Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  harval3 Structured version   Visualization version   GIF version

Theorem harval3 43500
Description: (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.)
Assertion
Ref Expression
harval3 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem harval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 harval2 9926 . 2 (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝐴𝑦})
2 vex 3448 . . . . . 6 𝑥 ∈ V
32a1i 11 . . . . 5 (𝐴 ∈ dom card → 𝑥 ∈ V)
4 elrncard 43499 . . . . . . . . 9 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
54simplbi 497 . . . . . . . 8 (𝑥 ∈ ran card → 𝑥 ∈ On)
65anim1i 615 . . . . . . 7 ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑥 ∈ On ∧ 𝐴𝑥))
7 eleq1 2816 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ∈ On ↔ 𝑥 ∈ On))
8 breq2 5106 . . . . . . . 8 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
97, 8anbi12d 632 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦 ∈ On ∧ 𝐴𝑦) ↔ (𝑥 ∈ On ∧ 𝐴𝑥)))
106, 9imbitrrid 246 . . . . . 6 (𝑦 = 𝑥 → ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑦 ∈ On ∧ 𝐴𝑦)))
1110adantl 481 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑦 = 𝑥) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) → (𝑦 ∈ On ∧ 𝐴𝑦)))
12 ssidd 3967 . . . . 5 (𝐴 ∈ dom card → 𝑥𝑥)
133, 11, 12intabssd 43481 . . . 4 (𝐴 ∈ dom card → {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)} ⊆ {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)})
14 vex 3448 . . . . . . 7 𝑦 ∈ V
1514inex1 5267 . . . . . 6 (𝑦 ∩ (card‘𝑦)) ∈ V
1615a1i 11 . . . . 5 (𝐴 ∈ dom card → (𝑦 ∩ (card‘𝑦)) ∈ V)
17 oncardid 9885 . . . . . . . . . . . 12 (𝑦 ∈ On → (card‘𝑦) ≈ 𝑦)
1817ensymd 8953 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ≈ (card‘𝑦))
19 sdomentr 9052 . . . . . . . . . . . 12 ((𝐴𝑦𝑦 ≈ (card‘𝑦)) → 𝐴 ≺ (card‘𝑦))
2019a1i 11 . . . . . . . . . . 11 (𝑦 ∈ On → ((𝐴𝑦𝑦 ≈ (card‘𝑦)) → 𝐴 ≺ (card‘𝑦)))
2118, 20mpan2d 694 . . . . . . . . . 10 (𝑦 ∈ On → (𝐴𝑦𝐴 ≺ (card‘𝑦)))
22 df-card 9868 . . . . . . . . . . . 12 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
2322funmpt2 6539 . . . . . . . . . . 11 Fun card
24 onenon 9878 . . . . . . . . . . 11 (𝑦 ∈ On → 𝑦 ∈ dom card)
25 fvelrn 7030 . . . . . . . . . . 11 ((Fun card ∧ 𝑦 ∈ dom card) → (card‘𝑦) ∈ ran card)
2623, 24, 25sylancr 587 . . . . . . . . . 10 (𝑦 ∈ On → (card‘𝑦) ∈ ran card)
2721, 26jctild 525 . . . . . . . . 9 (𝑦 ∈ On → (𝐴𝑦 → ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
2827adantl 481 . . . . . . . 8 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝐴𝑦 → ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
29 simpl 482 . . . . . . . . . 10 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → 𝑥 = (𝑦 ∩ (card‘𝑦)))
30 cardonle 9886 . . . . . . . . . . . 12 (𝑦 ∈ On → (card‘𝑦) ⊆ 𝑦)
3130adantl 481 . . . . . . . . . . 11 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (card‘𝑦) ⊆ 𝑦)
32 sseqin2 4182 . . . . . . . . . . 11 ((card‘𝑦) ⊆ 𝑦 ↔ (𝑦 ∩ (card‘𝑦)) = (card‘𝑦))
3331, 32sylib 218 . . . . . . . . . 10 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝑦 ∩ (card‘𝑦)) = (card‘𝑦))
3429, 33eqtrd 2764 . . . . . . . . 9 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → 𝑥 = (card‘𝑦))
35 eleq1 2816 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝑥 ∈ ran card ↔ (card‘𝑦) ∈ ran card))
36 breq2 5106 . . . . . . . . . 10 (𝑥 = (card‘𝑦) → (𝐴𝑥𝐴 ≺ (card‘𝑦)))
3735, 36anbi12d 632 . . . . . . . . 9 (𝑥 = (card‘𝑦) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) ↔ ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
3834, 37syl 17 . . . . . . . 8 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → ((𝑥 ∈ ran card ∧ 𝐴𝑥) ↔ ((card‘𝑦) ∈ ran card ∧ 𝐴 ≺ (card‘𝑦))))
3928, 38sylibrd 259 . . . . . . 7 ((𝑥 = (𝑦 ∩ (card‘𝑦)) ∧ 𝑦 ∈ On) → (𝐴𝑦 → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
4039expimpd 453 . . . . . 6 (𝑥 = (𝑦 ∩ (card‘𝑦)) → ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
4140adantl 481 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑥 = (𝑦 ∩ (card‘𝑦))) → ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝑥 ∈ ran card ∧ 𝐴𝑥)))
42 inss1 4196 . . . . . 6 (𝑦 ∩ (card‘𝑦)) ⊆ 𝑦
4342a1i 11 . . . . 5 (𝐴 ∈ dom card → (𝑦 ∩ (card‘𝑦)) ⊆ 𝑦)
4416, 41, 43intabssd 43481 . . . 4 (𝐴 ∈ dom card → {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)})
4513, 44eqssd 3961 . . 3 (𝐴 ∈ dom card → {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)})
46 df-rab 3403 . . . 4 {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)}
4746inteqi 4910 . . 3 {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴𝑦)}
48 df-rab 3403 . . . 4 {𝑥 ∈ ran card ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)}
4948inteqi 4910 . . 3 {𝑥 ∈ ran card ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ ran card ∧ 𝐴𝑥)}
5045, 47, 493eqtr4g 2789 . 2 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝐴𝑦} = {𝑥 ∈ ran card ∣ 𝐴𝑥})
511, 50eqtrd 2764 1 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ ran card ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3402  Vcvv 3444  cin 3910  wss 3911   cint 4906   class class class wbr 5102  dom cdm 5631  ran crn 5632  Oncon0 6320  Fun wfun 6493  cfv 6499  cen 8892  csdm 8894  harchar 9485  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-oi 9439  df-har 9486  df-card 9868
This theorem is referenced by:  harval3on  43501
  Copyright terms: Public domain W3C validator