![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > genpss | Structured version Visualization version GIF version |
Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpss | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genp.1 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
2 | genp.2 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
3 | 1, 2 | genpelv 10943 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ))) |
4 | elprnq 10934 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ Q) | |
5 | 4 | ex 414 | . . . . . . 7 ⊢ (𝐴 ∈ P → (𝑔 ∈ 𝐴 → 𝑔 ∈ Q)) |
6 | elprnq 10934 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ ℎ ∈ 𝐵) → ℎ ∈ Q) | |
7 | 6 | ex 414 | . . . . . . 7 ⊢ (𝐵 ∈ P → (ℎ ∈ 𝐵 → ℎ ∈ Q)) |
8 | 5, 7 | im2anan9 621 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑔 ∈ Q ∧ ℎ ∈ Q))) |
9 | 2 | caovcl 7553 | . . . . . 6 ⊢ ((𝑔 ∈ Q ∧ ℎ ∈ Q) → (𝑔𝐺ℎ) ∈ Q) |
10 | 8, 9 | syl6 35 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑔𝐺ℎ) ∈ Q)) |
11 | eleq1a 2833 | . . . . 5 ⊢ ((𝑔𝐺ℎ) ∈ Q → (𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q)) | |
12 | 10, 11 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q))) |
13 | 12 | rexlimdvv 3205 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q)) |
14 | 3, 13 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑓 ∈ Q)) |
15 | 14 | ssrdv 3955 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2714 ∃wrex 3074 ⊆ wss 3915 (class class class)co 7362 ∈ cmpo 7364 Qcnq 10795 Pcnp 10802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-ni 10815 df-nq 10855 df-np 10924 |
This theorem is referenced by: genpcl 10951 |
Copyright terms: Public domain | W3C validator |