Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgdif0 | Structured version Visualization version GIF version |
Description: A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
tgdif0 | ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 4217 | . . . . . . 7 ⊢ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) | |
2 | 1 | unieqi 4864 | . . . . . 6 ⊢ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ∪ ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) |
3 | unidif0 5299 | . . . . . 6 ⊢ ∪ ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) = ∪ (𝐵 ∩ 𝒫 𝑥) | |
4 | 2, 3 | eqtri 2764 | . . . . 5 ⊢ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑥) |
5 | 4 | sseq2i 3960 | . . . 4 ⊢ (𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
6 | 5 | abbii 2806 | . . 3 ⊢ {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)} = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} |
7 | difexg 5268 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∖ {∅}) ∈ V) | |
8 | tgval 22203 | . . . 4 ⊢ ((𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)}) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥 ∣ 𝑥 ⊆ ∪ ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)}) |
10 | tgval 22203 | . . 3 ⊢ (𝐵 ∈ V → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | |
11 | 6, 9, 10 | 3eqtr4a 2802 | . 2 ⊢ (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)) |
12 | difsnexi 7665 | . . . 4 ⊢ ((𝐵 ∖ {∅}) ∈ V → 𝐵 ∈ V) | |
13 | fvprc 6811 | . . . 4 ⊢ (¬ (𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅) | |
14 | 12, 13 | nsyl5 159 | . . 3 ⊢ (¬ 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅) |
15 | fvprc 6811 | . . 3 ⊢ (¬ 𝐵 ∈ V → (topGen‘𝐵) = ∅) | |
16 | 14, 15 | eqtr4d 2779 | . 2 ⊢ (¬ 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)) |
17 | 11, 16 | pm2.61i 182 | 1 ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 {cab 2713 Vcvv 3441 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 ∅c0 4268 𝒫 cpw 4546 {csn 4572 ∪ cuni 4851 ‘cfv 6473 topGenctg 17237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-topgen 17243 |
This theorem is referenced by: prdsxmslem2 23783 |
Copyright terms: Public domain | W3C validator |