Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trufil Structured version   Visualization version   GIF version

Theorem trufil 22519
 Description: Conditions for the trace of an ultrafilter 𝐿 to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
trufil ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴𝐿))

Proof of Theorem trufil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ufilfil 22513 . . . 4 ((𝐿t 𝐴) ∈ (UFil‘𝐴) → (𝐿t 𝐴) ∈ (Fil‘𝐴))
2 ufilfil 22513 . . . . 5 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
3 trfil3 22497 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
42, 3sylan 583 . . . 4 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
51, 4syl5ib 247 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) → ¬ (𝑌𝐴) ∈ 𝐿))
64biimprd 251 . . . . 5 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → (𝐿t 𝐴) ∈ (Fil‘𝐴)))
7 elpwi 4509 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
8 simpll 766 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝐿 ∈ (UFil‘𝑌))
9 simpr 488 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝑥𝐴)
10 simplr 768 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝐴𝑌)
119, 10sstrd 3928 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝑥𝑌)
12 ufilss 22514 . . . . . . . . 9 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝑥𝑌) → (𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿))
138, 11, 12syl2anc 587 . . . . . . . 8 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿))
14 id 22 . . . . . . . . . . . . 13 (𝐴𝑌𝐴𝑌)
15 elfvdm 6681 . . . . . . . . . . . . 13 (𝐿 ∈ (UFil‘𝑌) → 𝑌 ∈ dom UFil)
16 ssexg 5194 . . . . . . . . . . . . 13 ((𝐴𝑌𝑌 ∈ dom UFil) → 𝐴 ∈ V)
1714, 15, 16syl2anr 599 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
18 elrestr 16698 . . . . . . . . . . . . 13 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑥𝐿) → (𝑥𝐴) ∈ (𝐿t 𝐴))
19183expia 1118 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
2017, 19syldan 594 . . . . . . . . . . 11 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
2120adantr 484 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
22 df-ss 3901 . . . . . . . . . . . 12 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
239, 22sylib 221 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐴) = 𝑥)
2423eleq1d 2877 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑥𝐴) ∈ (𝐿t 𝐴) ↔ 𝑥 ∈ (𝐿t 𝐴)))
2521, 24sylibd 242 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿𝑥 ∈ (𝐿t 𝐴)))
26 indif1 4201 . . . . . . . . . . . 12 ((𝑌𝑥) ∩ 𝐴) = ((𝑌𝐴) ∖ 𝑥)
27 simplr 768 . . . . . . . . . . . . . 14 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐴𝑌)
28 sseqin2 4145 . . . . . . . . . . . . . 14 (𝐴𝑌 ↔ (𝑌𝐴) = 𝐴)
2927, 28sylib 221 . . . . . . . . . . . . 13 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝑌𝐴) = 𝐴)
3029difeq1d 4052 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝐴) ∖ 𝑥) = (𝐴𝑥))
3126, 30syl5eq 2848 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝑥) ∩ 𝐴) = (𝐴𝑥))
32 simpll 766 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐿 ∈ (UFil‘𝑌))
3317adantr 484 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐴 ∈ V)
34 simprr 772 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝑌𝑥) ∈ 𝐿)
35 elrestr 16698 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V ∧ (𝑌𝑥) ∈ 𝐿) → ((𝑌𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
3632, 33, 34, 35syl3anc 1368 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
3731, 36eqeltrrd 2894 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝐴𝑥) ∈ (𝐿t 𝐴))
3837expr 460 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑌𝑥) ∈ 𝐿 → (𝐴𝑥) ∈ (𝐿t 𝐴)))
3925, 38orim12d 962 . . . . . . . 8 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴))))
4013, 39mpd 15 . . . . . . 7 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
417, 40sylan2 595 . . . . . 6 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
4241ralrimiva 3152 . . . . 5 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
436, 42jctird 530 . . . 4 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))))
44 isufil 22512 . . . 4 ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ ((𝐿t 𝐴) ∈ (Fil‘𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴))))
4543, 44syl6ibr 255 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → (𝐿t 𝐴) ∈ (UFil‘𝐴)))
465, 45impbid 215 . 2 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
47 ufilb 22515 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ 𝐴𝐿 ↔ (𝑌𝐴) ∈ 𝐿))
4847con1bid 359 . 2 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿𝐴𝐿))
4946, 48bitrd 282 1 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴𝐿))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2112  ∀wral 3109  Vcvv 3444   ∖ cdif 3881   ∩ cin 3883   ⊆ wss 3884  𝒫 cpw 4500  dom cdm 5523  ‘cfv 6328  (class class class)co 7139   ↾t crest 16690  Filcfil 22454  UFilcufil 22508 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-rest 16692  df-fbas 20092  df-fg 20093  df-fil 22455  df-ufil 22510 This theorem is referenced by:  ssufl  22527
 Copyright terms: Public domain W3C validator