MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgdif0 Structured version   Visualization version   GIF version

Theorem tgdif0 22877
Description: A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
tgdif0 (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)

Proof of Theorem tgdif0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indif1 4233 . . . . . . 7 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ((𝐵 ∩ 𝒫 𝑥) ∖ {∅})
21unieqi 4870 . . . . . 6 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ((𝐵 ∩ 𝒫 𝑥) ∖ {∅})
3 unidif0 5299 . . . . . 6 ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) = (𝐵 ∩ 𝒫 𝑥)
42, 3eqtri 2752 . . . . 5 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥)
54sseq2i 3965 . . . 4 (𝑥 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥))
65abbii 2796 . . 3 {𝑥𝑥 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)} = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)}
7 difexg 5268 . . . 4 (𝐵 ∈ V → (𝐵 ∖ {∅}) ∈ V)
8 tgval 22840 . . . 4 ((𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥𝑥 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)})
97, 8syl 17 . . 3 (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥𝑥 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)})
10 tgval 22840 . . 3 (𝐵 ∈ V → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
116, 9, 103eqtr4a 2790 . 2 (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵))
12 difsnexi 7697 . . . 4 ((𝐵 ∖ {∅}) ∈ V → 𝐵 ∈ V)
13 fvprc 6814 . . . 4 (¬ (𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅)
1412, 13nsyl5 159 . . 3 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅)
15 fvprc 6814 . . 3 𝐵 ∈ V → (topGen‘𝐵) = ∅)
1614, 15eqtr4d 2767 . 2 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵))
1711, 16pm2.61i 182 1 (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3436  cdif 3900  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577   cuni 4858  cfv 6482  topGenctg 17341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-topgen 17347
This theorem is referenced by:  prdsxmslem2  24415
  Copyright terms: Public domain W3C validator