| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon4 | Structured version Visualization version GIF version | ||
| Description: Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.) |
| Ref | Expression |
|---|---|
| dfon4 | ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon3 35934 | . 2 ⊢ On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) | |
| 2 | df-ima 5627 | . . . 4 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) | |
| 3 | df-res 5626 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) | |
| 4 | indif1 4229 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) | |
| 5 | 3, 4 | eqtri 2754 | . . . . 5 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 6 | 5 | rneqi 5876 | . . . 4 ⊢ ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 7 | 2, 6 | eqtri 2754 | . . 3 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 8 | 7 | difeq2i 4070 | . 2 ⊢ (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) |
| 9 | 1, 8 | eqtr4i 2757 | 1 ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 I cid 5508 E cep 5513 × cxp 5612 ran crn 5615 ↾ cres 5616 “ cima 5617 Oncon0 6306 SSet csset 35874 Trans ctrans 35875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35896 df-sset 35898 df-trans 35899 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |