| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrpredgv | Structured version Visualization version GIF version | ||
| Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.) |
| Ref | Expression |
|---|---|
| upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| upgrpredgv | ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | upgredg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | upgredg 29115 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛}) |
| 4 | 3 | 3adant2 1131 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛}) |
| 5 | preq12bg 4802 | . . . . 5 ⊢ (((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)))) | |
| 6 | 5 | 3ad2antl2 1187 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)))) |
| 7 | eleq1 2819 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) | |
| 8 | 7 | eqcoms 2739 | . . . . . . . . 9 ⊢ (𝑀 = 𝑚 → (𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) |
| 9 | 8 | biimpd 229 | . . . . . . . 8 ⊢ (𝑀 = 𝑚 → (𝑚 ∈ 𝑉 → 𝑀 ∈ 𝑉)) |
| 10 | eleq1 2819 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
| 11 | 10 | eqcoms 2739 | . . . . . . . . 9 ⊢ (𝑁 = 𝑛 → (𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
| 12 | 11 | biimpd 229 | . . . . . . . 8 ⊢ (𝑁 = 𝑛 → (𝑛 ∈ 𝑉 → 𝑁 ∈ 𝑉)) |
| 13 | 9, 12 | im2anan9 620 | . . . . . . 7 ⊢ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) → ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 14 | 13 | com12 32 | . . . . . 6 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 15 | eleq1 2819 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑀 → (𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) | |
| 16 | 15 | eqcoms 2739 | . . . . . . . . . 10 ⊢ (𝑀 = 𝑛 → (𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) |
| 17 | 16 | biimpd 229 | . . . . . . . . 9 ⊢ (𝑀 = 𝑛 → (𝑛 ∈ 𝑉 → 𝑀 ∈ 𝑉)) |
| 18 | eleq1 2819 | . . . . . . . . . . 11 ⊢ (𝑚 = 𝑁 → (𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
| 19 | 18 | eqcoms 2739 | . . . . . . . . . 10 ⊢ (𝑁 = 𝑚 → (𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
| 20 | 19 | biimpd 229 | . . . . . . . . 9 ⊢ (𝑁 = 𝑚 → (𝑚 ∈ 𝑉 → 𝑁 ∈ 𝑉)) |
| 21 | 17, 20 | im2anan9 620 | . . . . . . . 8 ⊢ ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 22 | 21 | com12 32 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 23 | 22 | ancoms 458 | . . . . . 6 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 24 | 14, 23 | jaod 859 | . . . . 5 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 25 | 24 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 26 | 6, 25 | sylbid 240 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 27 | 26 | rexlimdvva 3189 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 28 | 4, 27 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {cpr 4575 ‘cfv 6481 Vtxcvtx 28974 Edgcedg 29025 UPGraphcupgr 29058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-edg 29026 df-upgr 29060 |
| This theorem is referenced by: grlimprclnbgrvtx 48038 grlimgredgex 48039 |
| Copyright terms: Public domain | W3C validator |