Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmppcmp Structured version   Visualization version   GIF version

Theorem cmppcmp 33894
Description: Every compact space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
cmppcmp (𝐽 ∈ Comp → 𝐽 ∈ Paracomp)

Proof of Theorem cmppcmp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmptop 23338 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 cmpcref 33886 . . . . . 6 Comp = CovHasRefFin
32eleq2i 2827 . . . . 5 (𝐽 ∈ Comp ↔ 𝐽 ∈ CovHasRefFin)
4 eqid 2736 . . . . . 6 𝐽 = 𝐽
54iscref 33880 . . . . 5 (𝐽 ∈ CovHasRefFin ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦)))
63, 5bitri 275 . . . 4 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦)))
76simprbi 496 . . 3 (𝐽 ∈ Comp → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦))
8 simprl 770 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (𝒫 𝐽 ∩ Fin))
9 elin 3947 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝐽𝑧 ∈ Fin))
108, 9sylib 218 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → (𝑧 ∈ 𝒫 𝐽𝑧 ∈ Fin))
1110simpld 494 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ 𝒫 𝐽)
121ad3antrrr 730 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 ∈ Top)
1310simprd 495 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ Fin)
14 simplr 768 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 = 𝑦)
15 simprr 772 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧Ref𝑦)
16 eqid 2736 . . . . . . . . . . . . . 14 𝑧 = 𝑧
17 eqid 2736 . . . . . . . . . . . . . 14 𝑦 = 𝑦
1816, 17refbas 23453 . . . . . . . . . . . . 13 (𝑧Ref𝑦 𝑦 = 𝑧)
1915, 18syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑦 = 𝑧)
2014, 19eqtrd 2771 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 = 𝑧)
214, 16finlocfin 23463 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑧 ∈ Fin ∧ 𝐽 = 𝑧) → 𝑧 ∈ (LocFin‘𝐽))
2212, 13, 20, 21syl3anc 1373 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (LocFin‘𝐽))
2311, 22elind 4180 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)))
2423, 15jca 511 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → (𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑧Ref𝑦))
2524ex 412 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) → ((𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦) → (𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑧Ref𝑦)))
2625reximdv2 3151 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦))
2726ex 412 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑦 → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
2827a2d 29 . . . 4 ((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
2928ralimdva 3153 . . 3 (𝐽 ∈ Comp → (∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦) → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
307, 29mpd 15 . 2 (𝐽 ∈ Comp → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦))
31 ispcmp 33893 . . 3 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
324iscref 33880 . . 3 (𝐽 ∈ CovHasRef(LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
3331, 32bitri 275 . 2 (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
341, 30, 33sylanbrc 583 1 (𝐽 ∈ Comp → 𝐽 ∈ Paracomp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  cin 3930  𝒫 cpw 4580   cuni 4888   class class class wbr 5124  cfv 6536  Fincfn 8964  Topctop 22836  Compccmp 23329  Refcref 23445  LocFinclocfin 23447  CovHasRefccref 33878  Paracompcpcmp 33891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-en 8965  df-dom 8966  df-fin 8968  df-r1 9783  df-rank 9784  df-card 9958  df-ac 10135  df-top 22837  df-cmp 23330  df-ref 23448  df-locfin 23450  df-cref 33879  df-pcmp 33892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator