Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  harval3 Structured version   Visualization version   GIF version

Theorem harval3 42274
Description: (harβ€˜π΄) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.)
Assertion
Ref Expression
harval3 (𝐴 ∈ dom card β†’ (harβ€˜π΄) = ∩ {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯})
Distinct variable group:   π‘₯,𝐴

Proof of Theorem harval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 harval2 9988 . 2 (𝐴 ∈ dom card β†’ (harβ€˜π΄) = ∩ {𝑦 ∈ On ∣ 𝐴 β‰Ί 𝑦})
2 vex 3478 . . . . . 6 π‘₯ ∈ V
32a1i 11 . . . . 5 (𝐴 ∈ dom card β†’ π‘₯ ∈ V)
4 elrncard 42273 . . . . . . . . 9 (π‘₯ ∈ ran card ↔ (π‘₯ ∈ On ∧ βˆ€π‘¦ ∈ π‘₯ Β¬ 𝑦 β‰ˆ π‘₯))
54simplbi 498 . . . . . . . 8 (π‘₯ ∈ ran card β†’ π‘₯ ∈ On)
65anim1i 615 . . . . . . 7 ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) β†’ (π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯))
7 eleq1 2821 . . . . . . . 8 (𝑦 = π‘₯ β†’ (𝑦 ∈ On ↔ π‘₯ ∈ On))
8 breq2 5151 . . . . . . . 8 (𝑦 = π‘₯ β†’ (𝐴 β‰Ί 𝑦 ↔ 𝐴 β‰Ί π‘₯))
97, 8anbi12d 631 . . . . . . 7 (𝑦 = π‘₯ β†’ ((𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦) ↔ (π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯)))
106, 9imbitrrid 245 . . . . . 6 (𝑦 = π‘₯ β†’ ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) β†’ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)))
1110adantl 482 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑦 = π‘₯) β†’ ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) β†’ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)))
12 ssidd 4004 . . . . 5 (𝐴 ∈ dom card β†’ π‘₯ βŠ† π‘₯)
133, 11, 12intabssd 42255 . . . 4 (𝐴 ∈ dom card β†’ ∩ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)} βŠ† ∩ {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)})
14 vex 3478 . . . . . . 7 𝑦 ∈ V
1514inex1 5316 . . . . . 6 (𝑦 ∩ (cardβ€˜π‘¦)) ∈ V
1615a1i 11 . . . . 5 (𝐴 ∈ dom card β†’ (𝑦 ∩ (cardβ€˜π‘¦)) ∈ V)
17 oncardid 9947 . . . . . . . . . . . 12 (𝑦 ∈ On β†’ (cardβ€˜π‘¦) β‰ˆ 𝑦)
1817ensymd 8997 . . . . . . . . . . 11 (𝑦 ∈ On β†’ 𝑦 β‰ˆ (cardβ€˜π‘¦))
19 sdomentr 9107 . . . . . . . . . . . 12 ((𝐴 β‰Ί 𝑦 ∧ 𝑦 β‰ˆ (cardβ€˜π‘¦)) β†’ 𝐴 β‰Ί (cardβ€˜π‘¦))
2019a1i 11 . . . . . . . . . . 11 (𝑦 ∈ On β†’ ((𝐴 β‰Ί 𝑦 ∧ 𝑦 β‰ˆ (cardβ€˜π‘¦)) β†’ 𝐴 β‰Ί (cardβ€˜π‘¦)))
2118, 20mpan2d 692 . . . . . . . . . 10 (𝑦 ∈ On β†’ (𝐴 β‰Ί 𝑦 β†’ 𝐴 β‰Ί (cardβ€˜π‘¦)))
22 df-card 9930 . . . . . . . . . . . 12 card = (π‘₯ ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ π‘₯})
2322funmpt2 6584 . . . . . . . . . . 11 Fun card
24 onenon 9940 . . . . . . . . . . 11 (𝑦 ∈ On β†’ 𝑦 ∈ dom card)
25 fvelrn 7075 . . . . . . . . . . 11 ((Fun card ∧ 𝑦 ∈ dom card) β†’ (cardβ€˜π‘¦) ∈ ran card)
2623, 24, 25sylancr 587 . . . . . . . . . 10 (𝑦 ∈ On β†’ (cardβ€˜π‘¦) ∈ ran card)
2721, 26jctild 526 . . . . . . . . 9 (𝑦 ∈ On β†’ (𝐴 β‰Ί 𝑦 β†’ ((cardβ€˜π‘¦) ∈ ran card ∧ 𝐴 β‰Ί (cardβ€˜π‘¦))))
2827adantl 482 . . . . . . . 8 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ (𝐴 β‰Ί 𝑦 β†’ ((cardβ€˜π‘¦) ∈ ran card ∧ 𝐴 β‰Ί (cardβ€˜π‘¦))))
29 simpl 483 . . . . . . . . . 10 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)))
30 cardonle 9948 . . . . . . . . . . . 12 (𝑦 ∈ On β†’ (cardβ€˜π‘¦) βŠ† 𝑦)
3130adantl 482 . . . . . . . . . . 11 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ (cardβ€˜π‘¦) βŠ† 𝑦)
32 sseqin2 4214 . . . . . . . . . . 11 ((cardβ€˜π‘¦) βŠ† 𝑦 ↔ (𝑦 ∩ (cardβ€˜π‘¦)) = (cardβ€˜π‘¦))
3331, 32sylib 217 . . . . . . . . . 10 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ (𝑦 ∩ (cardβ€˜π‘¦)) = (cardβ€˜π‘¦))
3429, 33eqtrd 2772 . . . . . . . . 9 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ π‘₯ = (cardβ€˜π‘¦))
35 eleq1 2821 . . . . . . . . . 10 (π‘₯ = (cardβ€˜π‘¦) β†’ (π‘₯ ∈ ran card ↔ (cardβ€˜π‘¦) ∈ ran card))
36 breq2 5151 . . . . . . . . . 10 (π‘₯ = (cardβ€˜π‘¦) β†’ (𝐴 β‰Ί π‘₯ ↔ 𝐴 β‰Ί (cardβ€˜π‘¦)))
3735, 36anbi12d 631 . . . . . . . . 9 (π‘₯ = (cardβ€˜π‘¦) β†’ ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) ↔ ((cardβ€˜π‘¦) ∈ ran card ∧ 𝐴 β‰Ί (cardβ€˜π‘¦))))
3834, 37syl 17 . . . . . . . 8 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) ↔ ((cardβ€˜π‘¦) ∈ ran card ∧ 𝐴 β‰Ί (cardβ€˜π‘¦))))
3928, 38sylibrd 258 . . . . . . 7 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ (𝐴 β‰Ί 𝑦 β†’ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)))
4039expimpd 454 . . . . . 6 (π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) β†’ ((𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦) β†’ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)))
4140adantl 482 . . . . 5 ((𝐴 ∈ dom card ∧ π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦))) β†’ ((𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦) β†’ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)))
42 inss1 4227 . . . . . 6 (𝑦 ∩ (cardβ€˜π‘¦)) βŠ† 𝑦
4342a1i 11 . . . . 5 (𝐴 ∈ dom card β†’ (𝑦 ∩ (cardβ€˜π‘¦)) βŠ† 𝑦)
4416, 41, 43intabssd 42255 . . . 4 (𝐴 ∈ dom card β†’ ∩ {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)} βŠ† ∩ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)})
4513, 44eqssd 3998 . . 3 (𝐴 ∈ dom card β†’ ∩ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)} = ∩ {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)})
46 df-rab 3433 . . . 4 {𝑦 ∈ On ∣ 𝐴 β‰Ί 𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)}
4746inteqi 4953 . . 3 ∩ {𝑦 ∈ On ∣ 𝐴 β‰Ί 𝑦} = ∩ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)}
48 df-rab 3433 . . . 4 {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯} = {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)}
4948inteqi 4953 . . 3 ∩ {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯} = ∩ {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)}
5045, 47, 493eqtr4g 2797 . 2 (𝐴 ∈ dom card β†’ ∩ {𝑦 ∈ On ∣ 𝐴 β‰Ί 𝑦} = ∩ {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯})
511, 50eqtrd 2772 1 (𝐴 ∈ dom card β†’ (harβ€˜π΄) = ∩ {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  {crab 3432  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  βˆ© cint 4949   class class class wbr 5147  dom cdm 5675  ran crn 5676  Oncon0 6361  Fun wfun 6534  β€˜cfv 6540   β‰ˆ cen 8932   β‰Ί csdm 8934  harchar 9547  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-oi 9501  df-har 9548  df-card 9930
This theorem is referenced by:  harval3on  42275
  Copyright terms: Public domain W3C validator