MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem4 Structured version   Visualization version   GIF version

Theorem 3wlkdlem4 29682
Description: Lemma 4 for 3wlkd 29690. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
Assertion
Ref Expression
3wlkdlem4 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 3wlkdlem4
StepHypRef Expression
1 3wlkd.s . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
2 3wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3 3wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
42, 3, 13wlkdlem3 29681 . . 3 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 simpl 481 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
65eleq1d 2816 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ 𝑉𝐴𝑉))
7 simpr 483 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
87eleq1d 2816 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ 𝑉𝐵𝑉))
96, 8anbi12d 629 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉) ↔ (𝐴𝑉𝐵𝑉)))
109biimparc 478 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉))
11 c0ex 11212 . . . . . . . 8 0 ∈ V
12 1ex 11214 . . . . . . . 8 1 ∈ V
1311, 12pm3.2i 469 . . . . . . 7 (0 ∈ V ∧ 1 ∈ V)
14 fveq2 6890 . . . . . . . . 9 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
1514eleq1d 2816 . . . . . . . 8 (𝑘 = 0 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉))
16 fveq2 6890 . . . . . . . . 9 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
1716eleq1d 2816 . . . . . . . 8 (𝑘 = 1 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉))
1815, 17ralprg 4697 . . . . . . 7 ((0 ∈ V ∧ 1 ∈ V) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
1913, 18mp1i 13 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
2010, 19mpbird 256 . . . . 5 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉)
2120ex 411 . . . 4 ((𝐴𝑉𝐵𝑉) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉))
22 simpl 481 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
2322eleq1d 2816 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ 𝑉𝐶𝑉))
24 simpr 483 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
2524eleq1d 2816 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘3) ∈ 𝑉𝐷𝑉))
2623, 25anbi12d 629 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉) ↔ (𝐶𝑉𝐷𝑉)))
2726biimparc 478 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉))
28 2ex 12293 . . . . . . . 8 2 ∈ V
29 3ex 12298 . . . . . . . 8 3 ∈ V
3028, 29pm3.2i 469 . . . . . . 7 (2 ∈ V ∧ 3 ∈ V)
31 fveq2 6890 . . . . . . . . 9 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
3231eleq1d 2816 . . . . . . . 8 (𝑘 = 2 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉))
33 fveq2 6890 . . . . . . . . 9 (𝑘 = 3 → (𝑃𝑘) = (𝑃‘3))
3433eleq1d 2816 . . . . . . . 8 (𝑘 = 3 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘3) ∈ 𝑉))
3532, 34ralprg 4697 . . . . . . 7 ((2 ∈ V ∧ 3 ∈ V) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3630, 35mp1i 13 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3727, 36mpbird 256 . . . . 5 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)
3837ex 411 . . . 4 ((𝐶𝑉𝐷𝑉) → (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
3921, 38im2anan9 618 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)))
401, 4, 39sylc 65 . 2 (𝜑 → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
413fveq2i 6893 . . . . . . 7 (♯‘𝐹) = (♯‘⟨“𝐽𝐾𝐿”⟩)
42 s3len 14849 . . . . . . 7 (♯‘⟨“𝐽𝐾𝐿”⟩) = 3
4341, 42eqtri 2758 . . . . . 6 (♯‘𝐹) = 3
4443oveq2i 7422 . . . . 5 (0...(♯‘𝐹)) = (0...3)
45 fz0to3un2pr 13607 . . . . 5 (0...3) = ({0, 1} ∪ {2, 3})
4644, 45eqtri 2758 . . . 4 (0...(♯‘𝐹)) = ({0, 1} ∪ {2, 3})
4746raleqi 3321 . . 3 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉)
48 ralunb 4190 . . 3 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
4947, 48bitri 274 . 2 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
5040, 49sylibr 233 1 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  Vcvv 3472  cun 3945  {cpr 4629  cfv 6542  (class class class)co 7411  0cc0 11112  1c1 11113  2c2 12271  3c3 12272  ...cfz 13488  chash 14294  ⟨“cs3 14797  ⟨“cs4 14798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-concat 14525  df-s1 14550  df-s2 14803  df-s3 14804  df-s4 14805
This theorem is referenced by:  3wlkd  29690
  Copyright terms: Public domain W3C validator