Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snssd | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
snssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
snssd | ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | snssi 4693 | . 2 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
Copyright terms: Public domain | W3C validator |