Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon4 Structured version   Visualization version   GIF version

Theorem dfon4 33356
Description: Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.)
Assertion
Ref Expression
dfon4 On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans ))

Proof of Theorem dfon4
StepHypRef Expression
1 dfon3 33355 . 2 On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
2 df-ima 5570 . . . 4 (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∖ ( I ∪ E )) ↾ Trans )
3 df-res 5569 . . . . . 6 (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V))
4 indif1 4250 . . . . . 6 (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
53, 4eqtri 2846 . . . . 5 (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
65rneqi 5809 . . . 4 ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
72, 6eqtri 2846 . . 3 (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))
87difeq2i 4098 . 2 (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )))
91, 8eqtr4i 2849 1 On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3496  cdif 3935  cun 3936  cin 3937   I cid 5461   E cep 5466   × cxp 5555  ran crn 5558  cres 5559  cima 5560  Oncon0 6193   SSet csset 33295   Trans ctrans 33296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365  df-1st 7691  df-2nd 7692  df-txp 33317  df-sset 33319  df-trans 33320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator