| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon4 | Structured version Visualization version GIF version | ||
| Description: Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.) |
| Ref | Expression |
|---|---|
| dfon4 | ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon3 35875 | . 2 ⊢ On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) | |
| 2 | df-ima 5653 | . . . 4 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) | |
| 3 | df-res 5652 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) | |
| 4 | indif1 4247 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) | |
| 5 | 3, 4 | eqtri 2753 | . . . . 5 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 6 | 5 | rneqi 5903 | . . . 4 ⊢ ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 7 | 2, 6 | eqtri 2753 | . . 3 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 8 | 7 | difeq2i 4088 | . 2 ⊢ (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) |
| 9 | 1, 8 | eqtr4i 2756 | 1 ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∖ cdif 3913 ∪ cun 3914 ∩ cin 3915 I cid 5534 E cep 5539 × cxp 5638 ran crn 5641 ↾ cres 5642 “ cima 5643 Oncon0 6334 SSet csset 35815 Trans ctrans 35816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fo 6519 df-fv 6521 df-1st 7970 df-2nd 7971 df-txp 35837 df-sset 35839 df-trans 35840 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |