Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  harval3 Structured version   Visualization version   GIF version

Theorem harval3 42755
Description: (harβ€˜π΄) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.)
Assertion
Ref Expression
harval3 (𝐴 ∈ dom card β†’ (harβ€˜π΄) = ∩ {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯})
Distinct variable group:   π‘₯,𝐴

Proof of Theorem harval3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 harval2 9998 . 2 (𝐴 ∈ dom card β†’ (harβ€˜π΄) = ∩ {𝑦 ∈ On ∣ 𝐴 β‰Ί 𝑦})
2 vex 3477 . . . . . 6 π‘₯ ∈ V
32a1i 11 . . . . 5 (𝐴 ∈ dom card β†’ π‘₯ ∈ V)
4 elrncard 42754 . . . . . . . . 9 (π‘₯ ∈ ran card ↔ (π‘₯ ∈ On ∧ βˆ€π‘¦ ∈ π‘₯ Β¬ 𝑦 β‰ˆ π‘₯))
54simplbi 497 . . . . . . . 8 (π‘₯ ∈ ran card β†’ π‘₯ ∈ On)
65anim1i 614 . . . . . . 7 ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) β†’ (π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯))
7 eleq1 2820 . . . . . . . 8 (𝑦 = π‘₯ β†’ (𝑦 ∈ On ↔ π‘₯ ∈ On))
8 breq2 5152 . . . . . . . 8 (𝑦 = π‘₯ β†’ (𝐴 β‰Ί 𝑦 ↔ 𝐴 β‰Ί π‘₯))
97, 8anbi12d 630 . . . . . . 7 (𝑦 = π‘₯ β†’ ((𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦) ↔ (π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯)))
106, 9imbitrrid 245 . . . . . 6 (𝑦 = π‘₯ β†’ ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) β†’ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)))
1110adantl 481 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑦 = π‘₯) β†’ ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) β†’ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)))
12 ssidd 4005 . . . . 5 (𝐴 ∈ dom card β†’ π‘₯ βŠ† π‘₯)
133, 11, 12intabssd 42736 . . . 4 (𝐴 ∈ dom card β†’ ∩ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)} βŠ† ∩ {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)})
14 vex 3477 . . . . . . 7 𝑦 ∈ V
1514inex1 5317 . . . . . 6 (𝑦 ∩ (cardβ€˜π‘¦)) ∈ V
1615a1i 11 . . . . 5 (𝐴 ∈ dom card β†’ (𝑦 ∩ (cardβ€˜π‘¦)) ∈ V)
17 oncardid 9957 . . . . . . . . . . . 12 (𝑦 ∈ On β†’ (cardβ€˜π‘¦) β‰ˆ 𝑦)
1817ensymd 9007 . . . . . . . . . . 11 (𝑦 ∈ On β†’ 𝑦 β‰ˆ (cardβ€˜π‘¦))
19 sdomentr 9117 . . . . . . . . . . . 12 ((𝐴 β‰Ί 𝑦 ∧ 𝑦 β‰ˆ (cardβ€˜π‘¦)) β†’ 𝐴 β‰Ί (cardβ€˜π‘¦))
2019a1i 11 . . . . . . . . . . 11 (𝑦 ∈ On β†’ ((𝐴 β‰Ί 𝑦 ∧ 𝑦 β‰ˆ (cardβ€˜π‘¦)) β†’ 𝐴 β‰Ί (cardβ€˜π‘¦)))
2118, 20mpan2d 691 . . . . . . . . . 10 (𝑦 ∈ On β†’ (𝐴 β‰Ί 𝑦 β†’ 𝐴 β‰Ί (cardβ€˜π‘¦)))
22 df-card 9940 . . . . . . . . . . . 12 card = (π‘₯ ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ π‘₯})
2322funmpt2 6587 . . . . . . . . . . 11 Fun card
24 onenon 9950 . . . . . . . . . . 11 (𝑦 ∈ On β†’ 𝑦 ∈ dom card)
25 fvelrn 7078 . . . . . . . . . . 11 ((Fun card ∧ 𝑦 ∈ dom card) β†’ (cardβ€˜π‘¦) ∈ ran card)
2623, 24, 25sylancr 586 . . . . . . . . . 10 (𝑦 ∈ On β†’ (cardβ€˜π‘¦) ∈ ran card)
2721, 26jctild 525 . . . . . . . . 9 (𝑦 ∈ On β†’ (𝐴 β‰Ί 𝑦 β†’ ((cardβ€˜π‘¦) ∈ ran card ∧ 𝐴 β‰Ί (cardβ€˜π‘¦))))
2827adantl 481 . . . . . . . 8 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ (𝐴 β‰Ί 𝑦 β†’ ((cardβ€˜π‘¦) ∈ ran card ∧ 𝐴 β‰Ί (cardβ€˜π‘¦))))
29 simpl 482 . . . . . . . . . 10 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)))
30 cardonle 9958 . . . . . . . . . . . 12 (𝑦 ∈ On β†’ (cardβ€˜π‘¦) βŠ† 𝑦)
3130adantl 481 . . . . . . . . . . 11 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ (cardβ€˜π‘¦) βŠ† 𝑦)
32 sseqin2 4215 . . . . . . . . . . 11 ((cardβ€˜π‘¦) βŠ† 𝑦 ↔ (𝑦 ∩ (cardβ€˜π‘¦)) = (cardβ€˜π‘¦))
3331, 32sylib 217 . . . . . . . . . 10 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ (𝑦 ∩ (cardβ€˜π‘¦)) = (cardβ€˜π‘¦))
3429, 33eqtrd 2771 . . . . . . . . 9 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ π‘₯ = (cardβ€˜π‘¦))
35 eleq1 2820 . . . . . . . . . 10 (π‘₯ = (cardβ€˜π‘¦) β†’ (π‘₯ ∈ ran card ↔ (cardβ€˜π‘¦) ∈ ran card))
36 breq2 5152 . . . . . . . . . 10 (π‘₯ = (cardβ€˜π‘¦) β†’ (𝐴 β‰Ί π‘₯ ↔ 𝐴 β‰Ί (cardβ€˜π‘¦)))
3735, 36anbi12d 630 . . . . . . . . 9 (π‘₯ = (cardβ€˜π‘¦) β†’ ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) ↔ ((cardβ€˜π‘¦) ∈ ran card ∧ 𝐴 β‰Ί (cardβ€˜π‘¦))))
3834, 37syl 17 . . . . . . . 8 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ ((π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯) ↔ ((cardβ€˜π‘¦) ∈ ran card ∧ 𝐴 β‰Ί (cardβ€˜π‘¦))))
3928, 38sylibrd 259 . . . . . . 7 ((π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) ∧ 𝑦 ∈ On) β†’ (𝐴 β‰Ί 𝑦 β†’ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)))
4039expimpd 453 . . . . . 6 (π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦)) β†’ ((𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦) β†’ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)))
4140adantl 481 . . . . 5 ((𝐴 ∈ dom card ∧ π‘₯ = (𝑦 ∩ (cardβ€˜π‘¦))) β†’ ((𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦) β†’ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)))
42 inss1 4228 . . . . . 6 (𝑦 ∩ (cardβ€˜π‘¦)) βŠ† 𝑦
4342a1i 11 . . . . 5 (𝐴 ∈ dom card β†’ (𝑦 ∩ (cardβ€˜π‘¦)) βŠ† 𝑦)
4416, 41, 43intabssd 42736 . . . 4 (𝐴 ∈ dom card β†’ ∩ {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)} βŠ† ∩ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)})
4513, 44eqssd 3999 . . 3 (𝐴 ∈ dom card β†’ ∩ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)} = ∩ {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)})
46 df-rab 3432 . . . 4 {𝑦 ∈ On ∣ 𝐴 β‰Ί 𝑦} = {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)}
4746inteqi 4954 . . 3 ∩ {𝑦 ∈ On ∣ 𝐴 β‰Ί 𝑦} = ∩ {𝑦 ∣ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦)}
48 df-rab 3432 . . . 4 {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯} = {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)}
4948inteqi 4954 . . 3 ∩ {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯} = ∩ {π‘₯ ∣ (π‘₯ ∈ ran card ∧ 𝐴 β‰Ί π‘₯)}
5045, 47, 493eqtr4g 2796 . 2 (𝐴 ∈ dom card β†’ ∩ {𝑦 ∈ On ∣ 𝐴 β‰Ί 𝑦} = ∩ {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯})
511, 50eqtrd 2771 1 (𝐴 ∈ dom card β†’ (harβ€˜π΄) = ∩ {π‘₯ ∈ ran card ∣ 𝐴 β‰Ί π‘₯})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  {cab 2708  βˆ€wral 3060  {crab 3431  Vcvv 3473   ∩ cin 3947   βŠ† wss 3948  βˆ© cint 4950   class class class wbr 5148  dom cdm 5676  ran crn 5677  Oncon0 6364  Fun wfun 6537  β€˜cfv 6543   β‰ˆ cen 8942   β‰Ί csdm 8944  harchar 9557  cardccrd 9936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-oi 9511  df-har 9558  df-card 9940
This theorem is referenced by:  harval3on  42756
  Copyright terms: Public domain W3C validator