MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrpredgv Structured version   Visualization version   GIF version

Theorem upgrpredgv 26928
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgrpredgv ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))

Proof of Theorem upgrpredgv
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2upgredg 26926 . . 3 ((𝐺 ∈ UPGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
433adant2 1128 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
5 preq12bg 4768 . . . . 5 (((𝑀𝑈𝑁𝑊) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
653ad2antl2 1183 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
7 eleq1 2903 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚𝑉𝑀𝑉))
87eqcoms 2832 . . . . . . . . 9 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
98biimpd 232 . . . . . . . 8 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
10 eleq1 2903 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑉𝑁𝑉))
1110eqcoms 2832 . . . . . . . . 9 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
1211biimpd 232 . . . . . . . 8 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
139, 12im2anan9 622 . . . . . . 7 ((𝑀 = 𝑚𝑁 = 𝑛) → ((𝑚𝑉𝑛𝑉) → (𝑀𝑉𝑁𝑉)))
1413com12 32 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑚𝑁 = 𝑛) → (𝑀𝑉𝑁𝑉)))
15 eleq1 2903 . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝑛𝑉𝑀𝑉))
1615eqcoms 2832 . . . . . . . . . 10 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
1716biimpd 232 . . . . . . . . 9 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
18 eleq1 2903 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑚𝑉𝑁𝑉))
1918eqcoms 2832 . . . . . . . . . 10 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2019biimpd 232 . . . . . . . . 9 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2117, 20im2anan9 622 . . . . . . . 8 ((𝑀 = 𝑛𝑁 = 𝑚) → ((𝑛𝑉𝑚𝑉) → (𝑀𝑉𝑁𝑉)))
2221com12 32 . . . . . . 7 ((𝑛𝑉𝑚𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2322ancoms 462 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2414, 23jaod 856 . . . . 5 ((𝑚𝑉𝑛𝑉) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
2524adantl 485 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
266, 25sylbid 243 . . 3 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
2726rexlimdvva 3287 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
284, 27mpd 15 1 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wrex 3134  {cpr 4551  cfv 6343  Vtxcvtx 26785  Edgcedg 26836  UPGraphcupgr 26869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-dju 9321  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-n0 11891  df-xnn0 11961  df-z 11975  df-uz 12237  df-fz 12891  df-hash 13692  df-edg 26837  df-upgr 26871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator