![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrpredgv | Structured version Visualization version GIF version |
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgrpredgv | ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upgredg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | upgredg 29174 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛}) |
4 | 3 | 3adant2 1131 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛}) |
5 | preq12bg 4878 | . . . . 5 ⊢ (((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)))) | |
6 | 5 | 3ad2antl2 1186 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)))) |
7 | eleq1 2832 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) | |
8 | 7 | eqcoms 2748 | . . . . . . . . 9 ⊢ (𝑀 = 𝑚 → (𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) |
9 | 8 | biimpd 229 | . . . . . . . 8 ⊢ (𝑀 = 𝑚 → (𝑚 ∈ 𝑉 → 𝑀 ∈ 𝑉)) |
10 | eleq1 2832 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
11 | 10 | eqcoms 2748 | . . . . . . . . 9 ⊢ (𝑁 = 𝑛 → (𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
12 | 11 | biimpd 229 | . . . . . . . 8 ⊢ (𝑁 = 𝑛 → (𝑛 ∈ 𝑉 → 𝑁 ∈ 𝑉)) |
13 | 9, 12 | im2anan9 619 | . . . . . . 7 ⊢ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) → ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
14 | 13 | com12 32 | . . . . . 6 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
15 | eleq1 2832 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑀 → (𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) | |
16 | 15 | eqcoms 2748 | . . . . . . . . . 10 ⊢ (𝑀 = 𝑛 → (𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) |
17 | 16 | biimpd 229 | . . . . . . . . 9 ⊢ (𝑀 = 𝑛 → (𝑛 ∈ 𝑉 → 𝑀 ∈ 𝑉)) |
18 | eleq1 2832 | . . . . . . . . . . 11 ⊢ (𝑚 = 𝑁 → (𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
19 | 18 | eqcoms 2748 | . . . . . . . . . 10 ⊢ (𝑁 = 𝑚 → (𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
20 | 19 | biimpd 229 | . . . . . . . . 9 ⊢ (𝑁 = 𝑚 → (𝑚 ∈ 𝑉 → 𝑁 ∈ 𝑉)) |
21 | 17, 20 | im2anan9 619 | . . . . . . . 8 ⊢ ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
22 | 21 | com12 32 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
23 | 22 | ancoms 458 | . . . . . 6 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
24 | 14, 23 | jaod 858 | . . . . 5 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
25 | 24 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
26 | 6, 25 | sylbid 240 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
27 | 26 | rexlimdvva 3219 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
28 | 4, 27 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {cpr 4650 ‘cfv 6575 Vtxcvtx 29033 Edgcedg 29084 UPGraphcupgr 29117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-oadd 8528 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-dju 9972 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-n0 12556 df-xnn0 12628 df-z 12642 df-uz 12906 df-fz 13570 df-hash 14382 df-edg 29085 df-upgr 29119 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |