MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpss Structured version   Visualization version   GIF version

Theorem genpss 10898
Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpss ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpss
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . 4 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . . 4 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelv 10894 . . 3 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
4 elprnq 10885 . . . . . . . 8 ((𝐴P𝑔𝐴) → 𝑔Q)
54ex 412 . . . . . . 7 (𝐴P → (𝑔𝐴𝑔Q))
6 elprnq 10885 . . . . . . . 8 ((𝐵P𝐵) → Q)
76ex 412 . . . . . . 7 (𝐵P → (𝐵Q))
85, 7im2anan9 620 . . . . . 6 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑔QQ)))
92caovcl 7543 . . . . . 6 ((𝑔QQ) → (𝑔𝐺) ∈ Q)
108, 9syl6 35 . . . . 5 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑔𝐺) ∈ Q))
11 eleq1a 2823 . . . . 5 ((𝑔𝐺) ∈ Q → (𝑓 = (𝑔𝐺) → 𝑓Q))
1210, 11syl6 35 . . . 4 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑓 = (𝑔𝐺) → 𝑓Q)))
1312rexlimdvv 3185 . . 3 ((𝐴P𝐵P) → (∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺) → 𝑓Q))
143, 13sylbid 240 . 2 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑓Q))
1514ssrdv 3941 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3903  (class class class)co 7349  cmpo 7351  Qcnq 10746  Pcnp 10753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-ni 10766  df-nq 10806  df-np 10875
This theorem is referenced by:  genpcl  10902
  Copyright terms: Public domain W3C validator