| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdmdfsn | Structured version Visualization version GIF version | ||
| Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.) |
| Ref | Expression |
|---|---|
| resdmdfsn | ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resindm 5978 | . 2 ⊢ (Rel 𝑅 → (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (V ∖ {𝑋}))) | |
| 2 | indif1 4229 | . . . 4 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = ((V ∩ dom 𝑅) ∖ {𝑋}) | |
| 3 | incom 4156 | . . . . . 6 ⊢ (V ∩ dom 𝑅) = (dom 𝑅 ∩ V) | |
| 4 | inv1 4345 | . . . . . 6 ⊢ (dom 𝑅 ∩ V) = dom 𝑅 | |
| 5 | 3, 4 | eqtri 2754 | . . . . 5 ⊢ (V ∩ dom 𝑅) = dom 𝑅 |
| 6 | 5 | difeq1i 4069 | . . . 4 ⊢ ((V ∩ dom 𝑅) ∖ {𝑋}) = (dom 𝑅 ∖ {𝑋}) |
| 7 | 2, 6 | eqtri 2754 | . . 3 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = (dom 𝑅 ∖ {𝑋}) |
| 8 | 7 | reseq2i 5924 | . 2 ⊢ (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})) |
| 9 | 1, 8 | eqtr3di 2781 | 1 ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 {csn 4573 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-res 5626 |
| This theorem is referenced by: funresdfunsn 7123 |
| Copyright terms: Public domain | W3C validator |