Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlatiN Structured version   Visualization version   GIF version

Theorem ishlatiN 35431
Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
ishlati.1 𝐾 ∈ OML
ishlati.2 𝐾 ∈ CLat
ishlati.3 𝐾 ∈ AtLat
ishlati.b 𝐵 = (Base‘𝐾)
ishlati.l = (le‘𝐾)
ishlati.s < = (lt‘𝐾)
ishlati.j = (join‘𝐾)
ishlati.z 0 = (0.‘𝐾)
ishlati.u 1 = (1.‘𝐾)
ishlati.a 𝐴 = (Atoms‘𝐾)
ishlati.9 𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))
ishlati.10 𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))
Assertion
Ref Expression
ishlatiN 𝐾 ∈ HL
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlatiN
StepHypRef Expression
1 ishlati.1 . . 3 𝐾 ∈ OML
2 ishlati.2 . . 3 𝐾 ∈ CLat
3 ishlati.3 . . 3 𝐾 ∈ AtLat
41, 2, 33pm3.2i 1444 . 2 (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)
5 ishlati.9 . . 3 𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))
6 ishlati.10 . . 3 𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))
75, 6pm3.2i 464 . 2 (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
8 ishlati.b . . 3 𝐵 = (Base‘𝐾)
9 ishlati.l . . 3 = (le‘𝐾)
10 ishlati.s . . 3 < = (lt‘𝐾)
11 ishlati.j . . 3 = (join‘𝐾)
12 ishlati.z . . 3 0 = (0.‘𝐾)
13 ishlati.u . . 3 1 = (1.‘𝐾)
14 ishlati.a . . 3 𝐴 = (Atoms‘𝐾)
158, 9, 10, 11, 12, 13, 14ishlat2 35429 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
164, 7, 15mpbir2an 704 1 𝐾 ∈ HL
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 3000  wral 3118  wrex 3119   class class class wbr 4874  cfv 6124  (class class class)co 6906  Basecbs 16223  lecple 16313  ltcplt 17295  joincjn 17298  0.cp0 17391  1.cp1 17392  CLatccla 17461  OMLcoml 35251  Atomscatm 35339  AtLatcal 35340  HLchlt 35426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-iota 6087  df-fv 6132  df-ov 6909  df-cvlat 35398  df-hlat 35427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator