Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  harval3 Structured version   Visualization version   GIF version

Theorem harval3 43527
Description: (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.)
Assertion
Ref Expression
harval3 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem harval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 harval2 9950 . 2 (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝐴𝑦})
2 vex 3451 . . . . . 6 𝑥 ∈ V
32a1i 11 . . . . 5 (𝐴 ∈ dom card → 𝑥 ∈ V)
4 elrncard 43526 . . . . . . . . 9 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
54simplbi 497 . . . . . . . 8 (𝑥 ∈ ran card → 𝑥 ∈ On)
65anim1i 615 . . . . . . 7 ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑥 ∈ On ∧ 𝐴𝑥))
7 eleq1 2816 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ∈ On ↔ 𝑥 ∈ On))
8 breq2 5111 . . . . . . . 8 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
97, 8anbi12d 632 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦 ∈ On ∧ 𝐴𝑦) ↔ (𝑥 ∈ On ∧ 𝐴𝑥)))
106, 9imbitrrid 246 . . . . . 6 (𝑦 = 𝑥 → ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑦 ∈ On ∧ 𝐴𝑦)))
1110adantl 481 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑦 = 𝑥) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑦 ∈ On ∧ 𝐴𝑦)))
12 ssidd 3970 . . . . 5 (𝐴 ∈ dom card → 𝑥𝑥)
133, 11, 12intabssd 43508 . . . 4 (𝐴 ∈ dom card → {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)} ⊆ {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)})
14 vex 3451 . . . . . . 7 𝑦 ∈ V
1514inex1 5272 . . . . . 6 (𝑦 ∩ (card‘𝑦)) ∈ V
1615a1i 11 . . . . 5 (𝐴 ∈ dom card → (𝑦 ∩ (card‘𝑦)) ∈ V)
17 oncardid 9909 . . . . . . . . . . . 12 (𝑦 ∈ On → (card‘𝑦) ≈ 𝑦)
1817ensymd 8976 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ≈ (card‘𝑦))
19 sdomentr 9075 . . . . . . . . . . . 12 ((𝐴𝑦𝑦 ≈ (card‘𝑦)) → 𝐴 ≺ (card‘𝑦))
2019a1i 11 . . . . . . . . . . 11 (𝑦 ∈ On → ((𝐴𝑦𝑦 ≈ (card‘𝑦)) → 𝐴 ≺ (card‘𝑦)))
2118, 20mpan2d 694 . . . . . . . . . 10 (𝑦 ∈ On → (𝐴𝑦𝐴 ≺ (card‘𝑦)))
22 df-card 9892 . . . . . . . . . . . 12 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
2322funmpt2 6555 . . . . . . . . . . 11 Fun card
24 onenon 9902 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ∈ dom card)
25 fvelrn 7048 . . . . . . . . . . 11 ((Fun card ∧ 𝑦 ∈ dom card) → (card‘𝑦) ∈ ran card)
2623, 24, 25sylancr 587 . . . . . . . . . 10 (𝑦 ∈ On → (card‘𝑦) ∈ ran card)
2721, 26jctild 525 . . . . . . . . 9 (𝑦 ∈ On → (𝐴𝑦 → ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
2827adantl 481 . . . . . . . 8 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝐴𝑦 → ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
29 simpl 482 . . . . . . . . . 10 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → 𝑥 = (𝑦 ∩ (card‘𝑦)))
30 cardonle 9910 . . . . . . . . . . . 12 (𝑦 ∈ On → (card‘𝑦) ⊆ 𝑦)
3130adantl 481 . . . . . . . . . . 11 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (card‘𝑦) ⊆ 𝑦)
32 sseqin2 4186 . . . . . . . . . . 11 ((card‘𝑦) ⊆ 𝑦 ↔ (𝑦 ∩ (card‘𝑦)) = (card‘𝑦))
3331, 32sylib 218 . . . . . . . . . 10 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝑦 ∩ (card‘𝑦)) = (card‘𝑦))
3429, 33eqtrd 2764 . . . . . . . . 9 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → 𝑥 = (card‘𝑦))
35 eleq1 2816 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝑥 ∈ ran card ↔ (card‘𝑦) ∈ ran card))
36 breq2 5111 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝐴𝑥𝐴 ≺ (card‘𝑦)))
3735, 36anbi12d 632 . . . . . . . . 9 (𝑥 = (card‘𝑦) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) ↔ ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
3834, 37syl 17 . . . . . . . 8 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) ↔ ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
3928, 38sylibrd 259 . . . . . . 7 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝐴𝑦 → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
4039expimpd 453 . . . . . 6 (𝑥 = (𝑦 ∩ (card‘𝑦)) → ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
4140adantl 481 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑥 = (𝑦 ∩ (card‘𝑦))) → ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
42 inss1 4200 . . . . . 6 (𝑦 ∩ (card‘𝑦)) ⊆ 𝑦
4342a1i 11 . . . . 5 (𝐴 ∈ dom card → (𝑦 ∩ (card‘𝑦)) ⊆ 𝑦)
4416, 41, 43intabssd 43508 . . . 4 (𝐴 ∈ dom card → {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)})
4513, 44eqssd 3964 . . 3 (𝐴 ∈ dom card → {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)})
46 df-rab 3406 . . . 4 {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)}
4746inteqi 4914 . . 3 {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)}
48 df-rab 3406 . . . 4 {𝑥 ∈ ran card ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)}
4948inteqi 4914 . . 3 {𝑥 ∈ ran card ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)}
5045, 47, 493eqtr4g 2789 . 2 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑥 ∈ ran card ∣ 𝐴𝑥})
511, 50eqtrd 2764 1 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3405  Vcvv 3447  cin 3913  wss 3914   cint 4910   class class class wbr 5107  dom cdm 5638  ran crn 5639  Oncon0 6332  Fun wfun 6505  cfv 6511  cen 8915  csdm 8917  harchar 9509  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-oi 9463  df-har 9510  df-card 9892
This theorem is referenced by:  harval3on  43528
  Copyright terms: Public domain W3C validator