MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrpredgv Structured version   Visualization version   GIF version

Theorem upgrpredgv 26375
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgrpredgv ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))

Proof of Theorem upgrpredgv
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2upgredg 26373 . . 3 ((𝐺 ∈ UPGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
433adant2 1162 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
5 preq12bg 4571 . . . . 5 (((𝑀𝑈𝑁𝑊) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
653ad2antl2 1238 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
7 eleq1 2866 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚𝑉𝑀𝑉))
87eqcoms 2807 . . . . . . . . 9 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
98biimpd 221 . . . . . . . 8 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
10 eleq1 2866 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑉𝑁𝑉))
1110eqcoms 2807 . . . . . . . . 9 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
1211biimpd 221 . . . . . . . 8 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
139, 12im2anan9 614 . . . . . . 7 ((𝑀 = 𝑚𝑁 = 𝑛) → ((𝑚𝑉𝑛𝑉) → (𝑀𝑉𝑁𝑉)))
1413com12 32 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑚𝑁 = 𝑛) → (𝑀𝑉𝑁𝑉)))
15 eleq1 2866 . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝑛𝑉𝑀𝑉))
1615eqcoms 2807 . . . . . . . . . 10 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
1716biimpd 221 . . . . . . . . 9 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
18 eleq1 2866 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑚𝑉𝑁𝑉))
1918eqcoms 2807 . . . . . . . . . 10 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2019biimpd 221 . . . . . . . . 9 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2117, 20im2anan9 614 . . . . . . . 8 ((𝑀 = 𝑛𝑁 = 𝑚) → ((𝑛𝑉𝑚𝑉) → (𝑀𝑉𝑁𝑉)))
2221com12 32 . . . . . . 7 ((𝑛𝑉𝑚𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2322ancoms 451 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2414, 23jaod 886 . . . . 5 ((𝑚𝑉𝑛𝑉) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
2524adantl 474 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
266, 25sylbid 232 . . 3 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
2726rexlimdvva 3219 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
284, 27mpd 15 1 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157  wrex 3090  {cpr 4370  cfv 6101  Vtxcvtx 26231  Edgcedg 26282  UPGraphcupgr 26315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-xnn0 11653  df-z 11667  df-uz 11931  df-fz 12581  df-hash 13371  df-edg 26283  df-upgr 26317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator