MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trufil Structured version   Visualization version   GIF version

Theorem trufil 22761
Description: Conditions for the trace of an ultrafilter 𝐿 to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
trufil ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴𝐿))

Proof of Theorem trufil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ufilfil 22755 . . . 4 ((𝐿t 𝐴) ∈ (UFil‘𝐴) → (𝐿t 𝐴) ∈ (Fil‘𝐴))
2 ufilfil 22755 . . . . 5 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
3 trfil3 22739 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
42, 3sylan 583 . . . 4 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
51, 4syl5ib 247 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) → ¬ (𝑌𝐴) ∈ 𝐿))
64biimprd 251 . . . . 5 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → (𝐿t 𝐴) ∈ (Fil‘𝐴)))
7 elpwi 4508 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
8 simpll 767 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝐿 ∈ (UFil‘𝑌))
9 simpr 488 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝑥𝐴)
10 simplr 769 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝐴𝑌)
119, 10sstrd 3897 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝑥𝑌)
12 ufilss 22756 . . . . . . . . 9 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝑥𝑌) → (𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿))
138, 11, 12syl2anc 587 . . . . . . . 8 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿))
14 id 22 . . . . . . . . . . . . 13 (𝐴𝑌𝐴𝑌)
15 elfvdm 6727 . . . . . . . . . . . . 13 (𝐿 ∈ (UFil‘𝑌) → 𝑌 ∈ dom UFil)
16 ssexg 5201 . . . . . . . . . . . . 13 ((𝐴𝑌𝑌 ∈ dom UFil) → 𝐴 ∈ V)
1714, 15, 16syl2anr 600 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
18 elrestr 16887 . . . . . . . . . . . . 13 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑥𝐿) → (𝑥𝐴) ∈ (𝐿t 𝐴))
19183expia 1123 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
2017, 19syldan 594 . . . . . . . . . . 11 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
2120adantr 484 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
22 df-ss 3870 . . . . . . . . . . . 12 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
239, 22sylib 221 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐴) = 𝑥)
2423eleq1d 2815 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑥𝐴) ∈ (𝐿t 𝐴) ↔ 𝑥 ∈ (𝐿t 𝐴)))
2521, 24sylibd 242 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿𝑥 ∈ (𝐿t 𝐴)))
26 indif1 4172 . . . . . . . . . . . 12 ((𝑌𝑥) ∩ 𝐴) = ((𝑌𝐴) ∖ 𝑥)
27 simplr 769 . . . . . . . . . . . . . 14 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐴𝑌)
28 sseqin2 4116 . . . . . . . . . . . . . 14 (𝐴𝑌 ↔ (𝑌𝐴) = 𝐴)
2927, 28sylib 221 . . . . . . . . . . . . 13 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝑌𝐴) = 𝐴)
3029difeq1d 4022 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝐴) ∖ 𝑥) = (𝐴𝑥))
3126, 30syl5eq 2783 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝑥) ∩ 𝐴) = (𝐴𝑥))
32 simpll 767 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐿 ∈ (UFil‘𝑌))
3317adantr 484 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐴 ∈ V)
34 simprr 773 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝑌𝑥) ∈ 𝐿)
35 elrestr 16887 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V ∧ (𝑌𝑥) ∈ 𝐿) → ((𝑌𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
3632, 33, 34, 35syl3anc 1373 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
3731, 36eqeltrrd 2832 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝐴𝑥) ∈ (𝐿t 𝐴))
3837expr 460 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑌𝑥) ∈ 𝐿 → (𝐴𝑥) ∈ (𝐿t 𝐴)))
3925, 38orim12d 965 . . . . . . . 8 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴))))
4013, 39mpd 15 . . . . . . 7 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
417, 40sylan2 596 . . . . . 6 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
4241ralrimiva 3095 . . . . 5 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
436, 42jctird 530 . . . 4 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))))
44 isufil 22754 . . . 4 ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ ((𝐿t 𝐴) ∈ (Fil‘𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴))))
4543, 44syl6ibr 255 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → (𝐿t 𝐴) ∈ (UFil‘𝐴)))
465, 45impbid 215 . 2 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
47 ufilb 22757 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ 𝐴𝐿 ↔ (𝑌𝐴) ∈ 𝐿))
4847con1bid 359 . 2 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿𝐴𝐿))
4946, 48bitrd 282 1 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  cdif 3850  cin 3852  wss 3853  𝒫 cpw 4499  dom cdm 5536  cfv 6358  (class class class)co 7191  t crest 16879  Filcfil 22696  UFilcufil 22750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-rest 16881  df-fbas 20314  df-fg 20315  df-fil 22697  df-ufil 22752
This theorem is referenced by:  ssufl  22769
  Copyright terms: Public domain W3C validator