![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > genpss | Structured version Visualization version GIF version |
Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpss | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genp.1 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
2 | genp.2 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
3 | 1, 2 | genpelv 10157 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ))) |
4 | elprnq 10148 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ Q) | |
5 | 4 | ex 403 | . . . . . . 7 ⊢ (𝐴 ∈ P → (𝑔 ∈ 𝐴 → 𝑔 ∈ Q)) |
6 | elprnq 10148 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ ℎ ∈ 𝐵) → ℎ ∈ Q) | |
7 | 6 | ex 403 | . . . . . . 7 ⊢ (𝐵 ∈ P → (ℎ ∈ 𝐵 → ℎ ∈ Q)) |
8 | 5, 7 | im2anan9 613 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑔 ∈ Q ∧ ℎ ∈ Q))) |
9 | 2 | caovcl 7105 | . . . . . 6 ⊢ ((𝑔 ∈ Q ∧ ℎ ∈ Q) → (𝑔𝐺ℎ) ∈ Q) |
10 | 8, 9 | syl6 35 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑔𝐺ℎ) ∈ Q)) |
11 | eleq1a 2854 | . . . . 5 ⊢ ((𝑔𝐺ℎ) ∈ Q → (𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q)) | |
12 | 10, 11 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵) → (𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q))) |
13 | 12 | rexlimdvv 3220 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ) → 𝑓 ∈ Q)) |
14 | 3, 13 | sylbid 232 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑓 ∈ Q)) |
15 | 14 | ssrdv 3827 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {cab 2763 ∃wrex 3091 ⊆ wss 3792 (class class class)co 6922 ↦ cmpt2 6924 Qcnq 10009 Pcnp 10016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-ni 10029 df-nq 10069 df-np 10138 |
This theorem is referenced by: genpcl 10165 |
Copyright terms: Public domain | W3C validator |