Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon4 | Structured version Visualization version GIF version |
Description: Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.) |
Ref | Expression |
---|---|
dfon4 | ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfon3 34290 | . 2 ⊢ On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) | |
2 | df-ima 5633 | . . . 4 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) | |
3 | df-res 5632 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) | |
4 | indif1 4218 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) | |
5 | 3, 4 | eqtri 2764 | . . . . 5 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
6 | 5 | rneqi 5878 | . . . 4 ⊢ ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
7 | 2, 6 | eqtri 2764 | . . 3 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
8 | 7 | difeq2i 4066 | . 2 ⊢ (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) |
9 | 1, 8 | eqtr4i 2767 | 1 ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 Vcvv 3441 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 I cid 5517 E cep 5523 × cxp 5618 ran crn 5621 ↾ cres 5622 “ cima 5623 Oncon0 6302 SSet csset 34230 Trans ctrans 34231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fo 6485 df-fv 6487 df-1st 7899 df-2nd 7900 df-txp 34252 df-sset 34254 df-trans 34255 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |