Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ishlatiN | Structured version Visualization version GIF version |
Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ishlati.1 | ⊢ 𝐾 ∈ OML |
ishlati.2 | ⊢ 𝐾 ∈ CLat |
ishlati.3 | ⊢ 𝐾 ∈ AtLat |
ishlati.b | ⊢ 𝐵 = (Base‘𝐾) |
ishlati.l | ⊢ ≤ = (le‘𝐾) |
ishlati.s | ⊢ < = (lt‘𝐾) |
ishlati.j | ⊢ ∨ = (join‘𝐾) |
ishlati.z | ⊢ 0 = (0.‘𝐾) |
ishlati.u | ⊢ 1 = (1.‘𝐾) |
ishlati.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ishlati.9 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) |
ishlati.10 | ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) |
Ref | Expression |
---|---|
ishlatiN | ⊢ 𝐾 ∈ HL |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlati.1 | . . 3 ⊢ 𝐾 ∈ OML | |
2 | ishlati.2 | . . 3 ⊢ 𝐾 ∈ CLat | |
3 | ishlati.3 | . . 3 ⊢ 𝐾 ∈ AtLat | |
4 | 1, 2, 3 | 3pm3.2i 1336 | . 2 ⊢ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) |
5 | ishlati.9 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) | |
6 | ishlati.10 | . . 3 ⊢ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )) | |
7 | 5, 6 | pm3.2i 474 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) |
8 | ishlati.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
9 | ishlati.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
10 | ishlati.s | . . 3 ⊢ < = (lt‘𝐾) | |
11 | ishlati.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
12 | ishlati.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
13 | ishlati.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
14 | ishlati.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 8, 9, 10, 11, 12, 13, 14 | ishlat2 36963 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ≠ 𝑦 → ∃𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ (𝑥 ∨ 𝑦))) ∧ ∀𝑧 ∈ 𝐵 ((¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ (𝑧 ∨ 𝑦)) → 𝑦 ≤ (𝑧 ∨ 𝑥))) ∧ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (( 0 < 𝑥 ∧ 𝑥 < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) |
16 | 4, 7, 15 | mpbir2an 710 | 1 ⊢ 𝐾 ∈ HL |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 lecple 16643 ltcplt 17630 joincjn 17633 0.cp0 17726 1.cp1 17727 CLatccla 17796 OMLcoml 36785 Atomscatm 36873 AtLatcal 36874 HLchlt 36960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-ov 7159 df-cvlat 36932 df-hlat 36961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |