| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ishlatiN | Structured version Visualization version GIF version | ||
| Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ishlati.1 | ⊢ 𝐾 ∈ OML |
| ishlati.2 | ⊢ 𝐾 ∈ CLat |
| ishlati.3 | ⊢ 𝐾 ∈ AtLat |
| ishlati.b | ⊢ 𝐵 = (Base‘𝐾) |
| ishlati.l | ⊢ ≤ = (le‘𝐾) |
| ishlati.s | ⊢ < = (lt‘𝐾) |
| ishlati.j | ⊢ ∨ = (join‘𝐾) |
| ishlati.z | ⊢ 0 = (0.‘𝐾) |
| ishlati.u | ⊢ 1 = (1.‘𝐾) |
| ishlati.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ishlati.9 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) |
| ishlati.10 | ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) |
| Ref | Expression |
|---|---|
| ishlatiN | ⊢ 𝐾 ∈ HL |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlati.1 | . . 3 ⊢ 𝐾 ∈ OML | |
| 2 | ishlati.2 | . . 3 ⊢ 𝐾 ∈ CLat | |
| 3 | ishlati.3 | . . 3 ⊢ 𝐾 ∈ AtLat | |
| 4 | 1, 2, 3 | 3pm3.2i 1339 | . 2 ⊢ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) |
| 5 | ishlati.9 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) | |
| 6 | ishlati.10 | . . 3 ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) | |
| 7 | 5, 6 | pm3.2i 470 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
| 8 | ishlati.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 9 | ishlati.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 10 | ishlati.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 11 | ishlati.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 12 | ishlati.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 13 | ishlati.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 14 | ishlati.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 15 | 8, 9, 10, 11, 12, 13, 14 | ishlat2 39313 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
| 16 | 4, 7, 15 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ HL |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 lecple 17280 ltcplt 18324 joincjn 18327 0.cp0 18437 1.cp1 18438 CLatccla 18512 OMLcoml 39135 Atomscatm 39223 AtLatcal 39224 HLchlt 39310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-cvlat 39282 df-hlat 39311 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |