| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oun | Structured version Visualization version GIF version | ||
| Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.) |
| Ref | Expression |
|---|---|
| f1oun | ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o4 6826 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
| 2 | dff1o4 6826 | . . . 4 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) | |
| 3 | fnun 6652 | . . . . . . 7 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
| 4 | 3 | ex 412 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) → ((𝐴 ∩ 𝐶) = ∅ → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶))) |
| 5 | fnun 6652 | . . . . . . . 8 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) | |
| 6 | cnvun 6131 | . . . . . . . . 9 ⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) | |
| 7 | 6 | fneq1i 6635 | . . . . . . . 8 ⊢ (◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷) ↔ (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) |
| 8 | 5, 7 | sylibr 234 | . . . . . . 7 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)) |
| 9 | 8 | ex 412 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) → ((𝐵 ∩ 𝐷) = ∅ → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) |
| 10 | 4, 9 | im2anan9 620 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
| 11 | 10 | an4s 660 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵) ∧ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
| 12 | 1, 2, 11 | syl2anb 598 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
| 13 | dff1o4 6826 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) | |
| 14 | 12, 13 | imbitrrdi 252 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷))) |
| 15 | 14 | imp 406 | 1 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 ◡ccnv 5653 Fn wfn 6526 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: f1un 6838 f1oprg 6863 fveqf1o 7295 f1ofvswap 7299 oacomf1o 8577 unen 9060 enfixsn 9095 domss2 9150 isinf 9268 isinfOLD 9269 marypha1lem 9445 hashf1lem1 14473 f1oun2prg 14936 eupthp1 30197 isoun 32679 cycpmcl 33127 cycpmconjslem2 33166 subfacp1lem2a 35202 subfacp1lem5 35206 poimirlem3 37647 poimirlem15 37659 poimirlem16 37660 poimirlem17 37661 poimirlem19 37663 poimirlem20 37664 metakunt17 42234 eldioph2lem1 42783 eldioph2lem2 42784 |
| Copyright terms: Public domain | W3C validator |