Proof of Theorem 3wlkdlem4
Step | Hyp | Ref
| Expression |
1 | | 3wlkd.s |
. . 3
⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
2 | | 3wlkd.p |
. . . 4
⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
3 | | 3wlkd.f |
. . . 4
⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
4 | 2, 3, 1 | 3wlkdlem3 28426 |
. . 3
⊢ (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷))) |
5 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴) |
6 | 5 | eleq1d 2823 |
. . . . . . . 8
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) |
7 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵) |
8 | 7 | eleq1d 2823 |
. . . . . . . 8
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) |
9 | 6, 8 | anbi12d 630 |
. . . . . . 7
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
10 | 9 | biimparc 479 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)) |
11 | | c0ex 10900 |
. . . . . . . 8
⊢ 0 ∈
V |
12 | | 1ex 10902 |
. . . . . . . 8
⊢ 1 ∈
V |
13 | 11, 12 | pm3.2i 470 |
. . . . . . 7
⊢ (0 ∈
V ∧ 1 ∈ V) |
14 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) |
15 | 14 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉)) |
16 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) |
17 | 16 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = 1 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉)) |
18 | 15, 17 | ralprg 4627 |
. . . . . . 7
⊢ ((0
∈ V ∧ 1 ∈ V) → (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉))) |
19 | 13, 18 | mp1i 13 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉))) |
20 | 10, 19 | mpbird 256 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉) |
21 | 20 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉)) |
22 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶) |
23 | 22 | eleq1d 2823 |
. . . . . . . 8
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ 𝑉 ↔ 𝐶 ∈ 𝑉)) |
24 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷) |
25 | 24 | eleq1d 2823 |
. . . . . . . 8
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘3) ∈ 𝑉 ↔ 𝐷 ∈ 𝑉)) |
26 | 23, 25 | anbi12d 630 |
. . . . . . 7
⊢ (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉) ↔ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
27 | 26 | biimparc 479 |
. . . . . 6
⊢ (((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)) |
28 | | 2ex 11980 |
. . . . . . . 8
⊢ 2 ∈
V |
29 | | 3ex 11985 |
. . . . . . . 8
⊢ 3 ∈
V |
30 | 28, 29 | pm3.2i 470 |
. . . . . . 7
⊢ (2 ∈
V ∧ 3 ∈ V) |
31 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 2 → (𝑃‘𝑘) = (𝑃‘2)) |
32 | 31 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = 2 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉)) |
33 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 3 → (𝑃‘𝑘) = (𝑃‘3)) |
34 | 33 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = 3 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘3) ∈ 𝑉)) |
35 | 32, 34 | ralprg 4627 |
. . . . . . 7
⊢ ((2
∈ V ∧ 3 ∈ V) → (∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉))) |
36 | 30, 35 | mp1i 13 |
. . . . . 6
⊢ (((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉))) |
37 | 27, 36 | mpbird 256 |
. . . . 5
⊢ (((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉) |
38 | 37 | ex 412 |
. . . 4
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉)) |
39 | 21, 38 | im2anan9 619 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉))) |
40 | 1, 4, 39 | sylc 65 |
. 2
⊢ (𝜑 → (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉)) |
41 | 3 | fveq2i 6759 |
. . . . . . 7
⊢
(♯‘𝐹) =
(♯‘〈“𝐽𝐾𝐿”〉) |
42 | | s3len 14535 |
. . . . . . 7
⊢
(♯‘〈“𝐽𝐾𝐿”〉) = 3 |
43 | 41, 42 | eqtri 2766 |
. . . . . 6
⊢
(♯‘𝐹) =
3 |
44 | 43 | oveq2i 7266 |
. . . . 5
⊢
(0...(♯‘𝐹)) = (0...3) |
45 | | fz0to3un2pr 13287 |
. . . . 5
⊢ (0...3) =
({0, 1} ∪ {2, 3}) |
46 | 44, 45 | eqtri 2766 |
. . . 4
⊢
(0...(♯‘𝐹)) = ({0, 1} ∪ {2, 3}) |
47 | 46 | raleqi 3337 |
. . 3
⊢
(∀𝑘 ∈
(0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃‘𝑘) ∈ 𝑉) |
48 | | ralunb 4121 |
. . 3
⊢
(∀𝑘 ∈
({0, 1} ∪ {2, 3})(𝑃‘𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉)) |
49 | 47, 48 | bitri 274 |
. 2
⊢
(∀𝑘 ∈
(0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃‘𝑘) ∈ 𝑉)) |
50 | 40, 49 | sylibr 233 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |