42543 |
. . . . . . . . . . . 12
⊢ (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴 − (1 / 𝑛)) < 𝑥) |
49 | 42, 46, 47, 48 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝑥) |
50 | 35 | adantl 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
51 | 34 | adantll 713 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ) |
52 | 32, 50, 51 | ltsubaddd 11287 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) < 𝑥 ↔ 𝐴 < (𝑥 + (1 / 𝑛)))) |
53 | 49, 52 | mpbid 235 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝑥 + (1 / 𝑛))) |
54 | 32, 38, 53 | ltled 10839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛))) |
55 | 24, 29, 30, 54 | syl21anc 836 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝑥 + (1 / 𝑛))) |
56 | 55 | ex 416 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝑥 + (1 / 𝑛)))) |
57 | 23, 56 | ralrimi 3144 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛))) |
58 | 2 | rexrd 10742 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈
ℝ*) |
59 | 23, 58, 18 | xrralrecnnle 42430 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝐴 ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝑥 + (1 / 𝑛)))) |
60 | 57, 59 | mpbird 260 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ≤ 𝑥) |
61 | 44 | adantlr 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ) |
62 | | iooltub 42558 |
. . . . . . . . . . 11
⊢ (((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛))) |
63 | 42, 46, 47, 62 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛))) |
64 | 51, 61, 63 | ltled 10839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛))) |
65 | 24, 29, 30, 64 | syl21anc 836 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛))) |
66 | 65 | ex 416 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛)))) |
67 | 23, 66 | ralrimi 3144 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))) |
68 | 18 | rexrd 10742 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*) |
69 | 23, 68, 4 | xrralrecnnle 42430 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → (𝑥 ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))) |
70 | 67, 69 | mpbird 260 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ≤ 𝐵) |
71 | 2, 4, 18, 60, 70 | eliccd 42552 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴[,]𝐵)) |
72 | 71 | ralrimiva 3113 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵)) |
73 | | dfss3 3882 |
. . 3
⊢ (∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵) ↔ ∀𝑥 ∈ ∩
𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴[,]𝐵)) |
74 | 72, 73 | sylibr 237 |
. 2
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴[,]𝐵)) |
75 | | 1rp 12447 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
76 | 75 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 1 ∈
ℝ+) |
77 | | nnrp 12454 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
78 | 76, 77 | rpdivcld 12502 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
79 | 78 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ+) |
80 | 31, 79 | ltsubrpd 12517 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴) |
81 | 43, 79 | ltaddrpd 12518 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛))) |
82 | | iccssioo 12861 |
. . . . 5
⊢ ((((𝐴 − (1 / 𝑛)) ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ ((𝐴 − (1 / 𝑛)) < 𝐴 ∧ 𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
83 | 41, 45, 80, 81, 82 | syl22anc 837 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
84 | 83 | ralrimiva 3113 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
85 | | ssiin 4947 |
. . 3
⊢ ((𝐴[,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴[,]𝐵) ⊆ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
86 | 84, 85 | sylibr 237 |
. 2
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛)))) |
87 | 74, 86 | eqssd 3911 |
1
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵)) |