Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon4 Structured version   Visualization version   GIF version

Theorem dfon4 35335
Description: Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.)
Assertion
Ref Expression
dfon4 On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans ))

Proof of Theorem dfon4
StepHypRef Expression
1 dfon3 35334 . 2 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
2 df-ima 5689 . . . 4 (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∖ ( I ∪ E )) ↾ Trans )
3 df-res 5688 . . . . . 6 (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V))
4 indif1 4271 . . . . . 6 (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
53, 4eqtri 2759 . . . . 5 (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
65rneqi 5936 . . . 4 ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
72, 6eqtri 2759 . . 3 (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
87difeq2i 4119 . 2 (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
91, 8eqtr4i 2762 1 On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3473  cdif 3945  cun 3946  cin 3947   I cid 5573   E cep 5579   × cxp 5674  ran crn 5677  cres 5678  cima 5679  Oncon0 6364   SSet csset 35274   Trans ctrans 35275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7979  df-2nd 7980  df-txp 35296  df-sset 35298  df-trans 35299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator