MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpss Structured version   Visualization version   GIF version

Theorem genpss 10998
Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpss ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpss
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . 4 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . . 4 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelv 10994 . . 3 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
4 elprnq 10985 . . . . . . . 8 ((𝐴P𝑔𝐴) → 𝑔Q)
54ex 412 . . . . . . 7 (𝐴P → (𝑔𝐴𝑔Q))
6 elprnq 10985 . . . . . . . 8 ((𝐵P𝐵) → Q)
76ex 412 . . . . . . 7 (𝐵P → (𝐵Q))
85, 7im2anan9 619 . . . . . 6 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑔QQ)))
92caovcl 7597 . . . . . 6 ((𝑔QQ) → (𝑔𝐺) ∈ Q)
108, 9syl6 35 . . . . 5 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑔𝐺) ∈ Q))
11 eleq1a 2822 . . . . 5 ((𝑔𝐺) ∈ Q → (𝑓 = (𝑔𝐺) → 𝑓Q))
1210, 11syl6 35 . . . 4 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑓 = (𝑔𝐺) → 𝑓Q)))
1312rexlimdvv 3204 . . 3 ((𝐴P𝐵P) → (∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺) → 𝑓Q))
143, 13sylbid 239 . 2 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑓Q))
1514ssrdv 3983 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2703  wrex 3064  wss 3943  (class class class)co 7404  cmpo 7406  Qcnq 10846  Pcnp 10853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-ni 10866  df-nq 10906  df-np 10975
This theorem is referenced by:  genpcl  11002
  Copyright terms: Public domain W3C validator