Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  harval3 Structured version   Visualization version   GIF version

Theorem harval3 43571
Description: (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.)
Assertion
Ref Expression
harval3 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem harval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 harval2 9885 . 2 (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝐴𝑦})
2 vex 3440 . . . . . 6 𝑥 ∈ V
32a1i 11 . . . . 5 (𝐴 ∈ dom card → 𝑥 ∈ V)
4 elrncard 43570 . . . . . . . . 9 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
54simplbi 497 . . . . . . . 8 (𝑥 ∈ ran card → 𝑥 ∈ On)
65anim1i 615 . . . . . . 7 ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑥 ∈ On ∧ 𝐴𝑥))
7 eleq1 2819 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ∈ On ↔ 𝑥 ∈ On))
8 breq2 5090 . . . . . . . 8 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
97, 8anbi12d 632 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦 ∈ On ∧ 𝐴𝑦) ↔ (𝑥 ∈ On ∧ 𝐴𝑥)))
106, 9imbitrrid 246 . . . . . 6 (𝑦 = 𝑥 → ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑦 ∈ On ∧ 𝐴𝑦)))
1110adantl 481 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑦 = 𝑥) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑦 ∈ On ∧ 𝐴𝑦)))
12 ssidd 3953 . . . . 5 (𝐴 ∈ dom card → 𝑥𝑥)
133, 11, 12intabssd 43552 . . . 4 (𝐴 ∈ dom card → {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)} ⊆ {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)})
14 vex 3440 . . . . . . 7 𝑦 ∈ V
1514inex1 5250 . . . . . 6 (𝑦 ∩ (card‘𝑦)) ∈ V
1615a1i 11 . . . . 5 (𝐴 ∈ dom card → (𝑦 ∩ (card‘𝑦)) ∈ V)
17 oncardid 9844 . . . . . . . . . . . 12 (𝑦 ∈ On → (card‘𝑦) ≈ 𝑦)
1817ensymd 8922 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ≈ (card‘𝑦))
19 sdomentr 9019 . . . . . . . . . . . 12 ((𝐴𝑦𝑦 ≈ (card‘𝑦)) → 𝐴 ≺ (card‘𝑦))
2019a1i 11 . . . . . . . . . . 11 (𝑦 ∈ On → ((𝐴𝑦𝑦 ≈ (card‘𝑦)) → 𝐴 ≺ (card‘𝑦)))
2118, 20mpan2d 694 . . . . . . . . . 10 (𝑦 ∈ On → (𝐴𝑦𝐴 ≺ (card‘𝑦)))
22 df-card 9827 . . . . . . . . . . . 12 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
2322funmpt2 6515 . . . . . . . . . . 11 Fun card
24 onenon 9837 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ∈ dom card)
25 fvelrn 7004 . . . . . . . . . . 11 ((Fun card ∧ 𝑦 ∈ dom card) → (card‘𝑦) ∈ ran card)
2623, 24, 25sylancr 587 . . . . . . . . . 10 (𝑦 ∈ On → (card‘𝑦) ∈ ran card)
2721, 26jctild 525 . . . . . . . . 9 (𝑦 ∈ On → (𝐴𝑦 → ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
2827adantl 481 . . . . . . . 8 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝐴𝑦 → ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
29 simpl 482 . . . . . . . . . 10 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → 𝑥 = (𝑦 ∩ (card‘𝑦)))
30 cardonle 9845 . . . . . . . . . . . 12 (𝑦 ∈ On → (card‘𝑦) ⊆ 𝑦)
3130adantl 481 . . . . . . . . . . 11 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (card‘𝑦) ⊆ 𝑦)
32 sseqin2 4168 . . . . . . . . . . 11 ((card‘𝑦) ⊆ 𝑦 ↔ (𝑦 ∩ (card‘𝑦)) = (card‘𝑦))
3331, 32sylib 218 . . . . . . . . . 10 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝑦 ∩ (card‘𝑦)) = (card‘𝑦))
3429, 33eqtrd 2766 . . . . . . . . 9 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → 𝑥 = (card‘𝑦))
35 eleq1 2819 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝑥 ∈ ran card ↔ (card‘𝑦) ∈ ran card))
36 breq2 5090 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝐴𝑥𝐴 ≺ (card‘𝑦)))
3735, 36anbi12d 632 . . . . . . . . 9 (𝑥 = (card‘𝑦) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) ↔ ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
3834, 37syl 17 . . . . . . . 8 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) ↔ ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
3928, 38sylibrd 259 . . . . . . 7 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝐴𝑦 → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
4039expimpd 453 . . . . . 6 (𝑥 = (𝑦 ∩ (card‘𝑦)) → ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
4140adantl 481 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑥 = (𝑦 ∩ (card‘𝑦))) → ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
42 inss1 4182 . . . . . 6 (𝑦 ∩ (card‘𝑦)) ⊆ 𝑦
4342a1i 11 . . . . 5 (𝐴 ∈ dom card → (𝑦 ∩ (card‘𝑦)) ⊆ 𝑦)
4416, 41, 43intabssd 43552 . . . 4 (𝐴 ∈ dom card → {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)})
4513, 44eqssd 3947 . . 3 (𝐴 ∈ dom card → {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)})
46 df-rab 3396 . . . 4 {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)}
4746inteqi 4896 . . 3 {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)}
48 df-rab 3396 . . . 4 {𝑥 ∈ ran card ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)}
4948inteqi 4896 . . 3 {𝑥 ∈ ran card ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)}
5045, 47, 493eqtr4g 2791 . 2 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑥 ∈ ran card ∣ 𝐴𝑥})
511, 50eqtrd 2766 1 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  {crab 3395  Vcvv 3436  cin 3896  wss 3897   cint 4892   class class class wbr 5086  dom cdm 5611  ran crn 5612  Oncon0 6301  Fun wfun 6470  cfv 6476  cen 8861  csdm 8863  harchar 9437  cardccrd 9823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-oi 9391  df-har 9438  df-card 9827
This theorem is referenced by:  harval3on  43572
  Copyright terms: Public domain W3C validator