Proof of Theorem icorempo
| Step | Hyp | Ref
| Expression |
| 1 | | icorempo.1 |
. 2
⊢ 𝐹 = ([,) ↾ (ℝ ×
ℝ)) |
| 2 | | df-ico 13373 |
. . . 4
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 3 | 2 | reseq1i 5967 |
. . 3
⊢ ([,)
↾ (ℝ × ℝ)) = ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ↾ (ℝ ×
ℝ)) |
| 4 | | ressxr 11284 |
. . . 4
⊢ ℝ
⊆ ℝ* |
| 5 | | resmpo 7532 |
. . . 4
⊢ ((ℝ
⊆ ℝ* ∧ ℝ ⊆ ℝ*) →
((𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) =
(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)})) |
| 6 | 4, 4, 5 | mp2an 692 |
. . 3
⊢ ((𝑥 ∈ ℝ*,
𝑦 ∈
ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) =
(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 7 | 3, 6 | eqtri 2759 |
. 2
⊢ ([,)
↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 8 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ ℝ ∧ 𝑦 ∈
ℝ) |
| 9 | | nfrab1 3441 |
. . . 4
⊢
Ⅎ𝑧{𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
| 10 | | nfrab1 3441 |
. . . 4
⊢
Ⅎ𝑧{𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
| 11 | | rabid 3442 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ↔ (𝑧 ∈ ℝ* ∧ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦))) |
| 12 | | rexr 11286 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
| 13 | | nltmnf 13150 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ*
→ ¬ 𝑥 <
-∞) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ → ¬
𝑥 <
-∞) |
| 15 | | renemnf 11289 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) |
| 16 | 15 | neneqd 2938 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ → ¬
𝑥 =
-∞) |
| 17 | 14, 16 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ → (¬
𝑥 < -∞ ∧ ¬
𝑥 =
-∞)) |
| 18 | | pm4.56 990 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑥 < -∞ ∧ ¬
𝑥 = -∞) ↔ ¬
(𝑥 < -∞ ∨ 𝑥 = -∞)) |
| 19 | 17, 18 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → ¬
(𝑥 < -∞ ∨ 𝑥 = -∞)) |
| 20 | | mnfxr 11297 |
. . . . . . . . . . . . . . 15
⊢ -∞
∈ ℝ* |
| 21 | | xrleloe 13165 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ*
∧ -∞ ∈ ℝ*) → (𝑥 ≤ -∞ ↔ (𝑥 < -∞ ∨ 𝑥 = -∞))) |
| 22 | 12, 20, 21 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → (𝑥 ≤ -∞ ↔ (𝑥 < -∞ ∨ 𝑥 = -∞))) |
| 23 | 19, 22 | mtbird 325 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → ¬
𝑥 ≤
-∞) |
| 24 | | breq2 5128 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = -∞ → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ -∞)) |
| 25 | 24 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑧 = -∞ → (¬ 𝑥 ≤ 𝑧 ↔ ¬ 𝑥 ≤ -∞)) |
| 26 | 23, 25 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑧 = -∞ → ¬ 𝑥 ≤ 𝑧)) |
| 27 | 26 | con2d 134 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → (𝑥 ≤ 𝑧 → ¬ 𝑧 = -∞)) |
| 28 | | rexr 11286 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
| 29 | | pnfnlt 13149 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ ¬ +∞ < 𝑦) |
| 30 | | breq1 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = +∞ → (𝑧 < 𝑦 ↔ +∞ < 𝑦)) |
| 31 | 30 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = +∞ → (¬ 𝑧 < 𝑦 ↔ ¬ +∞ < 𝑦)) |
| 32 | 29, 31 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ (𝑧 = +∞ →
¬ 𝑧 < 𝑦)) |
| 33 | 32 | con2d 134 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ*
→ (𝑧 < 𝑦 → ¬ 𝑧 = +∞)) |
| 34 | 28, 33 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → (𝑧 < 𝑦 → ¬ 𝑧 = +∞)) |
| 35 | 27, 34 | im2anan9 620 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) → (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞))) |
| 36 | 35 | anim2d 612 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ*
∧ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)) → (𝑧 ∈ ℝ* ∧ (¬
𝑧 = -∞ ∧ ¬
𝑧 =
+∞)))) |
| 37 | | renepnf 11288 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℝ → 𝑧 ≠ +∞) |
| 38 | 37 | neneqd 2938 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℝ → ¬
𝑧 =
+∞) |
| 39 | 38 | pm4.71i 559 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ ¬
𝑧 =
+∞)) |
| 40 | | xrnemnf 13138 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ 𝑧 ≠ -∞)
↔ (𝑧 ∈ ℝ
∨ 𝑧 =
+∞)) |
| 41 | 40 | anbi1i 624 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℝ*
∧ 𝑧 ≠ -∞)
∧ ¬ 𝑧 = +∞)
↔ ((𝑧 ∈ ℝ
∨ 𝑧 = +∞) ∧
¬ 𝑧 =
+∞)) |
| 42 | | df-ne 2934 |
. . . . . . . . . . . . 13
⊢ (𝑧 ≠ -∞ ↔ ¬
𝑧 =
-∞) |
| 43 | 42 | anbi2i 623 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ 𝑧 ≠ -∞)
↔ (𝑧 ∈
ℝ* ∧ ¬ 𝑧 = -∞)) |
| 44 | 43 | anbi1i 624 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℝ*
∧ 𝑧 ≠ -∞)
∧ ¬ 𝑧 = +∞)
↔ ((𝑧 ∈
ℝ* ∧ ¬ 𝑧 = -∞) ∧ ¬ 𝑧 = +∞)) |
| 45 | | pm5.61 1002 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∧ ¬ 𝑧 = +∞) ↔ (𝑧 ∈ ℝ ∧ ¬
𝑧 =
+∞)) |
| 46 | 41, 44, 45 | 3bitr3i 301 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ ℝ*
∧ ¬ 𝑧 = -∞)
∧ ¬ 𝑧 = +∞)
↔ (𝑧 ∈ ℝ
∧ ¬ 𝑧 =
+∞)) |
| 47 | | anass 468 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ ℝ*
∧ ¬ 𝑧 = -∞)
∧ ¬ 𝑧 = +∞)
↔ (𝑧 ∈
ℝ* ∧ (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞))) |
| 48 | 39, 46, 47 | 3bitr2ri 300 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ*
∧ (¬ 𝑧 = -∞
∧ ¬ 𝑧 = +∞))
↔ 𝑧 ∈
ℝ) |
| 49 | 36, 48 | imbitrdi 251 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ*
∧ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)) → 𝑧 ∈ ℝ)) |
| 50 | 11, 49 | biimtrid 242 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → 𝑧 ∈ ℝ)) |
| 51 | 11 | simprbi 496 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)) |
| 52 | 51 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦))) |
| 53 | 50, 52 | jcad 512 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → (𝑧 ∈ ℝ ∧ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)))) |
| 54 | | rabid 3442 |
. . . . . 6
⊢ (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ↔ (𝑧 ∈ ℝ ∧ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦))) |
| 55 | 53, 54 | imbitrrdi 252 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)})) |
| 56 | | rabss2 4058 |
. . . . . . 7
⊢ (ℝ
⊆ ℝ* → {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 57 | 4, 56 | ax-mp 5 |
. . . . . 6
⊢ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
| 58 | 57 | sseli 3959 |
. . . . 5
⊢ (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} → 𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 59 | 55, 58 | impbid1 225 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ↔ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)})) |
| 60 | 8, 9, 10, 59 | eqrd 3983 |
. . 3
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 61 | 60 | mpoeq3ia 7490 |
. 2
⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 62 | 1, 7, 61 | 3eqtri 2763 |
1
⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |