Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmppcmp Structured version   Visualization version   GIF version

Theorem cmppcmp 31710
Description: Every compact space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
cmppcmp (𝐽 ∈ Comp → 𝐽 ∈ Paracomp)

Proof of Theorem cmppcmp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmptop 22454 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 cmpcref 31702 . . . . . 6 Comp = CovHasRefFin
32eleq2i 2830 . . . . 5 (𝐽 ∈ Comp ↔ 𝐽 ∈ CovHasRefFin)
4 eqid 2738 . . . . . 6 𝐽 = 𝐽
54iscref 31696 . . . . 5 (𝐽 ∈ CovHasRefFin ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦)))
63, 5bitri 274 . . . 4 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦)))
76simprbi 496 . . 3 (𝐽 ∈ Comp → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦))
8 simprl 767 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (𝒫 𝐽 ∩ Fin))
9 elin 3899 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝐽𝑧 ∈ Fin))
108, 9sylib 217 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → (𝑧 ∈ 𝒫 𝐽𝑧 ∈ Fin))
1110simpld 494 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ 𝒫 𝐽)
121ad3antrrr 726 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 ∈ Top)
1310simprd 495 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ Fin)
14 simplr 765 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 = 𝑦)
15 simprr 769 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧Ref𝑦)
16 eqid 2738 . . . . . . . . . . . . . 14 𝑧 = 𝑧
17 eqid 2738 . . . . . . . . . . . . . 14 𝑦 = 𝑦
1816, 17refbas 22569 . . . . . . . . . . . . 13 (𝑧Ref𝑦 𝑦 = 𝑧)
1915, 18syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑦 = 𝑧)
2014, 19eqtrd 2778 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 = 𝑧)
214, 16finlocfin 22579 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑧 ∈ Fin ∧ 𝐽 = 𝑧) → 𝑧 ∈ (LocFin‘𝐽))
2212, 13, 20, 21syl3anc 1369 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (LocFin‘𝐽))
2311, 22elind 4124 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)))
2423, 15jca 511 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → (𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑧Ref𝑦))
2524ex 412 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) → ((𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦) → (𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑧Ref𝑦)))
2625reximdv2 3198 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦))
2726ex 412 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑦 → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
2827a2d 29 . . . 4 ((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
2928ralimdva 3102 . . 3 (𝐽 ∈ Comp → (∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦) → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
307, 29mpd 15 . 2 (𝐽 ∈ Comp → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦))
31 ispcmp 31709 . . 3 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
324iscref 31696 . . 3 (𝐽 ∈ CovHasRef(LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
3331, 32bitri 274 . 2 (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
341, 30, 33sylanbrc 582 1 (𝐽 ∈ Comp → 𝐽 ∈ Paracomp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  cfv 6418  Fincfn 8691  Topctop 21950  Compccmp 22445  Refcref 22561  LocFinclocfin 22563  CovHasRefccref 31694  Paracompcpcmp 31707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695  df-r1 9453  df-rank 9454  df-card 9628  df-ac 9803  df-top 21951  df-cmp 22446  df-ref 22564  df-locfin 22566  df-cref 31695  df-pcmp 31708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator