Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdmdfsn Structured version   Visualization version   GIF version

Theorem resdmdfsn 5872
 Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
resdmdfsn (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})))

Proof of Theorem resdmdfsn
StepHypRef Expression
1 indif1 4201 . . . 4 ((V ∖ {𝑋}) ∩ dom 𝑅) = ((V ∩ dom 𝑅) ∖ {𝑋})
2 incom 4131 . . . . . 6 (V ∩ dom 𝑅) = (dom 𝑅 ∩ V)
3 inv1 4305 . . . . . 6 (dom 𝑅 ∩ V) = dom 𝑅
42, 3eqtri 2824 . . . . 5 (V ∩ dom 𝑅) = dom 𝑅
54difeq1i 4049 . . . 4 ((V ∩ dom 𝑅) ∖ {𝑋}) = (dom 𝑅 ∖ {𝑋})
61, 5eqtri 2824 . . 3 ((V ∖ {𝑋}) ∩ dom 𝑅) = (dom 𝑅 ∖ {𝑋})
76reseq2i 5819 . 2 (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))
8 resindm 5871 . 2 (Rel 𝑅 → (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (V ∖ {𝑋})))
97, 8syl5reqr 2851 1 (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538  Vcvv 3444   ∖ cdif 3881   ∩ cin 3883  {csn 4528  dom cdm 5523   ↾ cres 5525  Rel wrel 5528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5034  df-opab 5096  df-xp 5529  df-rel 5530  df-dm 5533  df-res 5535 This theorem is referenced by:  funresdfunsn  6932
 Copyright terms: Public domain W3C validator