MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcl Structured version   Visualization version   GIF version

Theorem tgcl 22454
Description: Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
tgcl (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)

Proof of Theorem tgcl
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑡 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4915 . . . . . . . 8 (𝑢 ⊆ (topGen‘𝐵) → 𝑢 (topGen‘𝐵))
21adantl 483 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) → 𝑢 (topGen‘𝐵))
3 unitg 22452 . . . . . . . 8 (𝐵 ∈ TopBases → (topGen‘𝐵) = 𝐵)
43adantr 482 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐵)
52, 4sseqtrd 4021 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) → 𝑢 𝐵)
6 eluni2 4911 . . . . . . . 8 (𝑥 𝑢 ↔ ∃𝑡𝑢 𝑥𝑡)
7 ssel2 3976 . . . . . . . . . . . 12 ((𝑢 ⊆ (topGen‘𝐵) ∧ 𝑡𝑢) → 𝑡 ∈ (topGen‘𝐵))
8 eltg2b 22444 . . . . . . . . . . . . . . 15 (𝐵 ∈ TopBases → (𝑡 ∈ (topGen‘𝐵) ↔ ∀𝑥𝑡𝑦𝐵 (𝑥𝑦𝑦𝑡)))
9 rsp 3245 . . . . . . . . . . . . . . 15 (∀𝑥𝑡𝑦𝐵 (𝑥𝑦𝑦𝑡) → (𝑥𝑡 → ∃𝑦𝐵 (𝑥𝑦𝑦𝑡)))
108, 9syl6bi 253 . . . . . . . . . . . . . 14 (𝐵 ∈ TopBases → (𝑡 ∈ (topGen‘𝐵) → (𝑥𝑡 → ∃𝑦𝐵 (𝑥𝑦𝑦𝑡))))
1110imp31 419 . . . . . . . . . . . . 13 (((𝐵 ∈ TopBases ∧ 𝑡 ∈ (topGen‘𝐵)) ∧ 𝑥𝑡) → ∃𝑦𝐵 (𝑥𝑦𝑦𝑡))
1211an32s 651 . . . . . . . . . . . 12 (((𝐵 ∈ TopBases ∧ 𝑥𝑡) ∧ 𝑡 ∈ (topGen‘𝐵)) → ∃𝑦𝐵 (𝑥𝑦𝑦𝑡))
137, 12sylan2 594 . . . . . . . . . . 11 (((𝐵 ∈ TopBases ∧ 𝑥𝑡) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑡𝑢)) → ∃𝑦𝐵 (𝑥𝑦𝑦𝑡))
1413an42s 660 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) ∧ (𝑡𝑢𝑥𝑡)) → ∃𝑦𝐵 (𝑥𝑦𝑦𝑡))
15 elssuni 4940 . . . . . . . . . . . . . 14 (𝑡𝑢𝑡 𝑢)
16 sstr2 3988 . . . . . . . . . . . . . 14 (𝑦𝑡 → (𝑡 𝑢𝑦 𝑢))
1715, 16syl5com 31 . . . . . . . . . . . . 13 (𝑡𝑢 → (𝑦𝑡𝑦 𝑢))
1817anim2d 613 . . . . . . . . . . . 12 (𝑡𝑢 → ((𝑥𝑦𝑦𝑡) → (𝑥𝑦𝑦 𝑢)))
1918reximdv 3171 . . . . . . . . . . 11 (𝑡𝑢 → (∃𝑦𝐵 (𝑥𝑦𝑦𝑡) → ∃𝑦𝐵 (𝑥𝑦𝑦 𝑢)))
2019ad2antrl 727 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) ∧ (𝑡𝑢𝑥𝑡)) → (∃𝑦𝐵 (𝑥𝑦𝑦𝑡) → ∃𝑦𝐵 (𝑥𝑦𝑦 𝑢)))
2114, 20mpd 15 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) ∧ (𝑡𝑢𝑥𝑡)) → ∃𝑦𝐵 (𝑥𝑦𝑦 𝑢))
2221rexlimdvaa 3157 . . . . . . . 8 ((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) → (∃𝑡𝑢 𝑥𝑡 → ∃𝑦𝐵 (𝑥𝑦𝑦 𝑢)))
236, 22biimtrid 241 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) → (𝑥 𝑢 → ∃𝑦𝐵 (𝑥𝑦𝑦 𝑢)))
2423ralrimiv 3146 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) → ∀𝑥 𝑢𝑦𝐵 (𝑥𝑦𝑦 𝑢))
255, 24jca 513 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝑢 ⊆ (topGen‘𝐵)) → ( 𝑢 𝐵 ∧ ∀𝑥 𝑢𝑦𝐵 (𝑥𝑦𝑦 𝑢)))
2625ex 414 . . . 4 (𝐵 ∈ TopBases → (𝑢 ⊆ (topGen‘𝐵) → ( 𝑢 𝐵 ∧ ∀𝑥 𝑢𝑦𝐵 (𝑥𝑦𝑦 𝑢))))
27 eltg2 22443 . . . 4 (𝐵 ∈ TopBases → ( 𝑢 ∈ (topGen‘𝐵) ↔ ( 𝑢 𝐵 ∧ ∀𝑥 𝑢𝑦𝐵 (𝑥𝑦𝑦 𝑢))))
2826, 27sylibrd 259 . . 3 (𝐵 ∈ TopBases → (𝑢 ⊆ (topGen‘𝐵) → 𝑢 ∈ (topGen‘𝐵)))
2928alrimiv 1931 . 2 (𝐵 ∈ TopBases → ∀𝑢(𝑢 ⊆ (topGen‘𝐵) → 𝑢 ∈ (topGen‘𝐵)))
30 inss1 4227 . . . . . . . 8 (𝑢𝑣) ⊆ 𝑢
31 tg1 22449 . . . . . . . 8 (𝑢 ∈ (topGen‘𝐵) → 𝑢 𝐵)
3230, 31sstrid 3992 . . . . . . 7 (𝑢 ∈ (topGen‘𝐵) → (𝑢𝑣) ⊆ 𝐵)
3332ad2antrl 727 . . . . . 6 ((𝐵 ∈ TopBases ∧ (𝑢 ∈ (topGen‘𝐵) ∧ 𝑣 ∈ (topGen‘𝐵))) → (𝑢𝑣) ⊆ 𝐵)
34 eltg2 22443 . . . . . . . . . . . . 13 (𝐵 ∈ TopBases → (𝑢 ∈ (topGen‘𝐵) ↔ (𝑢 𝐵 ∧ ∀𝑥𝑢𝑧𝐵 (𝑥𝑧𝑧𝑢))))
3534simplbda 501 . . . . . . . . . . . 12 ((𝐵 ∈ TopBases ∧ 𝑢 ∈ (topGen‘𝐵)) → ∀𝑥𝑢𝑧𝐵 (𝑥𝑧𝑧𝑢))
36 rsp 3245 . . . . . . . . . . . 12 (∀𝑥𝑢𝑧𝐵 (𝑥𝑧𝑧𝑢) → (𝑥𝑢 → ∃𝑧𝐵 (𝑥𝑧𝑧𝑢)))
3735, 36syl 17 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝑢 ∈ (topGen‘𝐵)) → (𝑥𝑢 → ∃𝑧𝐵 (𝑥𝑧𝑧𝑢)))
38 eltg2 22443 . . . . . . . . . . . . 13 (𝐵 ∈ TopBases → (𝑣 ∈ (topGen‘𝐵) ↔ (𝑣 𝐵 ∧ ∀𝑥𝑣𝑤𝐵 (𝑥𝑤𝑤𝑣))))
3938simplbda 501 . . . . . . . . . . . 12 ((𝐵 ∈ TopBases ∧ 𝑣 ∈ (topGen‘𝐵)) → ∀𝑥𝑣𝑤𝐵 (𝑥𝑤𝑤𝑣))
40 rsp 3245 . . . . . . . . . . . 12 (∀𝑥𝑣𝑤𝐵 (𝑥𝑤𝑤𝑣) → (𝑥𝑣 → ∃𝑤𝐵 (𝑥𝑤𝑤𝑣)))
4139, 40syl 17 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝑣 ∈ (topGen‘𝐵)) → (𝑥𝑣 → ∃𝑤𝐵 (𝑥𝑤𝑤𝑣)))
4237, 41im2anan9 621 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑢 ∈ (topGen‘𝐵)) ∧ (𝐵 ∈ TopBases ∧ 𝑣 ∈ (topGen‘𝐵))) → ((𝑥𝑢𝑥𝑣) → (∃𝑧𝐵 (𝑥𝑧𝑧𝑢) ∧ ∃𝑤𝐵 (𝑥𝑤𝑤𝑣))))
43 elin 3963 . . . . . . . . . 10 (𝑥 ∈ (𝑢𝑣) ↔ (𝑥𝑢𝑥𝑣))
44 reeanv 3227 . . . . . . . . . 10 (∃𝑧𝐵𝑤𝐵 ((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣)) ↔ (∃𝑧𝐵 (𝑥𝑧𝑧𝑢) ∧ ∃𝑤𝐵 (𝑥𝑤𝑤𝑣)))
4542, 43, 443imtr4g 296 . . . . . . . . 9 (((𝐵 ∈ TopBases ∧ 𝑢 ∈ (topGen‘𝐵)) ∧ (𝐵 ∈ TopBases ∧ 𝑣 ∈ (topGen‘𝐵))) → (𝑥 ∈ (𝑢𝑣) → ∃𝑧𝐵𝑤𝐵 ((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣))))
4645anandis 677 . . . . . . . 8 ((𝐵 ∈ TopBases ∧ (𝑢 ∈ (topGen‘𝐵) ∧ 𝑣 ∈ (topGen‘𝐵))) → (𝑥 ∈ (𝑢𝑣) → ∃𝑧𝐵𝑤𝐵 ((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣))))
47 elin 3963 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑧𝑤) ↔ (𝑥𝑧𝑥𝑤))
4847biimpri 227 . . . . . . . . . . . . . . . 16 ((𝑥𝑧𝑥𝑤) → 𝑥 ∈ (𝑧𝑤))
49 ss2in 4235 . . . . . . . . . . . . . . . 16 ((𝑧𝑢𝑤𝑣) → (𝑧𝑤) ⊆ (𝑢𝑣))
5048, 49anim12i 614 . . . . . . . . . . . . . . 15 (((𝑥𝑧𝑥𝑤) ∧ (𝑧𝑢𝑤𝑣)) → (𝑥 ∈ (𝑧𝑤) ∧ (𝑧𝑤) ⊆ (𝑢𝑣)))
5150an4s 659 . . . . . . . . . . . . . 14 (((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣)) → (𝑥 ∈ (𝑧𝑤) ∧ (𝑧𝑤) ⊆ (𝑢𝑣)))
52 basis2 22436 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ TopBases ∧ 𝑧𝐵) ∧ (𝑤𝐵𝑥 ∈ (𝑧𝑤))) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑧𝑤)))
5352adantllr 718 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ TopBases ∧ 𝑥 ∈ (𝑢𝑣)) ∧ 𝑧𝐵) ∧ (𝑤𝐵𝑥 ∈ (𝑧𝑤))) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑧𝑤)))
5453adantrrr 724 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝑥 ∈ (𝑢𝑣)) ∧ 𝑧𝐵) ∧ (𝑤𝐵 ∧ (𝑥 ∈ (𝑧𝑤) ∧ (𝑧𝑤) ⊆ (𝑢𝑣)))) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑧𝑤)))
55 sstr2 3988 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ⊆ (𝑧𝑤) → ((𝑧𝑤) ⊆ (𝑢𝑣) → 𝑡 ⊆ (𝑢𝑣)))
5655com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝑤) ⊆ (𝑢𝑣) → (𝑡 ⊆ (𝑧𝑤) → 𝑡 ⊆ (𝑢𝑣)))
5756anim2d 613 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑤) ⊆ (𝑢𝑣) → ((𝑥𝑡𝑡 ⊆ (𝑧𝑤)) → (𝑥𝑡𝑡 ⊆ (𝑢𝑣))))
5857reximdv 3171 . . . . . . . . . . . . . . . . 17 ((𝑧𝑤) ⊆ (𝑢𝑣) → (∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑧𝑤)) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣))))
5958adantl 483 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑧𝑤) ∧ (𝑧𝑤) ⊆ (𝑢𝑣)) → (∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑧𝑤)) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣))))
6059ad2antll 728 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝑥 ∈ (𝑢𝑣)) ∧ 𝑧𝐵) ∧ (𝑤𝐵 ∧ (𝑥 ∈ (𝑧𝑤) ∧ (𝑧𝑤) ⊆ (𝑢𝑣)))) → (∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑧𝑤)) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣))))
6154, 60mpd 15 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝑥 ∈ (𝑢𝑣)) ∧ 𝑧𝐵) ∧ (𝑤𝐵 ∧ (𝑥 ∈ (𝑧𝑤) ∧ (𝑧𝑤) ⊆ (𝑢𝑣)))) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣)))
6251, 61sylanr2 682 . . . . . . . . . . . . 13 ((((𝐵 ∈ TopBases ∧ 𝑥 ∈ (𝑢𝑣)) ∧ 𝑧𝐵) ∧ (𝑤𝐵 ∧ ((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣)))) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣)))
6362rexlimdvaa 3157 . . . . . . . . . . . 12 (((𝐵 ∈ TopBases ∧ 𝑥 ∈ (𝑢𝑣)) ∧ 𝑧𝐵) → (∃𝑤𝐵 ((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣)) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣))))
6463rexlimdva 3156 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝑥 ∈ (𝑢𝑣)) → (∃𝑧𝐵𝑤𝐵 ((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣)) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣))))
6564ex 414 . . . . . . . . . 10 (𝐵 ∈ TopBases → (𝑥 ∈ (𝑢𝑣) → (∃𝑧𝐵𝑤𝐵 ((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣)) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣)))))
6665a2d 29 . . . . . . . . 9 (𝐵 ∈ TopBases → ((𝑥 ∈ (𝑢𝑣) → ∃𝑧𝐵𝑤𝐵 ((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣))) → (𝑥 ∈ (𝑢𝑣) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣)))))
6766imp 408 . . . . . . . 8 ((𝐵 ∈ TopBases ∧ (𝑥 ∈ (𝑢𝑣) → ∃𝑧𝐵𝑤𝐵 ((𝑥𝑧𝑧𝑢) ∧ (𝑥𝑤𝑤𝑣)))) → (𝑥 ∈ (𝑢𝑣) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣))))
6846, 67syldan 592 . . . . . . 7 ((𝐵 ∈ TopBases ∧ (𝑢 ∈ (topGen‘𝐵) ∧ 𝑣 ∈ (topGen‘𝐵))) → (𝑥 ∈ (𝑢𝑣) → ∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣))))
6968ralrimiv 3146 . . . . . 6 ((𝐵 ∈ TopBases ∧ (𝑢 ∈ (topGen‘𝐵) ∧ 𝑣 ∈ (topGen‘𝐵))) → ∀𝑥 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣)))
7033, 69jca 513 . . . . 5 ((𝐵 ∈ TopBases ∧ (𝑢 ∈ (topGen‘𝐵) ∧ 𝑣 ∈ (topGen‘𝐵))) → ((𝑢𝑣) ⊆ 𝐵 ∧ ∀𝑥 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣))))
7170ex 414 . . . 4 (𝐵 ∈ TopBases → ((𝑢 ∈ (topGen‘𝐵) ∧ 𝑣 ∈ (topGen‘𝐵)) → ((𝑢𝑣) ⊆ 𝐵 ∧ ∀𝑥 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣)))))
72 eltg2 22443 . . . 4 (𝐵 ∈ TopBases → ((𝑢𝑣) ∈ (topGen‘𝐵) ↔ ((𝑢𝑣) ⊆ 𝐵 ∧ ∀𝑥 ∈ (𝑢𝑣)∃𝑡𝐵 (𝑥𝑡𝑡 ⊆ (𝑢𝑣)))))
7371, 72sylibrd 259 . . 3 (𝐵 ∈ TopBases → ((𝑢 ∈ (topGen‘𝐵) ∧ 𝑣 ∈ (topGen‘𝐵)) → (𝑢𝑣) ∈ (topGen‘𝐵)))
7473ralrimivv 3199 . 2 (𝐵 ∈ TopBases → ∀𝑢 ∈ (topGen‘𝐵)∀𝑣 ∈ (topGen‘𝐵)(𝑢𝑣) ∈ (topGen‘𝐵))
75 fvex 6901 . . 3 (topGen‘𝐵) ∈ V
76 istopg 22379 . . 3 ((topGen‘𝐵) ∈ V → ((topGen‘𝐵) ∈ Top ↔ (∀𝑢(𝑢 ⊆ (topGen‘𝐵) → 𝑢 ∈ (topGen‘𝐵)) ∧ ∀𝑢 ∈ (topGen‘𝐵)∀𝑣 ∈ (topGen‘𝐵)(𝑢𝑣) ∈ (topGen‘𝐵))))
7775, 76ax-mp 5 . 2 ((topGen‘𝐵) ∈ Top ↔ (∀𝑢(𝑢 ⊆ (topGen‘𝐵) → 𝑢 ∈ (topGen‘𝐵)) ∧ ∀𝑢 ∈ (topGen‘𝐵)∀𝑣 ∈ (topGen‘𝐵)(𝑢𝑣) ∈ (topGen‘𝐵)))
7829, 74, 77sylanbrc 584 1 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  cin 3946  wss 3947   cuni 4907  cfv 6540  topGenctg 17379  Topctop 22377  TopBasesctb 22430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-topgen 17385  df-top 22378  df-bases 22431
This theorem is referenced by:  tgclb  22455  tgtopon  22456  bastop  22466  elcls3  22569  resttop  22646  leordtval2  22698  tgcmp  22887  2ndctop  22933  2ndcsb  22935  2ndcsep  22945  txtop  23055  pttop  23068  xkotop  23074  alexsubALT  23537  retop  24260  onsuctop  35256  kelac2lem  41739
  Copyright terms: Public domain W3C validator