MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrpredgv Structured version   Visualization version   GIF version

Theorem upgrpredgv 27509
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgrpredgv ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))

Proof of Theorem upgrpredgv
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2upgredg 27507 . . 3 ((𝐺 ∈ UPGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
433adant2 1130 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
5 preq12bg 4784 . . . . 5 (((𝑀𝑈𝑁𝑊) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
653ad2antl2 1185 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
7 eleq1 2826 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚𝑉𝑀𝑉))
87eqcoms 2746 . . . . . . . . 9 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
98biimpd 228 . . . . . . . 8 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
10 eleq1 2826 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑉𝑁𝑉))
1110eqcoms 2746 . . . . . . . . 9 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
1211biimpd 228 . . . . . . . 8 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
139, 12im2anan9 620 . . . . . . 7 ((𝑀 = 𝑚𝑁 = 𝑛) → ((𝑚𝑉𝑛𝑉) → (𝑀𝑉𝑁𝑉)))
1413com12 32 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑚𝑁 = 𝑛) → (𝑀𝑉𝑁𝑉)))
15 eleq1 2826 . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝑛𝑉𝑀𝑉))
1615eqcoms 2746 . . . . . . . . . 10 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
1716biimpd 228 . . . . . . . . 9 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
18 eleq1 2826 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑚𝑉𝑁𝑉))
1918eqcoms 2746 . . . . . . . . . 10 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2019biimpd 228 . . . . . . . . 9 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2117, 20im2anan9 620 . . . . . . . 8 ((𝑀 = 𝑛𝑁 = 𝑚) → ((𝑛𝑉𝑚𝑉) → (𝑀𝑉𝑁𝑉)))
2221com12 32 . . . . . . 7 ((𝑛𝑉𝑚𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2322ancoms 459 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2414, 23jaod 856 . . . . 5 ((𝑚𝑉𝑛𝑉) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
2524adantl 482 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
266, 25sylbid 239 . . 3 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
2726rexlimdvva 3223 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
284, 27mpd 15 1 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  {cpr 4563  cfv 6433  Vtxcvtx 27366  Edgcedg 27417  UPGraphcupgr 27450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-upgr 27452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator