![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oun | Structured version Visualization version GIF version |
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.) |
Ref | Expression |
---|---|
f1oun | ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 6793 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
2 | dff1o4 6793 | . . . 4 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) | |
3 | fnun 6615 | . . . . . . 7 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
4 | 3 | ex 414 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) → ((𝐴 ∩ 𝐶) = ∅ → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶))) |
5 | fnun 6615 | . . . . . . . 8 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) | |
6 | cnvun 6096 | . . . . . . . . 9 ⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) | |
7 | 6 | fneq1i 6600 | . . . . . . . 8 ⊢ (◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷) ↔ (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) |
8 | 5, 7 | sylibr 233 | . . . . . . 7 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)) |
9 | 8 | ex 414 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) → ((𝐵 ∩ 𝐷) = ∅ → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) |
10 | 4, 9 | im2anan9 621 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
11 | 10 | an4s 659 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵) ∧ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
12 | 1, 2, 11 | syl2anb 599 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
13 | dff1o4 6793 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) | |
14 | 12, 13 | syl6ibr 252 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷))) |
15 | 14 | imp 408 | 1 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∪ cun 3909 ∩ cin 3910 ∅c0 4283 ◡ccnv 5633 Fn wfn 6492 –1-1-onto→wf1o 6496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 |
This theorem is referenced by: f1un 6805 f1oprg 6830 fveqf1o 7250 f1ofvswap 7253 oacomf1o 8513 unen 8991 enfixsn 9026 domss2 9081 isinf 9205 isinfOLD 9206 marypha1lem 9370 hashf1lem1 14354 hashf1lem1OLD 14355 f1oun2prg 14807 eupthp1 29163 isoun 31618 cycpmcl 31968 cycpmconjslem2 32007 subfacp1lem2a 33777 subfacp1lem5 33781 poimirlem3 36084 poimirlem15 36096 poimirlem16 36097 poimirlem17 36098 poimirlem19 36100 poimirlem20 36101 metakunt17 40596 eldioph2lem1 41086 eldioph2lem2 41087 |
Copyright terms: Public domain | W3C validator |