| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ishlatiN | Structured version Visualization version GIF version | ||
| Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ishlati.1 | ⊢ 𝐾 ∈ OML |
| ishlati.2 | ⊢ 𝐾 ∈ CLat |
| ishlati.3 | ⊢ 𝐾 ∈ AtLat |
| ishlati.b | ⊢ 𝐵 = (Base‘𝐾) |
| ishlati.l | ⊢ ≤ = (le‘𝐾) |
| ishlati.s | ⊢ < = (lt‘𝐾) |
| ishlati.j | ⊢ ∨ = (join‘𝐾) |
| ishlati.z | ⊢ 0 = (0.‘𝐾) |
| ishlati.u | ⊢ 1 = (1.‘𝐾) |
| ishlati.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ishlati.9 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) |
| ishlati.10 | ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) |
| Ref | Expression |
|---|---|
| ishlatiN | ⊢ 𝐾 ∈ HL |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlati.1 | . . 3 ⊢ 𝐾 ∈ OML | |
| 2 | ishlati.2 | . . 3 ⊢ 𝐾 ∈ CLat | |
| 3 | ishlati.3 | . . 3 ⊢ 𝐾 ∈ AtLat | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . 2 ⊢ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) |
| 5 | ishlati.9 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) | |
| 6 | ishlati.10 | . . 3 ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) | |
| 7 | 5, 6 | pm3.2i 470 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
| 8 | ishlati.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 9 | ishlati.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 10 | ishlati.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 11 | ishlati.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 12 | ishlati.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 13 | ishlati.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 14 | ishlati.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 15 | 8, 9, 10, 11, 12, 13, 14 | ishlat2 39340 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
| 16 | 4, 7, 15 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ HL |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 lecple 17204 ltcplt 18250 joincjn 18253 0.cp0 18363 1.cp1 18364 CLatccla 18440 OMLcoml 39162 Atomscatm 39250 AtLatcal 39251 HLchlt 39337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-cvlat 39309 df-hlat 39338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |