Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oun | Structured version Visualization version GIF version |
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.) |
Ref | Expression |
---|---|
f1oun | ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 6708 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
2 | dff1o4 6708 | . . . 4 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) | |
3 | fnun 6529 | . . . . . . 7 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
4 | 3 | ex 412 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) → ((𝐴 ∩ 𝐶) = ∅ → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶))) |
5 | fnun 6529 | . . . . . . . 8 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) | |
6 | cnvun 6035 | . . . . . . . . 9 ⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) | |
7 | 6 | fneq1i 6514 | . . . . . . . 8 ⊢ (◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷) ↔ (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) |
8 | 5, 7 | sylibr 233 | . . . . . . 7 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)) |
9 | 8 | ex 412 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) → ((𝐵 ∩ 𝐷) = ∅ → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) |
10 | 4, 9 | im2anan9 619 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
11 | 10 | an4s 656 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵) ∧ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
12 | 1, 2, 11 | syl2anb 597 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
13 | dff1o4 6708 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) | |
14 | 12, 13 | syl6ibr 251 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷))) |
15 | 14 | imp 406 | 1 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 ◡ccnv 5579 Fn wfn 6413 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: f1oprg 6744 fveqf1o 7155 f1ofvswap 7158 oacomf1o 8358 unen 8790 enfixsn 8821 domss2 8872 isinf 8965 marypha1lem 9122 hashf1lem1 14096 hashf1lem1OLD 14097 f1oun2prg 14558 eupthp1 28481 isoun 30936 cycpmcl 31285 cycpmconjslem2 31324 subfacp1lem2a 33042 subfacp1lem5 33046 poimirlem3 35707 poimirlem15 35719 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 metakunt17 40069 eldioph2lem1 40498 eldioph2lem2 40499 |
Copyright terms: Public domain | W3C validator |