| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgdif0 | Structured version Visualization version GIF version | ||
| Description: A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgdif0 | ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif1 4241 | . . . . . . 7 ⊢ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) | |
| 2 | 1 | unieqi 4879 | . . . . . 6 ⊢ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ∪ ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) |
| 3 | unidif0 5310 | . . . . . 6 ⊢ ∪ ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) = ∪ (𝐵 ∩ 𝒫 𝑥) | |
| 4 | 2, 3 | eqtri 2752 | . . . . 5 ⊢ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑥) |
| 5 | 4 | sseq2i 3973 | . . . 4 ⊢ (𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 6 | 5 | abbii 2796 | . . 3 ⊢ {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)} = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} |
| 7 | difexg 5279 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∖ {∅}) ∈ V) | |
| 8 | tgval 22818 | . . . 4 ⊢ ((𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)}) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)}) |
| 10 | tgval 22818 | . . 3 ⊢ (𝐵 ∈ V → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | |
| 11 | 6, 9, 10 | 3eqtr4a 2790 | . 2 ⊢ (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)) |
| 12 | difsnexi 7717 | . . . 4 ⊢ ((𝐵 ∖ {∅}) ∈ V → 𝐵 ∈ V) | |
| 13 | fvprc 6832 | . . . 4 ⊢ (¬ (𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅) | |
| 14 | 12, 13 | nsyl5 159 | . . 3 ⊢ (¬ 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅) |
| 15 | fvprc 6832 | . . 3 ⊢ (¬ 𝐵 ∈ V → (topGen‘𝐵) = ∅) | |
| 16 | 14, 15 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)) |
| 17 | 11, 16 | pm2.61i 182 | 1 ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3444 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 {csn 4585 ∪ cuni 4867 ‘cfv 6499 topGenctg 17376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topgen 17382 |
| This theorem is referenced by: prdsxmslem2 24393 |
| Copyright terms: Public domain | W3C validator |