Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon4 Structured version   Visualization version   GIF version

Theorem dfon4 35935
Description: Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.)
Assertion
Ref Expression
dfon4 On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans ))

Proof of Theorem dfon4
StepHypRef Expression
1 dfon3 35934 . 2 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
2 df-ima 5627 . . . 4 (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∖ ( I ∪ E )) ↾ Trans )
3 df-res 5626 . . . . . 6 (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V))
4 indif1 4229 . . . . . 6 (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
53, 4eqtri 2754 . . . . 5 (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
65rneqi 5876 . . . 4 ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
72, 6eqtri 2754 . . 3 (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
87difeq2i 4070 . 2 (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
91, 8eqtr4i 2757 1 On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3894  cun 3895  cin 3896   I cid 5508   E cep 5513   × cxp 5612  ran crn 5615  cres 5616  cima 5617  Oncon0 6306   SSet csset 35874   Trans ctrans 35875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35896  df-sset 35898  df-trans 35899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator