Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlatiN Structured version   Visualization version   GIF version

Theorem ishlatiN 39313
Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
ishlati.1 𝐾 ∈ OML
ishlati.2 𝐾 ∈ CLat
ishlati.3 𝐾 ∈ AtLat
ishlati.b 𝐵 = (Base‘𝐾)
ishlati.l = (le‘𝐾)
ishlati.s < = (lt‘𝐾)
ishlati.j = (join‘𝐾)
ishlati.z 0 = (0.‘𝐾)
ishlati.u 1 = (1.‘𝐾)
ishlati.a 𝐴 = (Atoms‘𝐾)
ishlati.9 𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))
ishlati.10 𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))
Assertion
Ref Expression
ishlatiN 𝐾 ∈ HL
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlatiN
StepHypRef Expression
1 ishlati.1 . . 3 𝐾 ∈ OML
2 ishlati.2 . . 3 𝐾 ∈ CLat
3 ishlati.3 . . 3 𝐾 ∈ AtLat
41, 2, 33pm3.2i 1339 . 2 (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)
5 ishlati.9 . . 3 𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))
6 ishlati.10 . . 3 𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))
75, 6pm3.2i 470 . 2 (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
8 ishlati.b . . 3 𝐵 = (Base‘𝐾)
9 ishlati.l . . 3 = (le‘𝐾)
10 ishlati.s . . 3 < = (lt‘𝐾)
11 ishlati.j . . 3 = (join‘𝐾)
12 ishlati.z . . 3 0 = (0.‘𝐾)
13 ishlati.u . . 3 1 = (1.‘𝐾)
14 ishlati.a . . 3 𝐴 = (Atoms‘𝐾)
158, 9, 10, 11, 12, 13, 14ishlat2 39311 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
164, 7, 15mpbir2an 710 1 𝐾 ∈ HL
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076   class class class wbr 5166  cfv 6575  (class class class)co 7450  Basecbs 17260  lecple 17320  ltcplt 18380  joincjn 18383  0.cp0 18495  1.cp1 18496  CLatccla 18570  OMLcoml 39133  Atomscatm 39221  AtLatcal 39222  HLchlt 39308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583  df-ov 7453  df-cvlat 39280  df-hlat 39309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator