| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon4 | Structured version Visualization version GIF version | ||
| Description: Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.) |
| Ref | Expression |
|---|---|
| dfon4 | ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon3 35852 | . 2 ⊢ On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) | |
| 2 | df-ima 5678 | . . . 4 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) | |
| 3 | df-res 5677 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) | |
| 4 | indif1 4262 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) | |
| 5 | 3, 4 | eqtri 2757 | . . . . 5 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 6 | 5 | rneqi 5928 | . . . 4 ⊢ ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 7 | 2, 6 | eqtri 2757 | . . 3 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 8 | 7 | difeq2i 4103 | . 2 ⊢ (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) |
| 9 | 1, 8 | eqtr4i 2760 | 1 ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 Vcvv 3463 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 I cid 5557 E cep 5563 × cxp 5663 ran crn 5666 ↾ cres 5667 “ cima 5668 Oncon0 6363 SSet csset 35792 Trans ctrans 35793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-1st 7996 df-2nd 7997 df-txp 35814 df-sset 35816 df-trans 35817 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |