| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon4 | Structured version Visualization version GIF version | ||
| Description: Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.) |
| Ref | Expression |
|---|---|
| dfon4 | ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon3 35853 | . 2 ⊢ On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) | |
| 2 | df-ima 5644 | . . . 4 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) | |
| 3 | df-res 5643 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) | |
| 4 | indif1 4241 | . . . . . 6 ⊢ (( SSet ∖ ( I ∪ E )) ∩ ( Trans × V)) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) | |
| 5 | 3, 4 | eqtri 2752 | . . . . 5 ⊢ (( SSet ∖ ( I ∪ E )) ↾ Trans ) = (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 6 | 5 | rneqi 5890 | . . . 4 ⊢ ran (( SSet ∖ ( I ∪ E )) ↾ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 7 | 2, 6 | eqtri 2752 | . . 3 ⊢ (( SSet ∖ ( I ∪ E )) “ Trans ) = ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E )) |
| 8 | 7 | difeq2i 4082 | . 2 ⊢ (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) |
| 9 | 1, 8 | eqtr4i 2755 | 1 ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 I cid 5525 E cep 5530 × cxp 5629 ran crn 5632 ↾ cres 5633 “ cima 5634 Oncon0 6320 SSet csset 35793 Trans ctrans 35794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1st 7947 df-2nd 7948 df-txp 35815 df-sset 35817 df-trans 35818 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |