MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpss Structured version   Visualization version   GIF version

Theorem genpss 10964
Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpss ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpss
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . 4 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . . 4 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelv 10960 . . 3 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
4 elprnq 10951 . . . . . . . 8 ((𝐴P𝑔𝐴) → 𝑔Q)
54ex 412 . . . . . . 7 (𝐴P → (𝑔𝐴𝑔Q))
6 elprnq 10951 . . . . . . . 8 ((𝐵P𝐵) → Q)
76ex 412 . . . . . . 7 (𝐵P → (𝐵Q))
85, 7im2anan9 620 . . . . . 6 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑔QQ)))
92caovcl 7586 . . . . . 6 ((𝑔QQ) → (𝑔𝐺) ∈ Q)
108, 9syl6 35 . . . . 5 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑔𝐺) ∈ Q))
11 eleq1a 2824 . . . . 5 ((𝑔𝐺) ∈ Q → (𝑓 = (𝑔𝐺) → 𝑓Q))
1210, 11syl6 35 . . . 4 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑓 = (𝑔𝐺) → 𝑓Q)))
1312rexlimdvv 3194 . . 3 ((𝐴P𝐵P) → (∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺) → 𝑓Q))
143, 13sylbid 240 . 2 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → 𝑓Q))
1514ssrdv 3955 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  wss 3917  (class class class)co 7390  cmpo 7392  Qcnq 10812  Pcnp 10819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-ni 10832  df-nq 10872  df-np 10941
This theorem is referenced by:  genpcl  10968
  Copyright terms: Public domain W3C validator