![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ishlatiN | Structured version Visualization version GIF version |
Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ishlati.1 | ⊢ 𝐾 ∈ OML |
ishlati.2 | ⊢ 𝐾 ∈ CLat |
ishlati.3 | ⊢ 𝐾 ∈ AtLat |
ishlati.b | ⊢ 𝐵 = (Base‘𝐾) |
ishlati.l | ⊢ ≤ = (le‘𝐾) |
ishlati.s | ⊢ < = (lt‘𝐾) |
ishlati.j | ⊢ ∨ = (join‘𝐾) |
ishlati.z | ⊢ 0 = (0.‘𝐾) |
ishlati.u | ⊢ 1 = (1.‘𝐾) |
ishlati.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ishlati.9 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) |
ishlati.10 | ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) |
Ref | Expression |
---|---|
ishlatiN | ⊢ 𝐾 ∈ HL |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlati.1 | . . 3 ⊢ 𝐾 ∈ OML | |
2 | ishlati.2 | . . 3 ⊢ 𝐾 ∈ CLat | |
3 | ishlati.3 | . . 3 ⊢ 𝐾 ∈ AtLat | |
4 | 1, 2, 3 | 3pm3.2i 1444 | . 2 ⊢ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) |
5 | ishlati.9 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) | |
6 | ishlati.10 | . . 3 ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) | |
7 | 5, 6 | pm3.2i 464 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
8 | ishlati.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
9 | ishlati.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
10 | ishlati.s | . . 3 ⊢ < = (lt‘𝐾) | |
11 | ishlati.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
12 | ishlati.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
13 | ishlati.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
14 | ishlati.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 8, 9, 10, 11, 12, 13, 14 | ishlat2 35429 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
16 | 4, 7, 15 | mpbir2an 704 | 1 ⊢ 𝐾 ∈ HL |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 ∀wral 3118 ∃wrex 3119 class class class wbr 4874 ‘cfv 6124 (class class class)co 6906 Basecbs 16223 lecple 16313 ltcplt 17295 joincjn 17298 0.cp0 17391 1.cp1 17392 CLatccla 17461 OMLcoml 35251 Atomscatm 35339 AtLatcal 35340 HLchlt 35426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-iota 6087 df-fv 6132 df-ov 6909 df-cvlat 35398 df-hlat 35427 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |