![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrpredgv | Structured version Visualization version GIF version |
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgrpredgv | ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upgredg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | upgredg 29180 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛}) |
4 | 3 | 3adant2 1132 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛}) |
5 | preq12bg 4861 | . . . . 5 ⊢ (((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)))) | |
6 | 5 | 3ad2antl2 1187 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)))) |
7 | eleq1 2829 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) | |
8 | 7 | eqcoms 2745 | . . . . . . . . 9 ⊢ (𝑀 = 𝑚 → (𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) |
9 | 8 | biimpd 229 | . . . . . . . 8 ⊢ (𝑀 = 𝑚 → (𝑚 ∈ 𝑉 → 𝑀 ∈ 𝑉)) |
10 | eleq1 2829 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
11 | 10 | eqcoms 2745 | . . . . . . . . 9 ⊢ (𝑁 = 𝑛 → (𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
12 | 11 | biimpd 229 | . . . . . . . 8 ⊢ (𝑁 = 𝑛 → (𝑛 ∈ 𝑉 → 𝑁 ∈ 𝑉)) |
13 | 9, 12 | im2anan9 620 | . . . . . . 7 ⊢ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) → ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
14 | 13 | com12 32 | . . . . . 6 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
15 | eleq1 2829 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑀 → (𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) | |
16 | 15 | eqcoms 2745 | . . . . . . . . . 10 ⊢ (𝑀 = 𝑛 → (𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) |
17 | 16 | biimpd 229 | . . . . . . . . 9 ⊢ (𝑀 = 𝑛 → (𝑛 ∈ 𝑉 → 𝑀 ∈ 𝑉)) |
18 | eleq1 2829 | . . . . . . . . . . 11 ⊢ (𝑚 = 𝑁 → (𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
19 | 18 | eqcoms 2745 | . . . . . . . . . 10 ⊢ (𝑁 = 𝑚 → (𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
20 | 19 | biimpd 229 | . . . . . . . . 9 ⊢ (𝑁 = 𝑚 → (𝑚 ∈ 𝑉 → 𝑁 ∈ 𝑉)) |
21 | 17, 20 | im2anan9 620 | . . . . . . . 8 ⊢ ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
22 | 21 | com12 32 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
23 | 22 | ancoms 458 | . . . . . 6 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
24 | 14, 23 | jaod 860 | . . . . 5 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
25 | 24 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
26 | 6, 25 | sylbid 240 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
27 | 26 | rexlimdvva 3213 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
28 | 4, 27 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 {cpr 4636 ‘cfv 6569 Vtxcvtx 29039 Edgcedg 29090 UPGraphcupgr 29123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-dju 9948 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-n0 12534 df-xnn0 12607 df-z 12621 df-uz 12886 df-fz 13554 df-hash 14376 df-edg 29091 df-upgr 29125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |