Proof of Theorem 3wlkdlem4
| Step | Hyp | Ref
| Expression |
| 1 | | 3wlkd.s |
. . 3
⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 2 | | 3wlkd.p |
. . . 4
⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
| 3 | | 3wlkd.f |
. . . 4
⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
| 4 | 2, 3, 1 | 3wlkdlem3 30180 |
. . 3
⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
| 5 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴) |
| 6 | 5 | eleq1d 2826 |
. . . . . . . 8
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) |
| 7 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵) |
| 8 | 7 | eleq1d 2826 |
. . . . . . . 8
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) |
| 9 | 6, 8 | anbi12d 632 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
| 10 | 9 | biimparc 479 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)) |
| 11 | | c0ex 11255 |
. . . . . . . 8
⊢ 0 ∈
V |
| 12 | | 1ex 11257 |
. . . . . . . 8
⊢ 1 ∈
V |
| 13 | 11, 12 | pm3.2i 470 |
. . . . . . 7
⊢ (0 ∈
V ∧ 1 ∈ V) |
| 14 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) |
| 15 | 14 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉)) |
| 16 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) |
| 17 | 16 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑘 = 1 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉)) |
| 18 | 15, 17 | ralprg 4696 |
. . . . . . 7
⊢ ((0
∈ V ∧ 1 ∈ V) → (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉))) |
| 19 | 13, 18 | mp1i 13 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉))) |
| 20 | 10, 19 | mpbird 257 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉) |
| 21 | 20 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉)) |
| 22 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶) |
| 23 | 22 | eleq1d 2826 |
. . . . . . . 8
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ 𝑉 ↔ 𝐶 ∈ 𝑉)) |
| 24 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷) |
| 25 | 24 | eleq1d 2826 |
. . . . . . . 8
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘3) ∈ 𝑉 ↔ 𝐷 ∈ 𝑉)) |
| 26 | 23, 25 | anbi12d 632 |
. . . . . . 7
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉) ↔ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 27 | 26 | biimparc 479 |
. . . . . 6
⊢ (((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)) |
| 28 | | 2ex 12343 |
. . . . . . . 8
⊢ 2 ∈
V |
| 29 | | 3ex 12348 |
. . . . . . . 8
⊢ 3 ∈
V |
| 30 | 28, 29 | pm3.2i 470 |
. . . . . . 7
⊢ (2 ∈
V ∧ 3 ∈ V) |
| 31 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑘 = 2 → (𝑃‘𝑘) = (𝑃‘2)) |
| 32 | 31 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑘 = 2 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉)) |
| 33 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑘 = 3 → (𝑃‘𝑘) = (𝑃‘3)) |
| 34 | 33 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑘 = 3 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘3) ∈ 𝑉)) |
| 35 | 32, 34 | ralprg 4696 |
. . . . . . 7
⊢ ((2
∈ V ∧ 3 ∈ V) → (∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉))) |
| 36 | 30, 35 | mp1i 13 |
. . . . . 6
⊢ (((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉))) |
| 37 | 27, 36 | mpbird 257 |
. . . . 5
⊢ (((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉) |
| 38 | 37 | ex 412 |
. . . 4
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉)) |
| 39 | 21, 38 | im2anan9 620 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉))) |
| 40 | 1, 4, 39 | sylc 65 |
. 2
⊢ (𝜑 → (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉)) |
| 41 | 3 | fveq2i 6909 |
. . . . . . 7
⊢
(♯‘𝐹) =
(♯‘〈“𝐽𝐾𝐿”〉) |
| 42 | | s3len 14933 |
. . . . . . 7
⊢
(♯‘〈“𝐽𝐾𝐿”〉) = 3 |
| 43 | 41, 42 | eqtri 2765 |
. . . . . 6
⊢
(♯‘𝐹) =
3 |
| 44 | 43 | oveq2i 7442 |
. . . . 5
⊢
(0...(♯‘𝐹)) = (0...3) |
| 45 | | fz0to3un2pr 13669 |
. . . . 5
⊢ (0...3) =
({0, 1} ∪ {2, 3}) |
| 46 | 44, 45 | eqtri 2765 |
. . . 4
⊢
(0...(♯‘𝐹)) = ({0, 1} ∪ {2, 3}) |
| 47 | 46 | raleqi 3324 |
. . 3
⊢
(∀𝑘 ∈
(0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃‘𝑘) ∈ 𝑉) |
| 48 | | ralunb 4197 |
. . 3
⊢
(∀𝑘 ∈
({0, 1} ∪ {2, 3})(𝑃‘𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉)) |
| 49 | 47, 48 | bitri 275 |
. 2
⊢
(∀𝑘 ∈
(0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉)) |
| 50 | 40, 49 | sylibr 234 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |