Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgdif0 | Structured version Visualization version GIF version |
Description: A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
tgdif0 | ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 4205 | . . . . . . 7 ⊢ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) | |
2 | 1 | unieqi 4852 | . . . . . 6 ⊢ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ∪ ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) |
3 | unidif0 5282 | . . . . . 6 ⊢ ∪ ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) = ∪ (𝐵 ∩ 𝒫 𝑥) | |
4 | 2, 3 | eqtri 2766 | . . . . 5 ⊢ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑥) |
5 | 4 | sseq2i 3950 | . . . 4 ⊢ (𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
6 | 5 | abbii 2808 | . . 3 ⊢ {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)} = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} |
7 | difexg 5251 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∖ {∅}) ∈ V) | |
8 | tgval 22105 | . . . 4 ⊢ ((𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)}) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)}) |
10 | tgval 22105 | . . 3 ⊢ (𝐵 ∈ V → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | |
11 | 6, 9, 10 | 3eqtr4a 2804 | . 2 ⊢ (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)) |
12 | difsnexi 7611 | . . . 4 ⊢ ((𝐵 ∖ {∅}) ∈ V → 𝐵 ∈ V) | |
13 | fvprc 6766 | . . . 4 ⊢ (¬ (𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅) | |
14 | 12, 13 | nsyl5 159 | . . 3 ⊢ (¬ 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅) |
15 | fvprc 6766 | . . 3 ⊢ (¬ 𝐵 ∈ V → (topGen‘𝐵) = ∅) | |
16 | 14, 15 | eqtr4d 2781 | . 2 ⊢ (¬ 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)) |
17 | 11, 16 | pm2.61i 182 | 1 ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 ‘cfv 6433 topGenctg 17148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topgen 17154 |
This theorem is referenced by: prdsxmslem2 23685 |
Copyright terms: Public domain | W3C validator |