![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > genpss | Structured version Visualization version GIF version |
Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpss | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genp.1 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
2 | genp.2 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
3 | 1, 2 | genpelv 10991 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ))) |
4 | elprnq 10982 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ Q) | |
5 | 4 | ex 413 | . . . . . . 7 ⊢ (𝐴 ∈ P → (𝑔 ∈ 𝐴 → 𝑔 ∈ Q)) |
6 | elprnq 10982 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ ℎ ∈ 𝐵) → ℎ ∈ Q) | |
7 | 6 | ex 413 | . . . . . . 7 ⊢ (𝐵 ∈ P → (ℎ ∈ 𝐵 → ℎ ∈ Q)) |
8 | 5, 7 | im2anan9 620 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑔 ∈ Q ∧ ℎ ∈ Q))) |
9 | 2 | caovcl 7597 | . . . . . 6 ⊢ ((𝑔 ∈ Q ∧ ℎ ∈ Q) → (𝑔𝐺ℎ) ∈ Q) |
10 | 8, 9 | syl6 35 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑔𝐺ℎ) ∈ Q)) |
11 | eleq1a 2828 | . . . . 5 ⊢ ((𝑔𝐺ℎ) ∈ Q → (𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q)) | |
12 | 10, 11 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q))) |
13 | 12 | rexlimdvv 3210 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q)) |
14 | 3, 13 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑓 ∈ Q)) |
15 | 14 | ssrdv 3987 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2709 ∃wrex 3070 ⊆ wss 3947 (class class class)co 7405 ∈ cmpo 7407 Qcnq 10843 Pcnp 10850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-ni 10863 df-nq 10903 df-np 10972 |
This theorem is referenced by: genpcl 10999 |
Copyright terms: Public domain | W3C validator |