Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  harval3 Structured version   Visualization version   GIF version

Theorem harval3 39978
Description: (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.)
Assertion
Ref Expression
harval3 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem harval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 harval2 9419 . 2 (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝐴𝑦})
2 vex 3494 . . . . . 6 𝑥 ∈ V
32a1i 11 . . . . 5 (𝐴 ∈ dom card → 𝑥 ∈ V)
4 elrncard 39976 . . . . . . . . 9 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
54simplbi 500 . . . . . . . 8 (𝑥 ∈ ran card → 𝑥 ∈ On)
65anim1i 616 . . . . . . 7 ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑥 ∈ On ∧ 𝐴𝑥))
7 eleq1 2899 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ∈ On ↔ 𝑥 ∈ On))
8 breq2 5063 . . . . . . . 8 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
97, 8anbi12d 632 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦 ∈ On ∧ 𝐴𝑦) ↔ (𝑥 ∈ On ∧ 𝐴𝑥)))
106, 9syl5ibr 248 . . . . . 6 (𝑦 = 𝑥 → ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑦 ∈ On ∧ 𝐴𝑦)))
1110adantl 484 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑦 = 𝑥) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑦 ∈ On ∧ 𝐴𝑦)))
12 ssidd 3983 . . . . 5 (𝐴 ∈ dom card → 𝑥𝑥)
133, 11, 12intabssd 39959 . . . 4 (𝐴 ∈ dom card → {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)} ⊆ {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)})
14 vex 3494 . . . . . . 7 𝑦 ∈ V
1514inex1 5214 . . . . . 6 (𝑦 ∩ (card‘𝑦)) ∈ V
1615a1i 11 . . . . 5 (𝐴 ∈ dom card → (𝑦 ∩ (card‘𝑦)) ∈ V)
17 oncardid 9378 . . . . . . . . . . . 12 (𝑦 ∈ On → (card‘𝑦) ≈ 𝑦)
1817ensymd 8553 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ≈ (card‘𝑦))
19 sdomentr 8644 . . . . . . . . . . . 12 ((𝐴𝑦𝑦 ≈ (card‘𝑦)) → 𝐴 ≺ (card‘𝑦))
2019a1i 11 . . . . . . . . . . 11 (𝑦 ∈ On → ((𝐴𝑦𝑦 ≈ (card‘𝑦)) → 𝐴 ≺ (card‘𝑦)))
2118, 20mpan2d 692 . . . . . . . . . 10 (𝑦 ∈ On → (𝐴𝑦𝐴 ≺ (card‘𝑦)))
22 df-card 9361 . . . . . . . . . . . 12 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
2322funmpt2 6387 . . . . . . . . . . 11 Fun card
24 onenon 9371 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ∈ dom card)
25 fvelrn 6837 . . . . . . . . . . 11 ((Fun card ∧ 𝑦 ∈ dom card) → (card‘𝑦) ∈ ran card)
2623, 24, 25sylancr 589 . . . . . . . . . 10 (𝑦 ∈ On → (card‘𝑦) ∈ ran card)
2721, 26jctild 528 . . . . . . . . 9 (𝑦 ∈ On → (𝐴𝑦 → ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
2827adantl 484 . . . . . . . 8 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝐴𝑦 → ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
29 simpl 485 . . . . . . . . . 10 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → 𝑥 = (𝑦 ∩ (card‘𝑦)))
30 cardonle 9379 . . . . . . . . . . . 12 (𝑦 ∈ On → (card‘𝑦) ⊆ 𝑦)
3130adantl 484 . . . . . . . . . . 11 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (card‘𝑦) ⊆ 𝑦)
32 sseqin2 4185 . . . . . . . . . . 11 ((card‘𝑦) ⊆ 𝑦 ↔ (𝑦 ∩ (card‘𝑦)) = (card‘𝑦))
3331, 32sylib 220 . . . . . . . . . 10 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝑦 ∩ (card‘𝑦)) = (card‘𝑦))
3429, 33eqtrd 2855 . . . . . . . . 9 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → 𝑥 = (card‘𝑦))
35 eleq1 2899 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝑥 ∈ ran card ↔ (card‘𝑦) ∈ ran card))
36 breq2 5063 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝐴𝑥𝐴 ≺ (card‘𝑦)))
3735, 36anbi12d 632 . . . . . . . . 9 (𝑥 = (card‘𝑦) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) ↔ ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
3834, 37syl 17 . . . . . . . 8 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) ↔ ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
3928, 38sylibrd 261 . . . . . . 7 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝐴𝑦 → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
4039expimpd 456 . . . . . 6 (𝑥 = (𝑦 ∩ (card‘𝑦)) → ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
4140adantl 484 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑥 = (𝑦 ∩ (card‘𝑦))) → ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
42 inss1 4198 . . . . . 6 (𝑦 ∩ (card‘𝑦)) ⊆ 𝑦
4342a1i 11 . . . . 5 (𝐴 ∈ dom card → (𝑦 ∩ (card‘𝑦)) ⊆ 𝑦)
4416, 41, 43intabssd 39959 . . . 4 (𝐴 ∈ dom card → {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)})
4513, 44eqssd 3977 . . 3 (𝐴 ∈ dom card → {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)})
46 df-rab 3146 . . . 4 {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)}
4746inteqi 4873 . . 3 {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)}
48 df-rab 3146 . . . 4 {𝑥 ∈ ran card ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)}
4948inteqi 4873 . . 3 {𝑥 ∈ ran card ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)}
5045, 47, 493eqtr4g 2880 . 2 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑥 ∈ ran card ∣ 𝐴𝑥})
511, 50eqtrd 2855 1 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  {cab 2798  wral 3137  {crab 3141  Vcvv 3491  cin 3928  wss 3929   cint 4869   class class class wbr 5059  dom cdm 5548  ran crn 5549  Oncon0 6184  Fun wfun 6342  cfv 6348  cen 8499  csdm 8501  harchar 9013  cardccrd 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-wrecs 7940  df-recs 8001  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-oi 8967  df-har 9015  df-card 9361
This theorem is referenced by:  harval3on  39979
  Copyright terms: Public domain W3C validator