| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oun | Structured version Visualization version GIF version | ||
| Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.) |
| Ref | Expression |
|---|---|
| f1oun | ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o4 6856 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
| 2 | dff1o4 6856 | . . . 4 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) | |
| 3 | fnun 6682 | . . . . . . 7 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
| 4 | 3 | ex 412 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) → ((𝐴 ∩ 𝐶) = ∅ → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶))) |
| 5 | fnun 6682 | . . . . . . . 8 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) | |
| 6 | cnvun 6162 | . . . . . . . . 9 ⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) | |
| 7 | 6 | fneq1i 6665 | . . . . . . . 8 ⊢ (◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷) ↔ (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) |
| 8 | 5, 7 | sylibr 234 | . . . . . . 7 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)) |
| 9 | 8 | ex 412 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) → ((𝐵 ∩ 𝐷) = ∅ → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) |
| 10 | 4, 9 | im2anan9 620 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
| 11 | 10 | an4s 660 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵) ∧ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
| 12 | 1, 2, 11 | syl2anb 598 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
| 13 | dff1o4 6856 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) | |
| 14 | 12, 13 | imbitrrdi 252 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷))) |
| 15 | 14 | imp 406 | 1 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∪ cun 3949 ∩ cin 3950 ∅c0 4333 ◡ccnv 5684 Fn wfn 6556 –1-1-onto→wf1o 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 |
| This theorem is referenced by: f1un 6868 f1oprg 6893 fveqf1o 7322 f1ofvswap 7326 oacomf1o 8603 unen 9086 enfixsn 9121 domss2 9176 isinf 9296 isinfOLD 9297 marypha1lem 9473 hashf1lem1 14494 f1oun2prg 14956 eupthp1 30235 isoun 32711 cycpmcl 33136 cycpmconjslem2 33175 subfacp1lem2a 35185 subfacp1lem5 35189 poimirlem3 37630 poimirlem15 37642 poimirlem16 37643 poimirlem17 37644 poimirlem19 37646 poimirlem20 37647 metakunt17 42222 eldioph2lem1 42771 eldioph2lem2 42772 |
| Copyright terms: Public domain | W3C validator |