Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlatiN Structured version   Visualization version   GIF version

Theorem ishlatiN 39343
Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
ishlati.1 𝐾 ∈ OML
ishlati.2 𝐾 ∈ CLat
ishlati.3 𝐾 ∈ AtLat
ishlati.b 𝐵 = (Base‘𝐾)
ishlati.l = (le‘𝐾)
ishlati.s < = (lt‘𝐾)
ishlati.j = (join‘𝐾)
ishlati.z 0 = (0.‘𝐾)
ishlati.u 1 = (1.‘𝐾)
ishlati.a 𝐴 = (Atoms‘𝐾)
ishlati.9 𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))
ishlati.10 𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))
Assertion
Ref Expression
ishlatiN 𝐾 ∈ HL
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlatiN
StepHypRef Expression
1 ishlati.1 . . 3 𝐾 ∈ OML
2 ishlati.2 . . 3 𝐾 ∈ CLat
3 ishlati.3 . . 3 𝐾 ∈ AtLat
41, 2, 33pm3.2i 1340 . 2 (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)
5 ishlati.9 . . 3 𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))
6 ishlati.10 . . 3 𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))
75, 6pm3.2i 470 . 2 (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))
8 ishlati.b . . 3 𝐵 = (Base‘𝐾)
9 ishlati.l . . 3 = (le‘𝐾)
10 ishlati.s . . 3 < = (lt‘𝐾)
11 ishlati.j . . 3 = (join‘𝐾)
12 ishlati.z . . 3 0 = (0.‘𝐾)
13 ishlati.u . . 3 1 = (1.‘𝐾)
14 ishlati.a . . 3 𝐴 = (Atoms‘𝐾)
158, 9, 10, 11, 12, 13, 14ishlat2 39341 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
164, 7, 15mpbir2an 711 1 𝐾 ∈ HL
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  lecple 17233  ltcplt 18275  joincjn 18278  0.cp0 18388  1.cp1 18389  CLatccla 18463  OMLcoml 39163  Atomscatm 39251  AtLatcal 39252  HLchlt 39338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-cvlat 39310  df-hlat 39339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator