Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmppcmp Structured version   Visualization version   GIF version

Theorem cmppcmp 33804
Description: Every compact space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
cmppcmp (𝐽 ∈ Comp → 𝐽 ∈ Paracomp)

Proof of Theorem cmppcmp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmptop 23424 . 2 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 cmpcref 33796 . . . . . 6 Comp = CovHasRefFin
32eleq2i 2836 . . . . 5 (𝐽 ∈ Comp ↔ 𝐽 ∈ CovHasRefFin)
4 eqid 2740 . . . . . 6 𝐽 = 𝐽
54iscref 33790 . . . . 5 (𝐽 ∈ CovHasRefFin ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦)))
63, 5bitri 275 . . . 4 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦)))
76simprbi 496 . . 3 (𝐽 ∈ Comp → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦))
8 simprl 770 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (𝒫 𝐽 ∩ Fin))
9 elin 3992 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝐽𝑧 ∈ Fin))
108, 9sylib 218 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → (𝑧 ∈ 𝒫 𝐽𝑧 ∈ Fin))
1110simpld 494 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ 𝒫 𝐽)
121ad3antrrr 729 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 ∈ Top)
1310simprd 495 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ Fin)
14 simplr 768 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 = 𝑦)
15 simprr 772 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧Ref𝑦)
16 eqid 2740 . . . . . . . . . . . . . 14 𝑧 = 𝑧
17 eqid 2740 . . . . . . . . . . . . . 14 𝑦 = 𝑦
1816, 17refbas 23539 . . . . . . . . . . . . 13 (𝑧Ref𝑦 𝑦 = 𝑧)
1915, 18syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑦 = 𝑧)
2014, 19eqtrd 2780 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝐽 = 𝑧)
214, 16finlocfin 23549 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑧 ∈ Fin ∧ 𝐽 = 𝑧) → 𝑧 ∈ (LocFin‘𝐽))
2212, 13, 20, 21syl3anc 1371 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (LocFin‘𝐽))
2311, 22elind 4223 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → 𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)))
2423, 15jca 511 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) ∧ (𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦)) → (𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑧Ref𝑦))
2524ex 412 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) → ((𝑧 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑧Ref𝑦) → (𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑧Ref𝑦)))
2625reximdv2 3170 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) ∧ 𝐽 = 𝑦) → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦))
2726ex 412 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑦 → (∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
2827a2d 29 . . . 4 ((𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
2928ralimdva 3173 . . 3 (𝐽 ∈ Comp → (∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ Fin)𝑧Ref𝑦) → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
307, 29mpd 15 . 2 (𝐽 ∈ Comp → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦))
31 ispcmp 33803 . . 3 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
324iscref 33790 . . 3 (𝐽 ∈ CovHasRef(LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
3331, 32bitri 275 . 2 (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑧Ref𝑦)))
341, 30, 33sylanbrc 582 1 (𝐽 ∈ Comp → 𝐽 ∈ Paracomp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  cfv 6573  Fincfn 9003  Topctop 22920  Compccmp 23415  Refcref 23531  LocFinclocfin 23533  CovHasRefccref 33788  Paracompcpcmp 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007  df-r1 9833  df-rank 9834  df-card 10008  df-ac 10185  df-top 22921  df-cmp 23416  df-ref 23534  df-locfin 23536  df-cref 33789  df-pcmp 33802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator