Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-isfinite6 Structured version   Visualization version   GIF version

Theorem rp-isfinite6 43507
Description: A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ. (Contributed by RP, 10-Mar-2020.)
Assertion
Ref Expression
rp-isfinite6 (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
Distinct variable group:   𝐴,𝑛

Proof of Theorem rp-isfinite6
StepHypRef Expression
1 exmid 894 . . . 4 (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)
21biantrur 530 . . 3 (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin))
3 andir 1010 . . 3 (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin) ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)))
42, 3bitri 275 . 2 (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)))
5 simpl 482 . . . 4 ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) → 𝐴 = ∅)
6 0fi 9013 . . . . . 6 ∅ ∈ Fin
7 eleq1a 2823 . . . . . 6 (∅ ∈ Fin → (𝐴 = ∅ → 𝐴 ∈ Fin))
86, 7ax-mp 5 . . . . 5 (𝐴 = ∅ → 𝐴 ∈ Fin)
98ancli 548 . . . 4 (𝐴 = ∅ → (𝐴 = ∅ ∧ 𝐴 ∈ Fin))
105, 9impbii 209 . . 3 ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ 𝐴 = ∅)
11 rp-isfinite5 43506 . . . . . 6 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
12 df-rex 3054 . . . . . 6 (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1311, 12bitri 275 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1413anbi2i 623 . . . 4 ((¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
15 df-rex 3054 . . . . 5 (∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
16 en0 8989 . . . . . . . . . . . . . 14 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
17 ensymb 8973 . . . . . . . . . . . . . 14 (𝐴 ≈ ∅ ↔ ∅ ≈ 𝐴)
1816, 17bitr3i 277 . . . . . . . . . . . . 13 (𝐴 = ∅ ↔ ∅ ≈ 𝐴)
1918notbii 320 . . . . . . . . . . . 12 𝐴 = ∅ ↔ ¬ ∅ ≈ 𝐴)
20 elnn0 12444 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
2120anbi1i 624 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴))
22 andir 1010 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2321, 22bitri 275 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2419, 23anbi12i 628 . . . . . . . . . . 11 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ ∅ ≈ 𝐴 ∧ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
25 andi 1009 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴 ∧ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
2624, 25bitri 275 . . . . . . . . . 10 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
27 3anass 1094 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)))
28 3anass 1094 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2927, 28orbi12i 914 . . . . . . . . . 10 (((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
3026, 29sylbb2 238 . . . . . . . . 9 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
31 simp2 1137 . . . . . . . . . 10 ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
32 oveq2 7395 . . . . . . . . . . . 12 (𝑛 = 0 → (1...𝑛) = (1...0))
33 fz10 13506 . . . . . . . . . . . 12 (1...0) = ∅
3432, 33eqtrdi 2780 . . . . . . . . . . 11 (𝑛 = 0 → (1...𝑛) = ∅)
35 simp2 1137 . . . . . . . . . . . . 13 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → (1...𝑛) = ∅)
36 simp3 1138 . . . . . . . . . . . . 13 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → (1...𝑛) ≈ 𝐴)
3735, 36eqbrtrrd 5131 . . . . . . . . . . . 12 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → ∅ ≈ 𝐴)
38 simp1 1136 . . . . . . . . . . . 12 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → ¬ ∅ ≈ 𝐴)
3937, 38pm2.21dd 195 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
4034, 39syl3an2 1164 . . . . . . . . . 10 ((¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
4131, 40jaoi 857 . . . . . . . . 9 (((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ)
4230, 41syl 17 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ)
43 simprr 772 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → (1...𝑛) ≈ 𝐴)
4442, 43jca 511 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
45 nngt0 12217 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 𝑛)
46 hash0 14332 . . . . . . . . . . . . 13 (♯‘∅) = 0
4746a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (♯‘∅) = 0)
48 nnnn0 12449 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
49 hashfz1 14311 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
5048, 49syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
5145, 47, 503brtr4d 5139 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (♯‘∅) < (♯‘(1...𝑛)))
52 fzfi 13937 . . . . . . . . . . . 12 (1...𝑛) ∈ Fin
53 hashsdom 14346 . . . . . . . . . . . 12 ((∅ ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘∅) < (♯‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛)))
546, 52, 53mp2an 692 . . . . . . . . . . 11 ((♯‘∅) < (♯‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛))
5551, 54sylib 218 . . . . . . . . . 10 (𝑛 ∈ ℕ → ∅ ≺ (1...𝑛))
5655anim1i 615 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴))
57 sdomentr 9075 . . . . . . . . . . 11 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ∅ ≺ 𝐴)
58 sdomnen 8952 . . . . . . . . . . 11 (∅ ≺ 𝐴 → ¬ ∅ ≈ 𝐴)
5957, 58syl 17 . . . . . . . . . 10 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ¬ ∅ ≈ 𝐴)
60 en0r 8991 . . . . . . . . . . 11 (∅ ≈ 𝐴𝐴 = ∅)
6160notbii 320 . . . . . . . . . 10 (¬ ∅ ≈ 𝐴 ↔ ¬ 𝐴 = ∅)
6259, 61sylib 218 . . . . . . . . 9 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅)
6356, 62syl 17 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅)
6448anim1i 615 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
6563, 64jca 511 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
6644, 65impbii 209 . . . . . 6 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
6766exbii 1848 . . . . 5 (∃𝑛𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
68 19.42v 1953 . . . . 5 (∃𝑛𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
6915, 67, 683bitr2ri 300 . . . 4 ((¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)
7014, 69bitri 275 . . 3 ((¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)
7110, 70orbi12i 914 . 2 (((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)) ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
724, 71bitri 275 1 (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3053  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  cen 8915  csdm 8917  Fincfn 8918  0cc0 11068  1c1 11069   < clt 11208  cn 12186  0cn0 12442  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator