Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-isfinite6 Structured version   Visualization version   GIF version

Theorem rp-isfinite6 40058
 Description: A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ. (Contributed by RP, 10-Mar-2020.)
Assertion
Ref Expression
rp-isfinite6 (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
Distinct variable group:   𝐴,𝑛

Proof of Theorem rp-isfinite6
StepHypRef Expression
1 exmid 892 . . . 4 (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)
21biantrur 534 . . 3 (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin))
3 andir 1006 . . 3 (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin) ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)))
42, 3bitri 278 . 2 (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)))
5 simpl 486 . . . 4 ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) → 𝐴 = ∅)
6 0fin 8730 . . . . . 6 ∅ ∈ Fin
7 eleq1a 2911 . . . . . 6 (∅ ∈ Fin → (𝐴 = ∅ → 𝐴 ∈ Fin))
86, 7ax-mp 5 . . . . 5 (𝐴 = ∅ → 𝐴 ∈ Fin)
98ancli 552 . . . 4 (𝐴 = ∅ → (𝐴 = ∅ ∧ 𝐴 ∈ Fin))
105, 9impbii 212 . . 3 ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ 𝐴 = ∅)
11 rp-isfinite5 40057 . . . . . 6 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
12 df-rex 3138 . . . . . 6 (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1311, 12bitri 278 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1413anbi2i 625 . . . 4 ((¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
15 df-rex 3138 . . . . 5 (∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
16 en0 8555 . . . . . . . . . . . . . 14 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
17 ensymb 8540 . . . . . . . . . . . . . 14 (𝐴 ≈ ∅ ↔ ∅ ≈ 𝐴)
1816, 17bitr3i 280 . . . . . . . . . . . . 13 (𝐴 = ∅ ↔ ∅ ≈ 𝐴)
1918notbii 323 . . . . . . . . . . . 12 𝐴 = ∅ ↔ ¬ ∅ ≈ 𝐴)
20 elnn0 11885 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
2120anbi1i 626 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴))
22 andir 1006 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2321, 22bitri 278 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2419, 23anbi12i 629 . . . . . . . . . . 11 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ ∅ ≈ 𝐴 ∧ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
25 andi 1005 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴 ∧ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
2624, 25bitri 278 . . . . . . . . . 10 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
27 3anass 1092 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)))
28 3anass 1092 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2927, 28orbi12i 912 . . . . . . . . . 10 (((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
3026, 29sylbb2 241 . . . . . . . . 9 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
31 simp2 1134 . . . . . . . . . 10 ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
32 oveq2 7146 . . . . . . . . . . . 12 (𝑛 = 0 → (1...𝑛) = (1...0))
33 fz10 12921 . . . . . . . . . . . 12 (1...0) = ∅
3432, 33syl6eq 2875 . . . . . . . . . . 11 (𝑛 = 0 → (1...𝑛) = ∅)
35 simp2 1134 . . . . . . . . . . . . 13 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → (1...𝑛) = ∅)
36 simp3 1135 . . . . . . . . . . . . 13 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → (1...𝑛) ≈ 𝐴)
3735, 36eqbrtrrd 5071 . . . . . . . . . . . 12 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → ∅ ≈ 𝐴)
38 simp1 1133 . . . . . . . . . . . 12 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → ¬ ∅ ≈ 𝐴)
3937, 38pm2.21dd 198 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
4034, 39syl3an2 1161 . . . . . . . . . 10 ((¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
4131, 40jaoi 854 . . . . . . . . 9 (((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ)
4230, 41syl 17 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ)
43 simprr 772 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → (1...𝑛) ≈ 𝐴)
4442, 43jca 515 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
45 nngt0 11654 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 𝑛)
46 hash0 13722 . . . . . . . . . . . . 13 (♯‘∅) = 0
4746a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (♯‘∅) = 0)
48 nnnn0 11890 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
49 hashfz1 13700 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
5048, 49syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
5145, 47, 503brtr4d 5079 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (♯‘∅) < (♯‘(1...𝑛)))
52 fzfi 13333 . . . . . . . . . . . 12 (1...𝑛) ∈ Fin
53 hashsdom 13736 . . . . . . . . . . . 12 ((∅ ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘∅) < (♯‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛)))
546, 52, 53mp2an 691 . . . . . . . . . . 11 ((♯‘∅) < (♯‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛))
5551, 54sylib 221 . . . . . . . . . 10 (𝑛 ∈ ℕ → ∅ ≺ (1...𝑛))
5655anim1i 617 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴))
57 sdomentr 8635 . . . . . . . . . . 11 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ∅ ≺ 𝐴)
58 sdomnen 8521 . . . . . . . . . . 11 (∅ ≺ 𝐴 → ¬ ∅ ≈ 𝐴)
5957, 58syl 17 . . . . . . . . . 10 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ¬ ∅ ≈ 𝐴)
60 ensymb 8540 . . . . . . . . . . . 12 (∅ ≈ 𝐴𝐴 ≈ ∅)
6160, 16bitri 278 . . . . . . . . . . 11 (∅ ≈ 𝐴𝐴 = ∅)
6261notbii 323 . . . . . . . . . 10 (¬ ∅ ≈ 𝐴 ↔ ¬ 𝐴 = ∅)
6359, 62sylib 221 . . . . . . . . 9 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅)
6456, 63syl 17 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅)
6548anim1i 617 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
6664, 65jca 515 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
6744, 66impbii 212 . . . . . 6 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
6867exbii 1849 . . . . 5 (∃𝑛𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
69 19.42v 1955 . . . . 5 (∃𝑛𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
7015, 68, 693bitr2ri 303 . . . 4 ((¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)
7114, 70bitri 278 . . 3 ((¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)
7210, 71orbi12i 912 . 2 (((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)) ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
734, 72bitri 278 1 (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2115  ∃wrex 3133  ∅c0 4274   class class class wbr 5047  ‘cfv 6336  (class class class)co 7138   ≈ cen 8489   ≺ csdm 8491  Fincfn 8492  0cc0 10522  1c1 10523   < clt 10660  ℕcn 11623  ℕ0cn0 11883  ...cfz 12883  ♯chash 13684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-n0 11884  df-xnn0 11954  df-z 11968  df-uz 12230  df-fz 12884  df-hash 13685 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator