| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ishlatiN | Structured version Visualization version GIF version | ||
| Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ishlati.1 | ⊢ 𝐾 ∈ OML |
| ishlati.2 | ⊢ 𝐾 ∈ CLat |
| ishlati.3 | ⊢ 𝐾 ∈ AtLat |
| ishlati.b | ⊢ 𝐵 = (Base‘𝐾) |
| ishlati.l | ⊢ ≤ = (le‘𝐾) |
| ishlati.s | ⊢ < = (lt‘𝐾) |
| ishlati.j | ⊢ ∨ = (join‘𝐾) |
| ishlati.z | ⊢ 0 = (0.‘𝐾) |
| ishlati.u | ⊢ 1 = (1.‘𝐾) |
| ishlati.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ishlati.9 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) |
| ishlati.10 | ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) |
| Ref | Expression |
|---|---|
| ishlatiN | ⊢ 𝐾 ∈ HL |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlati.1 | . . 3 ⊢ 𝐾 ∈ OML | |
| 2 | ishlati.2 | . . 3 ⊢ 𝐾 ∈ CLat | |
| 3 | ishlati.3 | . . 3 ⊢ 𝐾 ∈ AtLat | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . 2 ⊢ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) |
| 5 | ishlati.9 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) | |
| 6 | ishlati.10 | . . 3 ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) | |
| 7 | 5, 6 | pm3.2i 470 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
| 8 | ishlati.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 9 | ishlati.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 10 | ishlati.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 11 | ishlati.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 12 | ishlati.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 13 | ishlati.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 14 | ishlati.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 15 | 8, 9, 10, 11, 12, 13, 14 | ishlat2 39341 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
| 16 | 4, 7, 15 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ HL |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 lecple 17233 ltcplt 18275 joincjn 18278 0.cp0 18388 1.cp1 18389 CLatccla 18463 OMLcoml 39163 Atomscatm 39251 AtLatcal 39252 HLchlt 39338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ov 7392 df-cvlat 39310 df-hlat 39339 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |