MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgdif0 Structured version   Visualization version   GIF version

Theorem tgdif0 23015
Description: A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
tgdif0 (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)

Proof of Theorem tgdif0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indif1 4288 . . . . . . 7 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ((𝐵 ∩ 𝒫 𝑥) ∖ {∅})
21unieqi 4924 . . . . . 6 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = ((𝐵 ∩ 𝒫 𝑥) ∖ {∅})
3 unidif0 5366 . . . . . 6 ((𝐵 ∩ 𝒫 𝑥) ∖ {∅}) = (𝐵 ∩ 𝒫 𝑥)
42, 3eqtri 2763 . . . . 5 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥)
54sseq2i 4025 . . . 4 (𝑥 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥))
65abbii 2807 . . 3 {𝑥𝑥 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)} = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)}
7 difexg 5335 . . . 4 (𝐵 ∈ V → (𝐵 ∖ {∅}) ∈ V)
8 tgval 22978 . . . 4 ((𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥𝑥 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)})
97, 8syl 17 . . 3 (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = {𝑥𝑥 ((𝐵 ∖ {∅}) ∩ 𝒫 𝑥)})
10 tgval 22978 . . 3 (𝐵 ∈ V → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
116, 9, 103eqtr4a 2801 . 2 (𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵))
12 difsnexi 7780 . . . 4 ((𝐵 ∖ {∅}) ∈ V → 𝐵 ∈ V)
13 fvprc 6899 . . . 4 (¬ (𝐵 ∖ {∅}) ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅)
1412, 13nsyl5 159 . . 3 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = ∅)
15 fvprc 6899 . . 3 𝐵 ∈ V → (topGen‘𝐵) = ∅)
1614, 15eqtr4d 2778 . 2 𝐵 ∈ V → (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵))
1711, 16pm2.61i 182 1 (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2106  {cab 2712  Vcvv 3478  cdif 3960  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912  cfv 6563  topGenctg 17484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-topgen 17490
This theorem is referenced by:  prdsxmslem2  24558
  Copyright terms: Public domain W3C validator