| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdmdfsn | Structured version Visualization version GIF version | ||
| Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.) |
| Ref | Expression |
|---|---|
| resdmdfsn | ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resindm 6004 | . 2 ⊢ (Rel 𝑅 → (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (V ∖ {𝑋}))) | |
| 2 | indif1 4248 | . . . 4 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = ((V ∩ dom 𝑅) ∖ {𝑋}) | |
| 3 | incom 4175 | . . . . . 6 ⊢ (V ∩ dom 𝑅) = (dom 𝑅 ∩ V) | |
| 4 | inv1 4364 | . . . . . 6 ⊢ (dom 𝑅 ∩ V) = dom 𝑅 | |
| 5 | 3, 4 | eqtri 2753 | . . . . 5 ⊢ (V ∩ dom 𝑅) = dom 𝑅 |
| 6 | 5 | difeq1i 4088 | . . . 4 ⊢ ((V ∩ dom 𝑅) ∖ {𝑋}) = (dom 𝑅 ∖ {𝑋}) |
| 7 | 2, 6 | eqtri 2753 | . . 3 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = (dom 𝑅 ∖ {𝑋}) |
| 8 | 7 | reseq2i 5950 | . 2 ⊢ (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})) |
| 9 | 1, 8 | eqtr3di 2780 | 1 ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3450 ∖ cdif 3914 ∩ cin 3916 {csn 4592 dom cdm 5641 ↾ cres 5643 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-res 5653 |
| This theorem is referenced by: funresdfunsn 7166 |
| Copyright terms: Public domain | W3C validator |