MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdmdfsn Structured version   Visualization version   GIF version

Theorem resdmdfsn 5941
Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
resdmdfsn (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})))

Proof of Theorem resdmdfsn
StepHypRef Expression
1 resindm 5940 . 2 (Rel 𝑅 → (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (V ∖ {𝑋})))
2 indif1 4205 . . . 4 ((V ∖ {𝑋}) ∩ dom 𝑅) = ((V ∩ dom 𝑅) ∖ {𝑋})
3 incom 4135 . . . . . 6 (V ∩ dom 𝑅) = (dom 𝑅 ∩ V)
4 inv1 4328 . . . . . 6 (dom 𝑅 ∩ V) = dom 𝑅
53, 4eqtri 2766 . . . . 5 (V ∩ dom 𝑅) = dom 𝑅
65difeq1i 4053 . . . 4 ((V ∩ dom 𝑅) ∖ {𝑋}) = (dom 𝑅 ∖ {𝑋})
72, 6eqtri 2766 . . 3 ((V ∖ {𝑋}) ∩ dom 𝑅) = (dom 𝑅 ∖ {𝑋})
87reseq2i 5888 . 2 (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))
91, 8eqtr3di 2793 1 (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3432  cdif 3884  cin 3886  {csn 4561  dom cdm 5589  cres 5591  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-res 5601
This theorem is referenced by:  funresdfunsn  7061
  Copyright terms: Public domain W3C validator