Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-isfinite6 Structured version   Visualization version   GIF version

Theorem rp-isfinite6 42269
Description: A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ. (Contributed by RP, 10-Mar-2020.)
Assertion
Ref Expression
rp-isfinite6 (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
Distinct variable group:   𝐴,𝑛

Proof of Theorem rp-isfinite6
StepHypRef Expression
1 exmid 894 . . . 4 (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)
21biantrur 532 . . 3 (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin))
3 andir 1008 . . 3 (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin) ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)))
42, 3bitri 275 . 2 (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)))
5 simpl 484 . . . 4 ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) → 𝐴 = ∅)
6 0fin 9171 . . . . . 6 ∅ ∈ Fin
7 eleq1a 2829 . . . . . 6 (∅ ∈ Fin → (𝐴 = ∅ → 𝐴 ∈ Fin))
86, 7ax-mp 5 . . . . 5 (𝐴 = ∅ → 𝐴 ∈ Fin)
98ancli 550 . . . 4 (𝐴 = ∅ → (𝐴 = ∅ ∧ 𝐴 ∈ Fin))
105, 9impbii 208 . . 3 ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ 𝐴 = ∅)
11 rp-isfinite5 42268 . . . . . 6 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
12 df-rex 3072 . . . . . 6 (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1311, 12bitri 275 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1413anbi2i 624 . . . 4 ((¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
15 df-rex 3072 . . . . 5 (∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
16 en0 9013 . . . . . . . . . . . . . 14 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
17 ensymb 8998 . . . . . . . . . . . . . 14 (𝐴 ≈ ∅ ↔ ∅ ≈ 𝐴)
1816, 17bitr3i 277 . . . . . . . . . . . . 13 (𝐴 = ∅ ↔ ∅ ≈ 𝐴)
1918notbii 320 . . . . . . . . . . . 12 𝐴 = ∅ ↔ ¬ ∅ ≈ 𝐴)
20 elnn0 12474 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
2120anbi1i 625 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴))
22 andir 1008 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2321, 22bitri 275 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2419, 23anbi12i 628 . . . . . . . . . . 11 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ ∅ ≈ 𝐴 ∧ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
25 andi 1007 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴 ∧ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
2624, 25bitri 275 . . . . . . . . . 10 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
27 3anass 1096 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)))
28 3anass 1096 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2927, 28orbi12i 914 . . . . . . . . . 10 (((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
3026, 29sylbb2 237 . . . . . . . . 9 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
31 simp2 1138 . . . . . . . . . 10 ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
32 oveq2 7417 . . . . . . . . . . . 12 (𝑛 = 0 → (1...𝑛) = (1...0))
33 fz10 13522 . . . . . . . . . . . 12 (1...0) = ∅
3432, 33eqtrdi 2789 . . . . . . . . . . 11 (𝑛 = 0 → (1...𝑛) = ∅)
35 simp2 1138 . . . . . . . . . . . . 13 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → (1...𝑛) = ∅)
36 simp3 1139 . . . . . . . . . . . . 13 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → (1...𝑛) ≈ 𝐴)
3735, 36eqbrtrrd 5173 . . . . . . . . . . . 12 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → ∅ ≈ 𝐴)
38 simp1 1137 . . . . . . . . . . . 12 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → ¬ ∅ ≈ 𝐴)
3937, 38pm2.21dd 194 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
4034, 39syl3an2 1165 . . . . . . . . . 10 ((¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
4131, 40jaoi 856 . . . . . . . . 9 (((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ)
4230, 41syl 17 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ)
43 simprr 772 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → (1...𝑛) ≈ 𝐴)
4442, 43jca 513 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
45 nngt0 12243 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 𝑛)
46 hash0 14327 . . . . . . . . . . . . 13 (♯‘∅) = 0
4746a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (♯‘∅) = 0)
48 nnnn0 12479 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
49 hashfz1 14306 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
5048, 49syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
5145, 47, 503brtr4d 5181 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (♯‘∅) < (♯‘(1...𝑛)))
52 fzfi 13937 . . . . . . . . . . . 12 (1...𝑛) ∈ Fin
53 hashsdom 14341 . . . . . . . . . . . 12 ((∅ ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘∅) < (♯‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛)))
546, 52, 53mp2an 691 . . . . . . . . . . 11 ((♯‘∅) < (♯‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛))
5551, 54sylib 217 . . . . . . . . . 10 (𝑛 ∈ ℕ → ∅ ≺ (1...𝑛))
5655anim1i 616 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴))
57 sdomentr 9111 . . . . . . . . . . 11 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ∅ ≺ 𝐴)
58 sdomnen 8977 . . . . . . . . . . 11 (∅ ≺ 𝐴 → ¬ ∅ ≈ 𝐴)
5957, 58syl 17 . . . . . . . . . 10 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ¬ ∅ ≈ 𝐴)
60 en0r 9016 . . . . . . . . . . 11 (∅ ≈ 𝐴𝐴 = ∅)
6160notbii 320 . . . . . . . . . 10 (¬ ∅ ≈ 𝐴 ↔ ¬ 𝐴 = ∅)
6259, 61sylib 217 . . . . . . . . 9 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅)
6356, 62syl 17 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅)
6448anim1i 616 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
6563, 64jca 513 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
6644, 65impbii 208 . . . . . 6 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
6766exbii 1851 . . . . 5 (∃𝑛𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
68 19.42v 1958 . . . . 5 (∃𝑛𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
6915, 67, 683bitr2ri 300 . . . 4 ((¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)
7014, 69bitri 275 . . 3 ((¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)
7110, 70orbi12i 914 . 2 (((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)) ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
724, 71bitri 275 1 (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wrex 3071  c0 4323   class class class wbr 5149  cfv 6544  (class class class)co 7409  cen 8936  csdm 8938  Fincfn 8939  0cc0 11110  1c1 11111   < clt 11248  cn 12212  0cn0 12472  ...cfz 13484  chash 14290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-fz 13485  df-hash 14291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator