MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrpredgv Structured version   Visualization version   GIF version

Theorem upgrpredgv 29117
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgrpredgv ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))

Proof of Theorem upgrpredgv
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2upgredg 29115 . . 3 ((𝐺 ∈ UPGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
433adant2 1131 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
5 preq12bg 4802 . . . . 5 (((𝑀𝑈𝑁𝑊) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
653ad2antl2 1187 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
7 eleq1 2819 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚𝑉𝑀𝑉))
87eqcoms 2739 . . . . . . . . 9 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
98biimpd 229 . . . . . . . 8 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
10 eleq1 2819 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑉𝑁𝑉))
1110eqcoms 2739 . . . . . . . . 9 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
1211biimpd 229 . . . . . . . 8 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
139, 12im2anan9 620 . . . . . . 7 ((𝑀 = 𝑚𝑁 = 𝑛) → ((𝑚𝑉𝑛𝑉) → (𝑀𝑉𝑁𝑉)))
1413com12 32 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑚𝑁 = 𝑛) → (𝑀𝑉𝑁𝑉)))
15 eleq1 2819 . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝑛𝑉𝑀𝑉))
1615eqcoms 2739 . . . . . . . . . 10 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
1716biimpd 229 . . . . . . . . 9 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
18 eleq1 2819 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑚𝑉𝑁𝑉))
1918eqcoms 2739 . . . . . . . . . 10 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2019biimpd 229 . . . . . . . . 9 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2117, 20im2anan9 620 . . . . . . . 8 ((𝑀 = 𝑛𝑁 = 𝑚) → ((𝑛𝑉𝑚𝑉) → (𝑀𝑉𝑁𝑉)))
2221com12 32 . . . . . . 7 ((𝑛𝑉𝑚𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2322ancoms 458 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2414, 23jaod 859 . . . . 5 ((𝑚𝑉𝑛𝑉) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
2524adantl 481 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
266, 25sylbid 240 . . 3 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
2726rexlimdvva 3189 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
284, 27mpd 15 1 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {cpr 4575  cfv 6481  Vtxcvtx 28974  Edgcedg 29025  UPGraphcupgr 29058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-edg 29026  df-upgr 29060
This theorem is referenced by:  grlimprclnbgrvtx  48038  grlimgredgex  48039
  Copyright terms: Public domain W3C validator