| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > genpss | Structured version Visualization version GIF version | ||
| Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
| genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
| Ref | Expression |
|---|---|
| genpss | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
| 2 | genp.2 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
| 3 | 1, 2 | genpelv 10929 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ))) |
| 4 | elprnq 10920 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ Q) | |
| 5 | 4 | ex 412 | . . . . . . 7 ⊢ (𝐴 ∈ P → (𝑔 ∈ 𝐴 → 𝑔 ∈ Q)) |
| 6 | elprnq 10920 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ ℎ ∈ 𝐵) → ℎ ∈ Q) | |
| 7 | 6 | ex 412 | . . . . . . 7 ⊢ (𝐵 ∈ P → (ℎ ∈ 𝐵 → ℎ ∈ Q)) |
| 8 | 5, 7 | im2anan9 620 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑔 ∈ Q ∧ ℎ ∈ Q))) |
| 9 | 2 | caovcl 7563 | . . . . . 6 ⊢ ((𝑔 ∈ Q ∧ ℎ ∈ Q) → (𝑔𝐺ℎ) ∈ Q) |
| 10 | 8, 9 | syl6 35 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑔𝐺ℎ) ∈ Q)) |
| 11 | eleq1a 2823 | . . . . 5 ⊢ ((𝑔𝐺ℎ) ∈ Q → (𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q)) | |
| 12 | 10, 11 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q))) |
| 13 | 12 | rexlimdvv 3191 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q)) |
| 14 | 3, 13 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑓 ∈ Q)) |
| 15 | 14 | ssrdv 3949 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ⊆ wss 3911 (class class class)co 7369 ∈ cmpo 7371 Qcnq 10781 Pcnp 10788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-ni 10801 df-nq 10841 df-np 10910 |
| This theorem is referenced by: genpcl 10937 |
| Copyright terms: Public domain | W3C validator |