MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem4 Structured version   Visualization version   GIF version

Theorem 3wlkdlem4 28526
Description: Lemma 4 for 3wlkd 28534. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
Assertion
Ref Expression
3wlkdlem4 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 3wlkdlem4
StepHypRef Expression
1 3wlkd.s . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
2 3wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3 3wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
42, 3, 13wlkdlem3 28525 . . 3 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 simpl 483 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
65eleq1d 2823 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ 𝑉𝐴𝑉))
7 simpr 485 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
87eleq1d 2823 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ 𝑉𝐵𝑉))
96, 8anbi12d 631 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉) ↔ (𝐴𝑉𝐵𝑉)))
109biimparc 480 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉))
11 c0ex 10969 . . . . . . . 8 0 ∈ V
12 1ex 10971 . . . . . . . 8 1 ∈ V
1311, 12pm3.2i 471 . . . . . . 7 (0 ∈ V ∧ 1 ∈ V)
14 fveq2 6774 . . . . . . . . 9 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
1514eleq1d 2823 . . . . . . . 8 (𝑘 = 0 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉))
16 fveq2 6774 . . . . . . . . 9 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
1716eleq1d 2823 . . . . . . . 8 (𝑘 = 1 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉))
1815, 17ralprg 4630 . . . . . . 7 ((0 ∈ V ∧ 1 ∈ V) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
1913, 18mp1i 13 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
2010, 19mpbird 256 . . . . 5 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉)
2120ex 413 . . . 4 ((𝐴𝑉𝐵𝑉) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉))
22 simpl 483 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
2322eleq1d 2823 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ 𝑉𝐶𝑉))
24 simpr 485 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
2524eleq1d 2823 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘3) ∈ 𝑉𝐷𝑉))
2623, 25anbi12d 631 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉) ↔ (𝐶𝑉𝐷𝑉)))
2726biimparc 480 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉))
28 2ex 12050 . . . . . . . 8 2 ∈ V
29 3ex 12055 . . . . . . . 8 3 ∈ V
3028, 29pm3.2i 471 . . . . . . 7 (2 ∈ V ∧ 3 ∈ V)
31 fveq2 6774 . . . . . . . . 9 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
3231eleq1d 2823 . . . . . . . 8 (𝑘 = 2 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉))
33 fveq2 6774 . . . . . . . . 9 (𝑘 = 3 → (𝑃𝑘) = (𝑃‘3))
3433eleq1d 2823 . . . . . . . 8 (𝑘 = 3 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘3) ∈ 𝑉))
3532, 34ralprg 4630 . . . . . . 7 ((2 ∈ V ∧ 3 ∈ V) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3630, 35mp1i 13 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3727, 36mpbird 256 . . . . 5 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)
3837ex 413 . . . 4 ((𝐶𝑉𝐷𝑉) → (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
3921, 38im2anan9 620 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)))
401, 4, 39sylc 65 . 2 (𝜑 → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
413fveq2i 6777 . . . . . . 7 (♯‘𝐹) = (♯‘⟨“𝐽𝐾𝐿”⟩)
42 s3len 14607 . . . . . . 7 (♯‘⟨“𝐽𝐾𝐿”⟩) = 3
4341, 42eqtri 2766 . . . . . 6 (♯‘𝐹) = 3
4443oveq2i 7286 . . . . 5 (0...(♯‘𝐹)) = (0...3)
45 fz0to3un2pr 13358 . . . . 5 (0...3) = ({0, 1} ∪ {2, 3})
4644, 45eqtri 2766 . . . 4 (0...(♯‘𝐹)) = ({0, 1} ∪ {2, 3})
4746raleqi 3346 . . 3 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉)
48 ralunb 4125 . . 3 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
4947, 48bitri 274 . 2 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
5040, 49sylibr 233 1 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  {cpr 4563  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  2c2 12028  3c3 12029  ...cfz 13239  chash 14044  ⟨“cs3 14555  ⟨“cs4 14556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-s4 14563
This theorem is referenced by:  3wlkd  28534
  Copyright terms: Public domain W3C validator