Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icorempo Structured version   Visualization version   GIF version

Theorem icorempo 34768
Description: Closed-below, open-above intervals of reals. (Contributed by ML, 26-Jul-2020.)
Hypothesis
Ref Expression
icorempo.1 𝐹 = ([,) ↾ (ℝ × ℝ))
Assertion
Ref Expression
icorempo 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem icorempo
StepHypRef Expression
1 icorempo.1 . 2 𝐹 = ([,) ↾ (ℝ × ℝ))
2 df-ico 12732 . . . 4 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
32reseq1i 5814 . . 3 ([,) ↾ (ℝ × ℝ)) = ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ))
4 ressxr 10674 . . . 4 ℝ ⊆ ℝ*
5 resmpo 7251 . . . 4 ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
64, 4, 5mp2an 691 . . 3 ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
73, 6eqtri 2821 . 2 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
8 nfv 1915 . . . 4 𝑧(𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)
9 nfrab1 3337 . . . 4 𝑧{𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}
10 nfrab1 3337 . . . 4 𝑧{𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}
11 rabid 3331 . . . . . . . 8 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ (𝑧 ∈ ℝ* ∧ (𝑥𝑧𝑧 < 𝑦)))
12 rexr 10676 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
13 nltmnf 12512 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
1412, 13syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → ¬ 𝑥 < -∞)
15 renemnf 10679 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ≠ -∞)
1615neneqd 2992 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → ¬ 𝑥 = -∞)
1714, 16jca 515 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (¬ 𝑥 < -∞ ∧ ¬ 𝑥 = -∞))
18 pm4.56 986 . . . . . . . . . . . . . . 15 ((¬ 𝑥 < -∞ ∧ ¬ 𝑥 = -∞) ↔ ¬ (𝑥 < -∞ ∨ 𝑥 = -∞))
1917, 18sylib 221 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ¬ (𝑥 < -∞ ∨ 𝑥 = -∞))
20 mnfxr 10687 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
21 xrleloe 12525 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝑥 ≤ -∞ ↔ (𝑥 < -∞ ∨ 𝑥 = -∞)))
2212, 20, 21sylancl 589 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 ≤ -∞ ↔ (𝑥 < -∞ ∨ 𝑥 = -∞)))
2319, 22mtbird 328 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ¬ 𝑥 ≤ -∞)
24 breq2 5034 . . . . . . . . . . . . . 14 (𝑧 = -∞ → (𝑥𝑧𝑥 ≤ -∞))
2524notbid 321 . . . . . . . . . . . . 13 (𝑧 = -∞ → (¬ 𝑥𝑧 ↔ ¬ 𝑥 ≤ -∞))
2623, 25syl5ibrcom 250 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑧 = -∞ → ¬ 𝑥𝑧))
2726con2d 136 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥𝑧 → ¬ 𝑧 = -∞))
28 rexr 10676 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
29 pnfnlt 12511 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
30 breq1 5033 . . . . . . . . . . . . . . 15 (𝑧 = +∞ → (𝑧 < 𝑦 ↔ +∞ < 𝑦))
3130notbid 321 . . . . . . . . . . . . . 14 (𝑧 = +∞ → (¬ 𝑧 < 𝑦 ↔ ¬ +∞ < 𝑦))
3229, 31syl5ibrcom 250 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (𝑧 = +∞ → ¬ 𝑧 < 𝑦))
3332con2d 136 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑧 < 𝑦 → ¬ 𝑧 = +∞))
3428, 33syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (𝑧 < 𝑦 → ¬ 𝑧 = +∞))
3527, 34im2anan9 622 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥𝑧𝑧 < 𝑦) → (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞)))
3635anim2d 614 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑥𝑧𝑧 < 𝑦)) → (𝑧 ∈ ℝ* ∧ (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞))))
37 renepnf 10678 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → 𝑧 ≠ +∞)
3837neneqd 2992 . . . . . . . . . . 11 (𝑧 ∈ ℝ → ¬ 𝑧 = +∞)
3938pm4.71i 563 . . . . . . . . . 10 (𝑧 ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ ¬ 𝑧 = +∞))
40 xrnemnf 12500 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ*𝑧 ≠ -∞) ↔ (𝑧 ∈ ℝ ∨ 𝑧 = +∞))
4140anbi1i 626 . . . . . . . . . . 11 (((𝑧 ∈ ℝ*𝑧 ≠ -∞) ∧ ¬ 𝑧 = +∞) ↔ ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∧ ¬ 𝑧 = +∞))
42 df-ne 2988 . . . . . . . . . . . . 13 (𝑧 ≠ -∞ ↔ ¬ 𝑧 = -∞)
4342anbi2i 625 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ*𝑧 ≠ -∞) ↔ (𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞))
4443anbi1i 626 . . . . . . . . . . 11 (((𝑧 ∈ ℝ*𝑧 ≠ -∞) ∧ ¬ 𝑧 = +∞) ↔ ((𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞) ∧ ¬ 𝑧 = +∞))
45 pm5.61 998 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∧ ¬ 𝑧 = +∞) ↔ (𝑧 ∈ ℝ ∧ ¬ 𝑧 = +∞))
4641, 44, 453bitr3i 304 . . . . . . . . . 10 (((𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞) ∧ ¬ 𝑧 = +∞) ↔ (𝑧 ∈ ℝ ∧ ¬ 𝑧 = +∞))
47 anass 472 . . . . . . . . . 10 (((𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞) ∧ ¬ 𝑧 = +∞) ↔ (𝑧 ∈ ℝ* ∧ (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞)))
4839, 46, 473bitr2ri 303 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞)) ↔ 𝑧 ∈ ℝ)
4936, 48syl6ib 254 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑥𝑧𝑧 < 𝑦)) → 𝑧 ∈ ℝ))
5011, 49syl5bi 245 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑧 ∈ ℝ))
5111simprbi 500 . . . . . . . 8 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑥𝑧𝑧 < 𝑦))
5251a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑥𝑧𝑧 < 𝑦)))
5350, 52jcad 516 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑦))))
54 rabid 3331 . . . . . 6 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑦)))
5553, 54syl6ibr 255 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}))
56 rabss2 4005 . . . . . . 7 (ℝ ⊆ ℝ* → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
574, 56ax-mp 5 . . . . . 6 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}
5857sseli 3911 . . . . 5 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
5955, 58impbid1 228 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}))
608, 9, 10, 59eqrd 3934 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
6160mpoeq3ia 7211 . 2 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
621, 7, 613eqtri 2825 1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  {crab 3110  wss 3881   class class class wbr 5030   × cxp 5517  cres 5521  cmpo 7137  cr 10525  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  [,)cico 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-ico 12732
This theorem is referenced by:  icoreresf  34769  icoreval  34770
  Copyright terms: Public domain W3C validator