Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon4 Structured version   Visualization version   GIF version

Theorem dfon4 35888
Description: Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.)
Assertion
Ref Expression
dfon4 On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans ))

Proof of Theorem dfon4
StepHypRef Expression
1 dfon3 35887 . 2 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
2 df-ima 5706 . . . 4 (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∖ ( I ∪ E )) ↾ Trans )
3 df-res 5705 . . . . . 6 (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V))
4 indif1 4291 . . . . . 6 (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
53, 4eqtri 2765 . . . . 5 (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
65rneqi 5955 . . . 4 ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
72, 6eqtri 2765 . . 3 (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
87difeq2i 4136 . 2 (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
91, 8eqtr4i 2768 1 On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3481  cdif 3963  cun 3964  cin 3965   I cid 5586   E cep 5592   × cxp 5691  ran crn 5694  cres 5695  cima 5696  Oncon0 6392   SSet csset 35827   Trans ctrans 35828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ord 6395  df-on 6396  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fo 6575  df-fv 6577  df-1st 8022  df-2nd 8023  df-txp 35849  df-sset 35851  df-trans 35852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator